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Abstract

The cytoskeletal interacting protein Septin 9 (SEPT9), a member of the septin gene family, has 

been proposed to have oncogenic functions. It is a known hot spot of retroviral tagging insertion 

and a fusion partner of both de novo and therapy-induced mixed lineage leukemia (MLL). Of all 

septins, SEPT9 holds the strongest link to cancer, especially breast cancer. Murine models of 

breast cancer frequently exhibit Sept9 amplification in the form of double minute chromosomes, 

and about 20% of human breast cancer display genomic amplification and protein over expression 

at the SEPT9 locus. Yet, a clear mechanism by which SEPT9 elicits tumor-promoting functions is 

lacking.

To obtain unbiased insights on molecular signatures of SEPT9 upregulation in breast tumors, we 

overexpressed several of its isoforms in breast cancer cell lines. Global transcriptomic profiling 
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supports a role of SEPT9 in invasion. Functional studies reveal that SEPT9 upregulation is 

sufficient to increase degradation of the extracellular matrix, while SEPT9 downregulation inhibits 

this process. The degradation pattern is peripheral and associated with focal adhesions (FA), where 

it is coupled with increased expression of matrix metalloproteinases. SEPT9 overexpression 

induces MMP upregulation in human tumors and in culture models and promotes MMP3 secretion 

to the media at FAs. Downregulation of SEPT9 or chemical inhibition of septin filament assembly 

impairs recruitment of MMP3 to FAs. Our results indicate that SEPT9 promotes upregulation and 

both trafficking and secretion of MMPs near FAs, thus enhancing migration and invasion of breast 

cancer cells.
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Introduction

Septin 9 (SEPT9) is a GTP-binding protein that assembles into hetero-oligomeric complexes 

in the form of filaments and rings1. At the genomic level, it is the most complex member of 

the septin family of genes, coding for up to 18 isoform variants, and is, to date, the septin 

with the strongest association to cancer. SEPT9 was first linked to tumorigenesis in 1999 by 

the discovery of therapy induced chromosomal translocations between the SEPT9 locus and 

the mixed lineage leukemia (MLL) gene in an acute myeloid leukemia (AML) patient2. 

Septins are the protein family most frequently involved in rearrangements with MLL3. 

MLL-SEPT9 fusions are highly heterogeneous in terms of both patients’ age (4 months–72 

years), and clinical presentation (myelodysplastic syndromes as well as acute myeloid 

cases), suggesting a broad implication in the tumorigenic process3. SEPT9 transcripts are 

generated by splicing or coded by alternative promoters4, 5. SEPT9 isoforms include a 

central common core (exons 4–11) and differing 5’ and 3’ ends3. While mechanistically the 

contribution of MLL partners to the tumorigenic process remains largely unknown, it is well 

established that fusion genes have oncogenic functions. This suggests that SEPT9 acts as a 

bona fide oncogene.

In solid tumors, SEPT9 was originally proposed as a tumor suppressor gene as it maps to a 

region of loss of heterozygosity in some breast and ovarian tumors6. However, several 

reports now suggest that this is not the case. SEPT9 was identified as a hot spot of viral 

integration in retroviral insertion mutagenesis experiments7, and it is amplified in murine 

models of breast cancer in the form of double minute chromosomes8, both of which are 

molecular properties of strong oncogenes9. Genomic amplification of SEPT9 leads to its 

overexpression in human and murine breast adenocarcinomas and in a variety of breast 

cancer cell lines8. The likely mechanism of SEPT9 tumorigenic activity is via upregulation 

of its transcripts, given that mutations of this gene are rare in cancer10. This is supported by 

mining The Cancer Genome Atlas11. Upregulation of the transcript variant SEPT9_v1 has 

been reported in human cell lines as well as in matched tumor and peritumoral breast cancer-

tissue specimens5, 12, 13. Expression of the SEPT9_v3 isoform is regulated by DNA 
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methylation upstream of the SEPT9_v3 transcription start site14. Overexpression of SEPT9 
is detected more commonly in high-grade carcinomas, which are also associated with a 

worse clinical prognosis5.

Septins play pivotal roles in cytoskeleton dynamics; accordingly, they are linked to a broad 

range of cellular functions, many of which have the potential to foster tumorigenic 

phenotypes. SEPT9_v1 promotes tumor growth by stabilizing HIF-1α15, while SEPT9_v4 
has been shown to increase resistance to microtubules-interacting drugs16. SEPT9_v1 is 

upregulated in breast cancer and is associated with oncogenic potential via its interaction 

with c-Jun12, 17.

One proposed mechanism for SEPT9 contribution to tumorigenesis is to promote tumor 

metastasis via enhancing migration18. We previously performed migration assays using 

MCF7 cells expressing GFP-tagged SEPT9 isoforms and showed that SEPT9_v1, 

SEPT9_v3, SEPT9_v4, and SEPT9_v5 have increased numbers of migratory cells, 

suggesting that SEPT9 contributes to the migratory phenotype. Analysis of morphogenesis 

of renal cysts using MDCK cells grown in 3-D revealed that SEPT9 overexpression doubled 

the number of cellular extensions and their length, suggesting a more aggressive tumor 

phenotype due to SEPT9 upregulation19.

While it is recognized that SEPT9 contributes to tumorigenesis, a clear mechanism of action 

by which SEPT9 elicits its tumor-promoting functions is lacking. To begin addressing this 

significant gap of knowledge, we overexpressed three SEPT9 isoforms deregulated in breast 

primary tumors into the hormone responsive luminal A subtype MCF7 cell line, therefore 

mimicking the occurrence of the most common breast cancer subtype (luminal A, estrogen 

and progesterone responsive), and performed global transcriptomic analysis20. Our results 

uncovered a significant association of SEPT9 overexpression with differential expression 

(DE) of genes expressed in vesicle membranes and in the lumen of the endoplasmic 

reticulum (ER). Functional analysis of SEPT9-overexpressing breast tumor cells revealed 

increased degradation of the ECM. SEPT9 overexpression promoted MMP upregulation and 

a significant increase of matrix metalloproteinases secreted to the culture media. In human 

breast cancer patients in whom SEPT9 expression is upregulated, MMP levels are also 

significantly increased. ECM degradation pattern co-localized with vinculin and overlapped 

with FAs at the cell membrane, suggesting that one of the oncogenic functions of SEPT9 is 

to promote degradation of the ECM by mediating the transport of protease-containing 

vesicles from the ER to the tumor microenvironment.

Results

Upregulation of SEPT9 isoforms SEPT9_v1, SEPT9_v2, and SEPT9_v3 in MCF7 cells 
activates different but complementary oncogenic pathways.

To directly test the consequences of overexpression of the SEPT9 isoforms SEPT9_v1, 

SEPT9_v2, and SEPT9_v3 we performed global transcriptomic profiling using our 

previously characterized MCF7 clones as a model5. Fluorescence Activated Cell Sorting 

(FACS) was used to remove GFP negative cells in order to achieve homogeneity of chimeric 

GFP-SEPT9 protein expression across the pool of transfected lines (>98% GFP-SEPT9 
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positive cells) (Supplementary Figure 1A). To identify SEPT9 isoform-specific gene 

expression changes occurring as a consequence of SEPT9 isoform overexpression, we 

performed global transcriptomic analysis using RNA-sequencing on MCF7_SEPT9_v1, 

MCF7_SEPT9_v2, and MCF7_SEPT9_v3 and compared the transcriptional profile to 

MCF7 control cells (MFC7_c) (Supplementary Table 1 and Supplementary Figure 1B–D).

Relative to MCF7_c (FDR < 0.05) we found that, globally, 459 normalized genes were 

differentially expressed (DE): 184 genes were downregulated and 275 were upregulated. 

Because we anticipated the differential gene expression between the SEPT9 isoforms to be 

relatively small, we refrained from setting an arbitrary cut-off for fold change, allowing us to 

detect all possible statistically significant changes in expression. Of the 459 genes that met 

the FDR<0.05 criteria, 58 were DE between MCF7_SEPT9_v1 and MCF7_c (36 

downregulated and 22 upregulated)(Figure 1A), 99 were DE between MCF7_SEPT9_v2 and 

MFC7_c (34 downregulated and 65 upregulated), and 302 were DE between 

MCF7_SEPT9_v3 and MCF7_c (114 downregulated and 188 upregulated). The fold 

difference in log normalized expression varied between 6.072 and +9.11(Figure 1B), with 

204 genes DE by 1.5 folds or more. Surprisingly, we found minimal overlap between the DE 

genes identified as result of overexpression of different isoforms supporting previous reports 

that SEPT9 isoforms may provide complementary but unique functions4, 5, 14, 21–24. Seven 

genes were DE in all MCF7 clones, of which two were upregulated (Figure 1C and Table 1). 

Among those, the TCR Gamma Alternate Reading Frame Protein (TARP) which encodes for 

an alternative T-cell receptor protein, is a novel breast and prostate tumor-associated 

antigen25. TARP is localized to the outer mitochondrial membrane26 and its overexpression 

increase the growth rate of epithelial cells and induce caveolins expression27. RNA 

(UPK1AS1), a novel uncharacterized noncoding RNA, is also expressed in the mammary 

epithelium28 and in the mammary gland29.

Two genes were downregulated in all three MCF7_SEPT9 isoform clones: SEC14-Like 

Lipid Binding 4 (SEC14L4), which encodes a member of Sec14-like phosphatidylinositol 

transfer proteins that functions as one of the key regulators of phosphoinositide signaling of 

trafficking through the trans-Golgi network30; and Shisa Family Member 2 (SHISA2), 

which encodes an endoplasmic reticulum (ER) protein that cell-autonomously inhibits FGF 

and Wnt signaling by preventing the maturation and the cell-surface expression of their 

receptors31. Remarkably, two genes, Amphiphysin (AMPH) and Solute Carrier Family 17 

Member 9 (SLC17A9), both associated with vesicle mediated transport, were both 

upregulated in MCF7_SEPT9_v1 and MCF7_SEPT9_v3 but were downregulated in 

MCF7_SEPT9_v2 cells. On the contrary, Sulfatase 1 (SULF1), an extracellular heparan 

sulfate endosulfatase enzyme that is secreted through the Golgi, was downregulated in 

MCF7_SEPT9_v1 and MCF7_SEPT9_v3 but was upregulated in MCF7_SEPT9_v2 cells. 

When considered globally, all DE genes common to the three SEPT9 isoforms were 

significantly enriched in genes expressed in the lipid bilayer of membranes (GO:0016020), 

suggesting that membrane dynamics is an important consequence of SEPT9 over expression 

in epithelial breast cancer cells.

Of the DE genes that were found common in two SEPT9 isoforms (Supplementary Figure 

2A and Supplementary Table 2), three were common to MCF7_SEPT9_v1 and 
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MCF7_SEPT9_v2: Cadherin 4 (CDH4), Caveolin 1 (CAV1) and ATPase, 

aminophospholipid transporter (APLT), class I, type 8A, member 1 (ATP8A1), suggesting 

again a pivotal role of membrane bound proteins. Eighteen genes were common to 

MCF7_SEPT9_v2 and MCF7_SEPT9_v3, enriched in the cellular component GO term 

vesicle lumen (GO:0031983, p=1.61e-02), Aldolase C, fructose-bisphosphate (ALDOC), 

Leucine-rich alpha-2-glycoprotein 1 (LRG1), and vascular endothelial growth factor C 

(VEGFC)(Supplementary Figure 2B), as well as positive regulation of cell migration (GO:

0030335). Significant enrichment of the 18-gene set was also found in GO terms associated 

with regulation of secretion. When overlaid with genes of the phospholipid signaling 

pathway (Supplementary Figure 2B blue lines) we identified significant enrichment (p<0.05) 

within genes common to MCF7_SEPT9_v2 and MCF7_ SEPT9_v3.

A total of 16 genes common to MCF7_SEPT9_v1 and MCF7_SEPT9_v3 were found to be 

involved in the Protein Kinase A (PKA) signaling pathway (Supplementary Figure 2C).

Because of the limited overlap of DE genes between the SEPT9 isoforms, we proceeded to 

analyze individually the transcriptome of each MCF7 clone overexpressing the different 

isoforms.

At the level of single genes, the top 10 up- and downregulated MCF7_SEPT9_v1 genes 

were associated with functions important for antigen binding and processing 

(Supplementary Table 3). These genes are conventionally expressed in the cellular 

compartment of the Golgi apparatus. The top 10 up- and downregulated genes identified in 

MCF7_SEPT9_v2 and MCF7_SEPT9_v3 cells were not significantly associated, as a group, 

to specific GO terms.

Globally, Gene Set Enrichment Analysis (GSA) of all significantly DE genes relative to 

MCF7_c cells revealed that MCF7_SEPT9_v1-overexpressing cells were mainly expressed 

in the endoplasmic reticulum and the Golgi apparatus (Figure 1D), and were enriched for 

antigen processing and response to cytokine stimulus pathways (FDR= 6.02E-06), as well as 

tissue remodeling and regulation of cell to cell adhesion (Supplementary Figure 3A and 

Supplementary Table 4). We identified a significant association of DE genes in response to 

SEPT9_v1 upregulation with hallmarks of protein secretion and apical surface markers 

(Supplementary Figure 3A blue and red lines). Interestingly, we found a significant 

enrichment (FDR =5.78E-03) with regulation of pinocytosis (CAV1 and the AXL Receptor 

Tyrosine Kinase AXL1 gene). AXL1 is a signal transducer regulating communication of 

epithelial cells with the extracellular matrix and it has been involved in several functions 

including promoting cell invasion32.

MCF7_SEPT9_v2 cells were enriched for cell growth functions (FDR= 1.79E-03) and 

response to growth factor stimulus (FDR= 6.77E-03) (Supplementary Figure 3B and 

Supplementary Table 4). MCF7_SEPT9_v3 cells were mainly associated with vesicles 

(Figure 1E) and mostly enriched in pathways controlling excretion (FDR= 2.9E-02) and 

lipid localization and transport (FDR=3.3E-03). Overlay of the Biocarta TGFβ pathway 

gene members with enriched GO terms as result of SEPT9_v3 overexpression revealed an 

extensive overlap between these two groups (Supplementary Figure 3C and Supplementary 
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Table 4). To verify the biological finding that SEPT9_v1, SEPT9_v2 and SEPT9_v3 may 

promote isoform specific differential gene expression, we randomly selected six genes 

(Versican -VCAN, T-Box Transcription Factor TBX15, Sulfatase 1 -SULF1, Glypican 6 -

GPC6, Keratin 20 -KRT20 and Fibroblast Growth Factor 21 -FGF21). These targets, which 

included high and low expressing genes as well as transcripts upregulated or downregulated 

in one or more isoform specific MCF7 lines, showed similar trend of expression in MCF7 

cells as determined by quantitative PCR across 3 independent lines, each expressing one 

SEPT9 isoform (Supplementary Figure 4).

When considered as a whole, the transcriptomic profiling analysis of MCF7 cells 

overexpressing SEPT9_v1, SEPT9_v2, and SEPT9_v3 isoforms points to altered cell 

communication between cells and the microenvironment via vesicle formation and 

membrane dynamics.

SEPT9 overexpression promotes invasion and migration

Because the RNA-sequencing results strongly supports a role for SEPT9 in the dynamics of 

vesicles and their interaction with the extracellular matrix, we reasoned that one of the 

oncogenic functions linked to its overexpression in breast cancer cells is to promote 

invasion. We therefore proceeded to functionally test this hypothesis in vitro. Among the 

features that contribute to cell invasiveness are cell motility and their ability to degrade the 

surrounding extracellular matrix (ECM). We previously showed that SEPT9 expression in 

MCF7 cells contributes to the migratory phenotype of these cells (Figure 2A and14). To 

verify that this effect was not restricted to MCF7 cells, we generated stable MDA-MB-231 

clones, expressing GFP-tagged SEPT9 isoforms SEPT9_v1, SEPT9_v2, or SEPT9_v3. The 

pro-migratory and invasive potential of each of the MDA-MB-231 clones was tested using 

the transwell migration assay with collagen-coated inserts14. The ability of the cells to 

migrate/invade in the transwell assay relies on their motility as well as their ability to 

degrade the matrix through which they migrate. Expression of all three SEPT9 isoforms 

showed, as in MCF7 cells, a significant increase in the number of migratory/invading cells 

(p<0.05), suggesting that the pro-migratory and invasive effect of SEPT9 in mammary 

epithelial cells is likely a general phenomenon (Figure 2A.

SEPT9 overexpression increases cellular degradation of fluorescent matrix

Among the genes enriched in SEPT9-overexpressing MCF7 cells, several were involved in 

cytoskeletal organization, cell-cell adhesion, and secretion, all of which can contribute to 

metastasis by promoting ECM degradation. We subsequently wanted to test whether the 

expression of the SEPT9 isoforms in mammary epithelial cells affects the cells’ ability to 

digest the ECM. We performed matrix degradation assays, using 2-dimensional fluorescent 

analysis using MDA-MB-231 clones because of their high degrading phenotype33, 34. 

Initially we tested the three different GFP-SEPT9 variants to determine to what extent they 

differed in their matrix degradation activity. MDA-MB-231_SEPT9_v3 was the most 

degrading SEPT9 isoform. This agrees with our RNA-Seq analysis indicating that 

SEPT9_v3 overexpressing cells are enriched for the expression of genes controlling cell-cell 

adhesion and excretion when compared with WT cells. Therefore, we proceeded to perform 

a more detailed analysis comparing matrix degradation in MDA-MB-231_SEPT9_v3 
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relative to MDA-MB-231_c cells. In order to estimate the degradation potential of the cells, 

we quantified gelatin degradation by calculating the total degradation area for each panel of 

images as percentage of total cells’ area (Supplementary Figure 5A). This approach provides 

a normalized and highly reproducible way to compare control cells to SEPT9 overexpressing 

cells. We found that SEPT9_v3 overexpression significantly increases the gelatin 

degradation activity of MDA-MB-231 cells of about 2.5 folds (4.69±0.69% vs. 1.92±0.53%, 

respectively; P<0.033, Figure 2B–C). These results suggest that, in addition to contributing 

to migration, SEPT9_v3 overexpression in MB-MDA-231 cells also promotes matrix 

degradation under these experimental conditions.

SEPT9 knockdown decreases cellular degradation of fluorescent matrix

To confirm that the effect of gelatin degradation was indeed a function of SEPT9 activity in 

MDA-MB-231 cells, we tested the consequence of SEPT9 downregulation on gelatin 

degradation. To this end, MDA-MB-231_c cells were transfected with siRNA targeting 

SEPT9 or with a scramble siRNA (control). Cells were analyzed 48 hours post-SEPT9 
silencing to ensure decreased levels of SEPT9 mRNA as well as SEPT9 protein (82% 

mRNA reduction relative to scramble siRNA treated cells - Supplementary Figure 6A; and 

75% protein expression decrease -Supplementary Figure 6B–C). The SEPT9 silenced and 

control cells were next tested for their ability to degrade fluorescent gelatin. The results 

revealed that reduction of ~80% of SEPT9 mRNA levels relative to controls leads to 

significantly lower degradation activity compared with that of cells treated with control 

siRNA (1.94±0.15% vs. 5.77±0.39%, respectively; P<0.001; Figure 2D–E and 

Supplementary Figure 5B). These results support the hypothesis that SEPT9 is required for 

extracellular matrix degradation in breast cancer cells.

SEPT9 overexpression promotes secretion of proteases into the cell media

As suggested by our global transcriptomic results, SEPT9 may promote ECM degradation 

through enhanced secretion of matrix metalloproteinases (MMPs) to the media. In fact, 

MCF7 cells overexpressing SEPT9_v3 are enriched in excretion pathways, and significantly 

over express genes associated with MMPs activity (Supplementary Figure 7). Consequently, 

to examine if SEPT9_v3 overexpression affects the levels of proteases secreted to the media 

we used a protease array to analyzed the cell culture medium for the presence of 34 different 

proteases (Supplementary Figure 6E–F). To maximize the potential difference in secreted 

proteases, we compared the conditioned medium of MDA-MB-231 cells transfected with the 

SEPT9 siRNA to the conditioned medium of MDA-MB-231 cells expressing SEPT9_v3 
(Supplementary Figure 6B–D). We found that the levels of two secreted proteases, Matrix 

Metalloproteinase MMP3 and MMP13, were significantly decreased in the culture medium 

of MDA-MB-231 cells transfected with SEPT9 siRNA (~40%) (Figure 3A–B). These results 

indicate that SEPT9 promotes secretion of MMPs to the media. Interestingly, there was no 

change in the secreted MMP2 and MMP9 levels, the metalloproteinases implicated in 

invadopodia-mediated matrix degradation35, 36.

To better understand the correlation between SEPT9 and MMPs, we wanted to establish if 

SEPT9 overexpression directly promoted MMPs expression and also evaluate the generality 

of this process by analyzing multiple breast cancer cell lines. We designed primers for the 
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quantitative measurement of mRNA coded by an array of MMPs: MMP3 and MMP13 were 

selected based on the protein array results (Figure 3A–B), and MMP1, MMP2, and MMP9 

are widely studied matrix-degrading enzymes enriched at invadopodia35, 37–42. The levels of 

these five degrading enzymes were quantified by qRT-PCR in MCF7, MDA-MB-231, and 

T47D either overexpressing SEPT9_v3 or not overexpressing SEPT9_v3. MMP13 

expression was significantly upregulated as a consequence of SEPT9_v3 overexpression in 

all three cell lines tested (Figure 3C). MMP1 was significantly upregulated in both MCF7 

and MDA-MB-231, the latter of which also upregulated MMP3. The mRNA of MMP2 and 

MMP9, in concordance with the protease array results (Figure 3C), was expressed at low 

levels in MDA-MB-231 as well as the other cell lines tested and therefore we could not 

detect significant changes (data not shown).

Because SEPT9 is amplified in ~20% of breast cancer cases43 and because MMPs are key 

regulators of the mammary tumor microenvironment that mediate ECM degradation and 

remodeling44, we mined The Cancer Genome Atlas (TCGA) to study a possible correlation 

between SEPT9 and MMPs in human sporadic breast cancer. Of the n=1093 cases analyzed 

as part of the provisional breast cancer dataset, ~19% (n=210) express SEPT9 at 1.5 folds 

higher than the median levels across all cases. In these samples, from the global 

transcriptomic profiling, MMP levels were detected across all 210 cases for 8 out of the 23 

known MMPs (MMP1, MMP9, MMP11, MMP14, MMP15, MMP19, MMP24, MMP25). 

We found that 4 out of these 8 MMPs (MMP9, MMP15, MMP24 and MP25) were 

significantly upregulated in those patients that also overexpressed SEPT9 (Figure 3D), while 

no significant expression changes were detected in the other MMPs.

Thus, SEPT9 overexpression directly promoted MMPs upregulation in cultured cells, and 

human tumors with high SEPT9 expression also significantly upregulating the expression of 

several MMPs.

Involvement of MMP secretion with extracellular vesicles (EVs) activity is an emerging 

field45, 46; we next wanted to test whether SEPT9 affects EV secretion. We isolated EVs 

from conditioned medium of MDA-MB-231 overexpressing SEPT9_v3 and MDA-MB-231 

transfected with control RNAi or SEPT9 RNAi. The isolated EVs were analyzed by 

dynamic light scattering47, as well as laser scattering microscopy48, 49. Both analyses failed 

to detect significant differences in secreted EV numbers or size (Supplemental Table 5). This 

implied that SEPT9 affects either the EV cargo, or the MMP’s secretion pathway by directly 

enhancing exocytosis into the medium and/or activation of MMP activity during secretion. 

To distinguish among these mechanisms, we separated the EVs from the MDA-MB-231 

culture media to obtain EV-free media. To ensure EV depletion we tested for the presence of 

CD9, a marker for EVs50, which was present in whole cell lysate and in the EV fraction but 

not in the conditioned medium (Figure 4A). MMP3 expression was detected in the whole 

cells extract and in the supernatant fraction but not in the EV-free conditioned medium. This 

supports the hypothesis that MMP3 is secreted directly to the medium and not via EVs and 

SEPT9 affects this activation and/or secretion. Moreover, while the protein size of MMP3 

expressed in the cells was the expected 57kDa size, MDA-MB-231 cells expressing 

SEPT9_v3 contained a truncated form. MMP3, like other MMPs, contains a pro-peptide of 

~80 amino acids51, which is cleaved upon secretion resulting in a smaller but active MMP3 
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form (45 kDa, MMP3’). When comparing the supernatant fraction of MDA-MB-231_c and 

MDA-MB-231_SEPT9_v3 cells, the latter secreted higher levels of MMP3’ (4.78+/− 0.07 

folds increase) (Figure 4B), strengthening the notion that SEPT9 promotes secretion of 

protease activated MMPs to the media.

SEPT9 is associated with Focal Adhesions degradation sites and MMP3

We next sought to further characterize the relation between SEPT9 activity and extracellular 

matrix degradation in MDA-MB-231 cells. The degradation pattern exhibited by MDA-

MB-231 is peripheral (Figure 2B) and resembles the pattern of focal adhesion (FA) ECM 

degradation52. To determine whether FAs drive the observed degradation pattern and 

whether SEPT9 is associated with these structures, we stained MDA-MB-231 cells grown on 

gelatin with pan-SEPT9 and the FA marker vinculin. As expected, SEPT9 assembled into 

filaments that partially colocalize with F-actin. However, this localization was uneven along 

the F-actin filaments, as previously described for SEPT2 and other septins53 (Figure 5A–B). 

We also found that SEPT9 localized adjacent to FAs, which appeared to extend from the 

SEPT9 and F-actin filaments (Figure 5A, white arrow). These findings are in accordance 

with previous studies showing that SEPT9 directly cross-links prepolymerized actin 

filaments into bundles and promotes maturation of nascent FAs19. Moreover, the vinculin 

staining patterns were very similar to the gelatin degradation patterns (Figure 5C), implying 

that the ECM degradation observed under these conditions is associated with FAs.

In addition to the interaction with F-actin and the association with FAs, SEPT9 has been 

shown to interact with microtubules8, 19, 54–56. Moreover, studies indicate that septins 

participate in Golgi-to-plasma membrane vesicle transport57, 58 suggesting that SEPT9 may 

be involved in trafficking of MMPs from the Golgi to mature FAs. Hence, we examined the 

association between SEPT9, FAs, F-actin, and MMP3. First, MDA-MB-231 cells were 

seeded on gelatin and stained for F-actin, vinculin, and MMP3. Interestingly, the MMP3 

signal appeared as a tubular staining, which in some instances localized along F-actin 

filaments. The MMP3 tubular staining extended from the cell center towards the cell edge, 

and specifically towards FA, where MMP3 is expressed in foci (Figure 5D, arrows).

Next, we asked whether SEPT9 depletion affects either FAs, as previously demonstrated19, 

or the tubular morphology of the MMP3 staining. To address this, MDA-MB-231 cells 

transfected with siRNA targeting SEPT9 or with a scramble siRNA (control), were seeded 

on gelatin before staining with F-actin, vinculin, and MMP3 and analyzed for FA 

morphology and number. Notably, SEPT9 depletion decreased the number of mature FAs 

and had some effect on the MMP3 signal (Figure 6; Supplementary Figure 8). Image 

analysis revealed that cells transfected with SEPT9 siRNA had significantly shorter FAs 

(Figure 6B; SEPT9, 1.1±0.26 μm; CONT, 1.3±0.2 μm; p<0.02) than control cells. Moreover, 

SEPT9 depletion significantly decreased the number of FAs larger than 472 nm (2 pixels)

(Figure 6C; SEPT9, 48±6.2; CONT, 80±9.7; p<0.01), while increasing the percentage of 

FAs localizing distal to the cell edge relative to control cells (Figure 6D). These results 

demonstrate that SEPT9 depletion affects the maturation of FAs, which is characterized by 

both elongated FAs and FA position closer to the cell center19. However, the effect of SEPT9 
depletion on MMP3 was not as striking (Supplementary Figure 9). While the size 
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distribution of the MMP3 signals was affected slightly (Figure 6E; SEPT9, 59% of the 

signals were shorter than 944 nm and 41% longer; CONT, 29 % of the signals were shorter 

than 944 nm and 71% longer, P<0.01), the average signal distribution of the MMP3 signals 

was similar between control and SEPT9 siRNA cells (Figure 6F). This could be partly due to 

cell-to-cell variability of SEPT9 silencing using siRNA, as well as limitations in the ability 

of SEPT9 siRNA to equally target all the 18 known SEPT9 isoforms that assemble the septin 

complex resulting in residual filament assembly12, 59. To test whether a more severe 

phenotype on MMP3 secretion could be observed using a septin inhibitor, we exposed 

MDA-MB-231 cells to forchlorfenuron (FCF). FCF impairs septin dynamics and 

mammalian septin organization, and it has been shown to inhibit exocytosis of secreted 

proteins in various cells55, 60. If our hypothesis is correct, stabilization of septin filaments 

which impairs their dynamics should severely affect the maturation of FAs and destroy the 

tubular pattern of MMP3 expression. MDA-MB-231 cells were seeded on gelatin and 

incubated with 50 μM FCF or DMSO control followed by staining for F-actin, vinculin, and 

MMP3. As predicted (Figure 7A), FCF impaired the formation of mature FAs as well as the 

tubular expression of MMP3. FCF-treated cells had statistically significant smaller and 

fewer central FAs than DMSO-treated cells, indicating that FCF inhibits the maturation of 

the FAs (Supplementary Figure 10). Likewise, the tubular appearance of MMP3 was 

impaired by FCF and most of the FCF-treated cells showed a main centrally located MMP3 

signal with only few distal foci (Supplementary Figure 11). Quantification of the images 

revealed that DMSO-treated control MDA-MB-231 cells had significantly longer FAs 

(Figure 7B; DMSO, 1.3±0.1 μm; FCF, 1.1±0 μm, P<0.001) than FCF-treated cells. 

Additionally, FCF treatment, like SEPT9 depletion, significantly decreased the number of 

FAs larger than 472 nm (2 pixels) (Fig. 7C; DMSO, 142±13.5; FCF, 109±11.8, P<0.1), 

while increasing the percentage of distal FAs near the cell edge relative to control cells (Fig. 

7D). Like SEPT9 depletion, FCF altered the size distribution of the MMP3 signals, as we 

predicted (Figure 7E; FCF, 68% of the signals were shorter than 944 nm −4 pixels- and 32% 

were longer; DMSO, 45% of the signals were shorter than 944 nm and 56% were longer, 

P<0.01). In addition, FCF significantly shortened the average length of the MMP3 signals 

(Figure 7F; DMSO, 1.3±0.07 μm; FCF, 1.1±0 μm, P<0.001).

Collectively, these results support the hypothesis that SEPT9 promotes invasiveness by 

increasing the maturation of FAs and facilitating MMP3 trafficking and secretion at FAs.

Discussion

The main goal of this work was to study the consequences of SEPT9 overexpression in 

breast cancer cells. Given the strong association between SEPT9 amplification and 

overexpression in breast cancer5, 8, 14, 61 and the previously reported SEPT9 functions in 

enhancing migration14, 19, we reasoned that this protein would function as a bona fide 

oncogene, granting cells tumor-promoting characteristics. The transcriptomic profiling of 

MCF7 cells overexpressing three of the major SEPT9 isoforms found in mammary epithelial 

cells clearly indicate that SEPT9 promotes invasion. Altogether, the enrichment analysis on 

gene sets differentially expressed in MCF7-overexpressing SEPT9 isoforms points to 

regulation of cell motility, cell-cell adhesion, lipid metabolism, vesicle transport and 

secretion.
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Some of these properties have been previously linked to septins, while others were a novel 

discovery of our study. Epithelial-Mesenchymal Transition (EMT) requires epithelial cells to 

gain migratory and invasive potential. It has been previously shown that septins promote 

motility of renal epithelial cells19. Here we demonstrate that the enhanced motility is also 

maintained in mammary epithelial cells. We previously demonstrated, using a transwell 

migration assay, the pro-migratory effect of SEPT9 expression on the low-migratory MCF7 

cells. Here we show that even highly motile and invasive MDA-MB-231 cells further 

increase this phenotype when SEPT9 is overexpressed. Thus, SEPT9 strongly contributes to 

migration. This conclusion is consistent with previous in vivo studies showing that 

SEPT9_v1 stabilizes HIF-1α15 and that the HIF-1a signaling pathway is directly associated 

with invasive tumor cell migration in breast tumors62.

The greatest effect on migration was achieved by expression of SEPT9_v1, both in MCF7 

and MDA-MB-231 cells. This further supports the growing concept that SEPT9 isoforms 

contribute differently to tumorigenesis. It was recently proposed that SEPT9_v2 acts as an 

inhibitor of migration in MCF7 cells and that this specific isoform is downregulated in 

primary breast tumors13. The weak tumorigenic potential of SEPT9_v2 is supported by our 

transcriptomic analysis of MCF7 cells overexpressing this isoform when compared to 

SEPT9_v1 or SEPT9_v3. In fact, we found DE genes as consequence of SEPT9_v2 
overexpression to be the least enriched in molecular, cellular, and biological functions 

compared to the other two isoforms tested.

The major outcome of the transcriptomic profiling analysis was the enrichment of tissue 

remodeling and cell adhesion pathways along with the novel findings linking SEPT9 
overexpression in mammary epithelial cells to excretion. Notably, genes differentially 

expressed as consequence of SEPT9 overexpression were significantly associated with 

cellular component ontologies related to the plasma membrane, especially the lumen side of 

the endoplasmic reticulum and membrane vesicles. This is in concordance with recent 

findings based on proteomic analysis63. Septins can bind to membranes, specifically to 

phosphoinositides (PIs)64, where they provide membrane stability and serve as diffusion 

barriers for membrane proteins65, 66. While some mechanisms linking SEPT9 functions to 

phospholipids and vesicle transports in mammalian cells are emerging67, 68, most of our 

knowledge remains restricted to yeast biology. However, it is important to note that the 

phosphoinosities are essential regulatory scaffolds linking invadopodium precursor 

formation to the proximal tip of FAs69, which is consistent with the results of our study 

linking SEPT9 to the emergence of proteolysis at FAs.

One of the features of invasion is the ability of cells to degrade their surrounding matrix. 

Here we provide evidence that SEPT9_v3 overexpression in MDA-MB-231 cells increases 

their ability to degrade gelatin, whereas global knockdown of SEPT9 in the same cells 

decreases their degradation potential. These results suggest that increased levels of SEPT9 in 

mammary epithelial cells promotes degradation of the extracellular matrix, providing a 

functional link between SEPT9 amplification and overexpression and its oncogenic 

properties. The most profound effect on degradation was demonstrated by expression of 

SEPT9_v3 which, when expressed in MCF7 cells, was accountable for enrichment in genes 

involved in secretion. The different effect of the SEPT9 isoform variants on migration vs. 

Marcus et al. Page 11

Oncogene. Author manuscript; available in PMC 2020 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



degradation implies that SEPT9 isoforms may be accountable for complementary but unique 

functions.

Degradation activity of the ECM is a key feature of invadopodia, which is achieved by the 

secretion of proteases that degrade the basement membrane surrounding the tumor70. The 

characteristic pattern of gelatin degradation by cancer cells is a centrally situated and dot-

shaped degradation pattern that localizes with invadopodia69–72. However, the degradation 

pattern exhibited by MDA-MB-231 cells in our study was mostly peripheral and localized at 

the basal membrane that bridges the actin cytoskeleton to the ECM, and the pattern 

resembled ECM degradation by FAs. This type of proteolytic degradation mechanism has 

been previously described both in fibroblasts and in epithelial cells73 and shown to be 

associated with invadopodium precursor assembly at the proximal tips of FAs in breast 

cancer cells69. In fact, we show here that in MDA-MB-231 cells SEPT9 localizes in adjacent 

to FAs and that the degradation patterns formed by these cells are similar to the FA staining 

patterns. FAs are integrin-containing, multi-protein structures that form mechanical 

connections between intracellular actin bundles and the ECM. The dynamic assembly and 

disassembly of FAs plays a central role in cell migration. In order to allow movement, FAs 

have to release and disassemble at the ventral side of the cell body. It was suggested that FA 

disassembly is facilitated by FA-targeted, local exocytosis leading to ECM degradation, 

causing disassembly of integrin-matrix connections. Microtubules anchored near FAs serve 

as tracks for transport of EVs and deliver MT1-MMP to the cell surface membrane, which 

can activate MMPs and degrade the extracellular matrix around FAs, resulting in integrin 

detachment, loss of tension, and FA turnover52, 74. Dolat and colleagues previously showed 

that septin filaments expressed at the leading edge of motile renal epithelia cells promote 

cell motility by reinforcing the organization of the lamellar stress fiber network and the 

stability of nascent FAs. Furthermore, this septin function was shown to rely on the ability of 

SEPT9 to directly cross-link preassembled F-actin filaments, promoting the maturation of 

nascent FAs19. The direct binding of SEPT9 to F-actin was demonstrated by electron 

microscopy and it was suggested that SEPT9 could maintain the integrity of growing and 

contracting actin filaments75. Septins are also implicated in microtubule-dependent 

transport, which involves the regulation of microtubule motor interactions with cargo. 

Intriguingly, it has been shown that SEPT9 interacts with a microtubule motor (KIF17) and 

it was proposed that SEPT9 may act as a regulator of cargo-motor binding by either 

affecting the loading of cargo to KIF17 or triggering the release of cargo from KIF1776. It is 

possible that in addition to promoting FA stabilization, SEPT9 functions as a mediator of 

MMP trafficking, activation, and secretion, thereby promoting ECM degradation.

Our transcriptomic analysis of MCF7 cells overexpressing SEPT9_v3 uncovered a 

significant enrichment in genes involved in MMP secretion. Here, we functionally show that 

SEPT9 expression directly results in MMPs upregulation in several breast cancer cell lines, 

and that SEPT9 upregulation promotes secretion of MMP3 and MMP13 to the cell media in 

MDA-MB-231. We also provide evidence that the link between SEPT9 upregulation and 

MMPs activity is maintained in human breast cancer. Secreted MMPs play a crucial role in 

cellular invasion through modulation of cell–cell and cell–ECM interactions77, 78. Most 

secreted MMPs require activation post-secretion by cell surface MMPs such as MT1-MMP, 

which is known to mediate ECM degradation at FAs73; some of these secreted MMPs, such 

Marcus et al. Page 12

Oncogene. Author manuscript; available in PMC 2020 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as MMP2 and MMP9, which are activated by MT1-MMP, are involved in direct degradation 

of the ECM. However, other MMPs can bind to their respective membrane receptors after 

their activation and initiate signal transduction pathways that influence the cell’s migration 

and invasion. MMP3 (stromelysin-1) is a known inducer of epithelial–mesenchymal 

transition (EMT) that has been shown to promote mammary carcinogenesis79–81. It is also 

involved in the activation process of MMP9, consequently promoting breast tumor 

progression82, 83. Interestingly, MMP3 is also required for branching morphogenesis in the 

mammary gland84–86 and has been shown to be markedly upregulated during pregnancy and 

involution of the mammary gland87, 88. MMP13 (Collagenase 3) is known to be efficiently 

activated by MT1-MMP89. Its expression is associated with advanced local invasion in 

human squamous cell carcinomas of the larynx90, and it was suggested to play a potentially 

significant role in breast cancer invasion and metastasis91. It is intriguing to speculate that 

SEPT9 promotes cell invasion at least partly by enhancing the levels of the secreted MMP3 

and MMP13. Because SEPT9 acts in concert with other members of the septin family92, and 

septins other than SEPT9 have been found expressed in FA19, it is likely that SEPT9 acts in 

concert with other septin filaments that, as a whole, provide a structural network and/or 

docking sites for MMPs and other proteolytic enzymes at FAs, contributing to extracellular 

matrix degradation. Indeed, FCF is not SEPT9 specific, but stabilizes higher-order assembly 

of the septin family as a whole. While FCF off targets effects have been reported in 

mammalian cells93, it is possible that they are an indirect consequence of alteration of 

septins dynamics given the larger number of organelles and functions they partake. Further 

research is needed to clarify whether or not SEPT9, and other septins, also affects the 

transport of MT1-MMP to FAs and to elucidate the mechanism by which it promotes MMP 

secretion at FA sites. Elucidating the role of SEPT9 in matrix metalloproteinases dynamics 

is significant since these proteins are required for the initial metastatic steps and have been 

proposed as pharmacological targets for anti-metastatic therapy94, 95.

Collectively, previous studies linking SEPT9, FAs, and microtubules, together with the data 

presented here, imply that the interaction of SEPT9 with the cytoskeleton promotes both 

trafficking and secretion of MMPs near FAs, thus enhancing migration and invasion of 

breast cancer epithelial cells. In our model, tumor cells without SEPT9 overexpression 

(Figure 8A) (i.e. lower than 1.5-fold the mean expression as suggested by the results shown 

in Figure 3D) degrade the ECM mainly through mature ventral invadopodia projections 

which have been shown to function as regulatory structures for the secretion of MMP2 and 

MMP935, 37–42. SEPT9 overexpression in cancer cells (Figure 8B) promotes the assembly of 

a septin network that includes SEPT9 and likely other septin members, which promotes the 

delivery of MMP3, MMP13, and possibly other proteases to the plasma membrane at FAs. 

As a result, ECM degradation is highly enhanced at FAs. The molecular mechanisms by 

which this process is regulated, the key proteins responsible for the delivery of proteases to 

FAs, and whether proteolytic enzymes and MMPs other than MMP3 and MMP13 are 

involved in this process remain to be elucidated.

Protease secretion at invadopodia is regulated by cortactin, which was proposed to link 

vesicular trafficking and dynamic branched actin assembly37. Phosphorylation of cortactin 

was shown to lead to activation of the actin binding protein, cofilin, which induces F-actin 

polymerization in the invadopodium core and consequently MMP recruitment70, 96. F-actin 
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polymerization at FAs is directly driven by SEPT919, which was shown to bind F-actin at 

sites that overlap with regions involved in the binding of cofilin75. It is noteworthy that 

invadopodia assemble at the proximal tip of FAs69, and the later maturation of invadopodia 

involves transition of FA proteins to invadopodia97–99. We therefore propose that SEPT9-

mediated actin polymerization and phosphoinositol mobilization at nascent FAs enhances 

the formation of invadopodium precursor assembly leading to MMP secretion and activation 

at FAs. Thus, FAs serve as sites for enhanced vesicular trafficking, protease secretion, and 

ECM degradation in SEPT9 overexpressing cells.

Materials and Methods

Cell lines

MCF7 clones overexpressing GFP chimera SEPT9_v1, SEPT9_v2, and SEPT9_v3 isoforms 

were previously described14. MDA-MB-231 and T47D cells (DTP/DCTD/NCI Tumor 

Repository) expressing the same GFP-fused SEPT9 isoform constructs were generated using 

the approach previously described for MCF7 cells5. All cell lines were maintained at low, 

post-G418 selection passage, and cultured only for up to one month; all lines were grown in 

low-glucose DMEM supplemented with 8% fetal bovine serum and incubated in 5% 

CO2/37°C. FACS for the removal of GFP negative cells was performed using live MCF7 

clones. About 5×106 cells were trypsinized, washed in 2ml of 0.5%BSA in PBS, re-

suspended in 0.5ml of 0.5%BSA in PBS, and then filtered using a 40μm cell strainer (Falcon 

Corning, Corning NY). GFP negative cells were used as a control and to set the threshold of 

positive intensities. FACS was performed using the BD FACSAria II (BD Biosciences, San 

Jose, CA) equipped with a 100μm nozzle and a pressure of 20psi at 4°C. Cells were sorted in 

5ml of complete media and immediately plated overnight to allow recovery.

RNA isolation and cDNA synthesis

Low passage MCF7_SEPT9_v1, MCF7_SEPT9_v2, and MCF7_SEPT9_v3-overexpressing 

cell lines and the MCF7 control cells (MCF7_c) were placed in culture simultaneously and 

split to establish three biological replicates; the plates were taken from culture when they 

reached 70% confluence. The cells were then lysed directly on the plate with Qiazol lysis 

reagent (Qiagen, Valencia, CA) and placed at −80°C until all samples were ready for RNA 

extraction. Total RNA was isolated using the miRNeasy kit (Qiagen, Valencia, CA) and 

assessed using an Agilent Bioanalyzer. All RNA had an RNA integrity number (RIN) score 

of 10.

Library Preparation and RNA-sequencing

A total of 12 samples were used for RNA-Seq analysis (three biological replicates from each 

of the MCF-7 isoforms and control cells). Sequencing libraries for the Illumina 2500 

platform were created from the polyadenylated fraction of RNA from each cell line. mRNA 

was then isolated with Dyna1 oligo-dT beads (Invitrogen, Carlsbad CA) from 10μg of total 

RNA. The mRNA was randomly fragmented using the RNA fragmentation kit from 

Ambion. First-strand cDNA synthesis was performed using random primers and 

SuperScriptII reverse-transcriptase (Invitrogen, Carlsbad CA). This was followed by second-

strand cDNA synthesis using DNA Polymerase I and RNase H (Invitrogen, Carlsbad CA). 
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The Illumina adaptor was ligated to the ends of the double-stranded cDNA fragments and a 

200bp size-selection of the final product was performed by gel-excision, following the 

Illumina-recommended protocol. Template molecules of 200bp cDNA with the adaptor 

attached were enriched by PCR to create the final library. Libraries were pooled and 

sequenced in two lanes on the Illumina HiSeq (2500) Sequencing System (Illumina, San 

Diego, CA) using 150bp reads at the New York Genome Center (New York, NY). Sequences 

in fastq format as well as normalized data files have been deposited into Gene Expression 

Omnibus (GEO)100 (Project ID# GSE119449 entitled: ”Septin 9 over expression in MCF7”).

RNA-sequencing analysis and identification of candidate genes

We generated a total of 4.3×107 reads, an average of ~36 million reads per library 

(Supplementary Table 1 and Supplementary Figure 1B), of which 92.3–93.8% could be 

uniquely mapped to the NCBI Build37/hg19 of the human reference genome. To rule out 3’ 

bias of poly A+ libraries, we plotted the coverage across the gene body (5’ -> 3’) in all cell 

lines analyzed by RNA-Seq. We determined that the highest percentage of reads was 

observed between the 25th and 85th percentile of the gene bodies, therefore excluding bias 

towards the 5’ end of the mRNA sequences and thus excluding technical confounding 

factors (Supplementary Figure 1C). On average 88.38% of the reads mapped to coding 

sequences (CDS) (87–90%) (Supplementary Figure 1D). We found, across all samples 

analyzed, that 16,743 genes had five or more reads corresponding to 80.93% of the MCF7 

genome being transcribed.

Pass filter sequences were aligned to the NCBI Build 37hg19 reference genome. Alignments 

were then referenced against an annotation database that combines ENSEMBL (release 71), 

GENBANK/NCBI (release 196), and REFSEQ (release 60). All statistical methods, and data 

analysis were conducted using the R statistical software101. For QC of sequencing results we 

used the RSeQC package102, uniquely aligned sequences were analyzed using the DESeq 

package, and to illustrate the expression differences for each gene and to plot the average of 

the normalized counts per million (CPM) across biological replicates and the standard error 

for each condition, we used the ggplot2 package103. Heatmaps were created using the 

heatmap.3 function in the GMD package104.

For all analyses, a P-value <0.05 was considered significant and all P-values were adjusted 

for multiple testing using Benjamini-Hochberg correction where a cutoff FDR value <0.1 

was considered significant.

Gene ontology was determined using g:profiler including, as a background, all genes across 

the three MCF7 clones with >5 reads and FDR<0.5, adjusted for multiple testing using the 

Benjamini & Hochberg method. Enrichment maps were visualized using The Enrichment 

Map Cytoscape Plugin. Gene sets comprising hallmarks of apical surface (M5916), 

hallmarks of protein secretion (M5910), EGD1 signature (Phospholipids as signaling 

intermediaries, M10579), and members of the TGFβ pathway (M18933) were obtained from 

the Molecular Signatures Database (MSigDB)105. Pathway analysis was performed using the 

web interphase Reactome.org106.
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siRNA transfections

For silencing of SEPT9, we used the siRNA SMARTpool (Dharmacon Cat #L-006373, 

Lafayette USA). ON-TARGET SEPT9 oligos were used for gene specific downregulation 

and same MCF7 or MDA-MB-231 cells transfected with the ON-TARGET Non-targeting 

(scramble) siRNA Control Pools were used as a reference. siRNA pools were resuspended 

using manufacturer procedures in RNase-free 1x siRNA Buffer at a final concentration of 20 

mM. Cells were transfected using DharmaFECT Transfection Reagent according to 

manufacturer’s instructions. After transfections, cells were allowed to grow for 48 hours 

before analysis of specific endpoints.

Real-Time qRT-PCR

Total RNA was isolated from cells as reported previously8. cDNA was reverse-transcribed 

from 5μg of total RNA using random primers and SuperScript II Reverse Transcriptase 

(Invitrogen). Primer3 software107 was used to design SEPT9 primers (F- 5’- 

CCCCAGAAGGAATTTGATGA −3’; R- 5’- TGGTACCCCACTTGGTCTTC −3’) along 

with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) primers (F- 5’-

CCACATCGCTCAGACACCAT-3’; R- 5’-CCAGGCGCCCAATACG-3’). Primers for 

MMP1, MMP2, MMP3, MMP9, and MMP13 were selected from KiCqStart Primers 

(MilliporeSigma, Burlington, MA) by choosing those mapping to exons spanning all known 

isoforms for each gene: H_MMP1_2, H_MMP2_3, H_MMP3_2, H_MMP9_3, 

H_MMP13_2. H_GAPDH_1 was also obtained from Sigma and tested together with the 

custom-designed GAPDH primers described above. Due to the low expression levels of 

MMP2 and MMP9, a TaqMan assay was also performed for these two genes using MMP2 - 

Hs00234422_m1, MMP9 - Hs00234579_m1, GAPDH - Hs99999905_m1 (Roche 

LifeScience) as we previously described8. Predesigned TaqMan probes and primers for 

VCAN (Hs00171642_m1), TBX15 (Hs00537087_m1), SULF1 (Hs00290918_m1), GPC6 

(Hs00170677_m1), KRT20 (Hs00300643_m1), FGF21 (Hs00173927_m1) and GAPDH 

(Hs99999905_m1) were obtained from ThermoFisher.

Real-Time qRT-PCR was performed using Applied Biosystems Fast SYBR Green Master 

Mix and TaqMan Fast Advanced Master Mix with the StepOnePlus Real-Time PCR System 

(Life Technologies Corp., Carlsbad, CA, USA). Correlation analyses were performed by 

computing the normalized read counts for each analyzed MCF7 line with the levels obtained 

by TaqMan assay. The Pearson correlation coefficient (r) and the p value were determined in 

each case.

The Cancer Genome Atlas (TCGA) mining and statistical analysis of MMP expression in 
SEPT9 overexpressing human breast cancer samples

We mined the provisional dataset of TCGA using the cBIOportal interface108 to download 

the normalized expression level of SEPT9 and all known MMPs. MMP2, MMP9, MMP11, 

MMP14, MMP15, MMP19, MMP24, and MMP25 had expression data which were detected 

in all 1093 breast cancer patients for whom global transcriptomic profiling was available; 

these expression data were therefore used for further analysis. Next, the cases were assigned 

to group A or group B based on SEPT9 mRNA expression level. Group A included cases 

(n=210) in which SEPT9 expression level was 1.5 standard deviations higher than the mean 
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based on the z-Score (RNA Seq V2 RSEM) compared to the expression distribution of 

SEPT9 in tumors that are diploid for this gene; group B (n=883) included all the remaining 

cases. Group A and group B were compared for the expression of the MMPs listed above by 

multiple testing analysis (ANOVA).

Western Blotting

Cell lysates were prepared by washing cells in cold PBS followed by addition of SDS-PAGE 

sample buffer containing Protease Inhibitor Cocktail (SIGMA Cat#P2714–1BTL). Cells 

were transferred to a 1.5ml tube, sonicated, and heated at 95°C for 5 min. Proteins were 

separated by electrophoresis in NuPAGE 10% Bis-Tris gels and transferred to PVDF 

membranes (Milipore- Immobilon, FL, Cat #IPFL00010- pore size: 0.45μm) by 

electroblotting. Membranes were blocked in PBS+ 5% milk powder and incubated with 

primary antibodies and anti-SEPT9 rabbit antibody (Proteintech Cat#10769–1-AP) and α-

TUBULIN mouse antibody (Sigma Cat #T9026) overnight at 4°C. The other antibodies used 

were MMP3 rabbit antibody (Arigo Biolaboratories Cat#ARG55262), CD9 mouse antibody 

(Proteintech Cat#60232–1-Ig), or Actin mouse antibody (Proteintech Cat#66009–1-Ig). 

After three washes in PBS-T, membranes were incubated with secondary antibodies (Mouse 

680 and Rabbit 800 [LI-COR Biosciences]) for one hour at room temperature, washed three 

times in PBS-T, and scanned using a high-sensitivity Odyssey Infrared Imaging System (Li-

COR Biosciences). α-TUBULIN was used as a loading control. ImageJ was used for 

quantification of bands intensities.

Migration assay and colony size assessment

Transwell inserts (8μM; Millipore, Billerica, MA, USA) were coated with 25μg/mL type I 

rat tail collagen (BD Biosciences Franklin Lakes, NJ, USA). Cells (5 × 104 in DMEM 0.3% 

BSA) were added in triplicate for each sample to the transwell inserts and allowed to 

migrate for 10 hours at 37°C. Nonmigratory cells were removed and filters were fixed in 

3.7% formaldehyde/PBS for 15 minutes and stained with 0.2% crystal violet dye for 10 

minutes. Migrated cells were counted and averaged from 10 fields of view per filter at 20 × 

magnification using an Axio Observer.A1 inverted microscope (Carl Zeiss MicroImaging, 

Inc.). Two independent biological replicate assays were analyzed.

Gelatin coating and degradation assay

The ability of MDA-MB-231 cells to degrade gelatin was assessed by plating cells onto 

fluorescently-labeled gelatin. Gelatin MatTek dishes were prepared as described 

previously109. Briefly, acid-washed MatTek dishes were coated with 50μg/ml poly-L-lysine 

followed by 0.2% gelatin labeled with either Alexa Fluor 405 dye (Life Technologies, Cat 

#A30000) or with Oregon Green® 488 (Molecular probes, Cat #G-13186) and sequentially 

treated with 0.5% glutaraldehyde for 15 minutes at room temperature and then with 5mg/ml 

NaBH4. Cells (2×105) were seeded in complete medium and allowed to attach and degrade 

for 4–6 hours at 37°C in 5% CO2. Cells were then fixed with 200μl of 4% PFA for 15 

minutes, permeabilized with 0.1% Triton-X for 10 minutes, and counterstained with Alexa 

Fluor® 647 Phalloidin (ThermoFisher Scientific Cat #A22287).
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Fixed cells were imaged in 1x PBS at room temperature. Images were acquired on a 

DeltaVision Core Microscope (Applied Precision, Issaquah, WA) using a CoolSnap HQ2 

camera (Photometrics, Tucson, AZ), 60X/numerical aperture (NA) 1.4 oil objective, 

standard four-channel filter set, and softWoRx software. Custom ImageJ macros were used 

for the following image processing: to split and save the individual channels of the 

DeltaVision .dv files as .tif files; to find and save the best focus slice from the individual z-

stacks; and to correct the uneven focus in the degradation channel. Because the number of 

cells in each field varied and because MDA-MB-231 cells tend to move, three panels of 5×4 

fields (each field 110×110 μm2) were imaged for each clone. Matrix degradation activity 

was measured by the local loss of gelatin fluorescence. Gelatin degradation areas (μm2) were 

measured as the total area covered by degradation holes/field in thresholded images using 

the Analyze Particles tool in Fiji (National Institutes of Health, Bethesda, MD), and cell area 

(μm2) was measured as the area covered by cells/field in thresholded images. For each panel, 

total gelatin degradation area (sum of degradation areas in all 20 fields) was normalized by 

total cell area (sum of cell areas in all 20 fields) to give degradation area as % of cell area.

Immunofluorescence microscopy

Cells were seeded on MatTek dishes coated with 0.2% gelatin and then fixed and 

permeabilized as described above. Fixed cells were counterstained with Alexa Fluor® 647 

Phalloidin (ThermoFisher Scientific Cat#A22287) or with Alexa Fluor® 633 Phalloidin 

(ThermoFisher Scientific Cat #A22284), for TIRF microscopy. Antibodies used for 

immunofluorescence were: anti-VINCULIN (Sigma Cat# V9131) 1:400, anti-SEPT9 

(Proteintech Cat#10769–1-AP) 1:200, and anti-MMP3 (Arigo Biolaboratories 

Cat#ARG55262) 1:200. All Alexa Fluor secondary antibodies were from Molecular Probes 

(Life Technologies, Carlsbad, CA). All primary and secondary antibodies were diluted in 

blocking buffer (1% goat serum + 1% BSA in PBS). Cells were imaged on a DeltaVision 

Core Microscope (Applied Precision, Issaquah, WA) using a CoolSnap HQ2 camera 

(Photometrics, Tucson, AZ), 60X/numerical aperture (NA) 1.4 oil objective, standard four-

channel filter set, and softWoRx software.

Focal adhesions and MMP3 analysis

Images (tif) were used for analysis of FAs and the MMP3 signal. FAs were analyzed from 

the vinculin images, and MMP3 signal from the MMP3 images, using the Focal Adhesion 

Analysis server (http://faas.bme.unc.edu/) [Berginski ME, Gomez SM. (2013) The Focal 

Adhesion Analysis Server: a web tool for analyzing focal adhesion dynamics [v1; ref status: 

indexed, http://f1000r.es/yc] F1000Research 2013, 2:68 (doi: 10.3410/f1000research.

2-68.v1)]. Phalloidin images were used as reference for the cell boundaries.

Protease Array assay

Secreted protease profiling was performed with Human Proteome Profiler Protease Array 

from R & D Systems (Minneapolis, Minnesota, Cat#ARY021B), according to the 

manufacturer’s instructions. To generate conditioned cell culture medium for the protease 

arrays, 4×105 MDA-MB-231_SEPT9_v3 (overexpressing SEPT9_v3) cells and MDA-

MB-231 cells transfected with SEPT9 siRNA, were seeded in 60 cm plates (4×105 cells) and 

grown in 3ml DMEM supplemented with 8% FBS. After 24 hours the media was changed to 
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DMEM supplemented with 0.5% FBS and cells continued to grow for an additional 24 

hours. The conditioned media was collected, filtered through a 22μm syringe filter unit 

(Millex-GP), and kept at −80°C until use. The protease array membranes were incubated for 

one hour in Assay Buffer 6. One mL of conditioned medium was combined with 500μL of 

Buffer 6 and 15μL of Detection Antibody Cocktail and incubated for one hour. Assay Buffer 

6 was aspirated from the wells containing the membranes. The prepared sample/antibody 

mixtures were added to the membranes and incubated overnight. Membranes were then 

washed with 1× Wash Buffer 3 times and incubated with diluted streptavidin-HRP for 30 

minutes. Membranes were washed and treated with Chemi Reagent Mix for 1 minute. The 

chemiluminescent signals of proteases were measured with a LI-COR Odyssey Fc scanner. 

ImageJ was used to determine the intensities of the signals. Background levels were 

subtracted from the protease signal levels and the signals were normalized by the intensities 

of the reference signals in each blot.

Isolation of Exosomes from cell culture medium

To generate conditioned cell culture medium, 2.5×105 cells were seeded on 10cm plates 

coated with 0.2% gelatin and grown in 10ml DMEM supplemented with 10% FBS. After 24 

hours cells were washed and media changed to DMEM supplemented with 0.5% exosome-

free fetal bovine serum (prepared by centrifugation at 120,000 × g for 24 hours). Cells 

continued to grow for an additional 72 hours. The conditioned media was collected and cells 

were counted for normalization.

For EV Analysis: Normalized volumes of conditioned media (~6ml) were centrifuged at 

2000 × g for 20 minutes to eliminate cells, and apoptotic bodies. The supernatants were then 

mixed with 3ml of Total Exosome Isolation Reagent (ThermoFisher Scientific #4478359) 

and mixed well by vortexing. The mixtures were incubated at 4°C overnight and then 

centrifuged at 10,000 × g for one hour at 4°C. The exosomes were resuspended in 1ml of 1x 

PBS and were analyzed by laser scattering microscopy or by dynamic light scattering48, 49.

For Western Blot analysis: Cell lysates were prepared for WB as described above.

Normalized volumes of conditioned media (~20ml) were centrifuged at 2,000 × g for 20 

minutes to eliminate cells, and apoptotic bodies. The supernatants were then centrifuged at 

100,000 × g for 70 min at 4°C. Next, supernatants were concentrated ~80 times using 

Millipore Amicon Ultra-4 30k (Cat #UFC803024) and pellets, which contain the EVs, were 

resuspended in 50μl of RIPA buffer (made from 10x SIGMA #20–188) containing Protease 

Inhibitor Cocktail (SIGMA #P2714–1BTL). SDS-PAGE sample buffer was added to the 

samples and they were heated at 95°C for 5 min.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: MCF7 clones overexpressing isoforms MCF7_SEPT9_v1, MCF7_SEPT9_v2, and 
MCF7_SEPT9_v3 differentially express isoform-specific genes.
A. Plot of number of DE genes in MCF7-SEPT9-overexpressing isoforms relative to MCF7 

control cells. Y-axis: number of DE genes; grey bars depict genes downregulated relative to 

MCF7_c; black bars depict genes upregulated relative to MCF7_c. B. Fold change of DE 

genes relative to MCF7_c. Each dot corresponds to a single gene. Values on the Y-axis are 

expressed as log ratio of normalized fold change of differential expression when compared 

to MCF7_c. C. Venn diagram depicting the overlap of DE genes between the three SEPT9 
isoforms analyzed. D-E. Pie charts depicting the cellular component significantly enriched 

in DE genes. D. MCF7_SEPT9_v1. E. MCF7_SEPT9_v3. Cellular components are 

indicated as percentage over the whole components identified for each specific MCF7 

overexpressing clone.
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Figure 2: SEPT9 promotes fluorescent matrix degradation by MDA-MB-231 cells.
A. Transwell migration assay comparing MCF7 and MDA-MB-231 clones, each expressing 

a different GFP-SEPT9 isoform fusion construct. Cells were added to transwell inserts and 

allowed to migrate for 10 hours at 37°C, after which migrated cells were counted. Plotting 

reflects the average number of migrated cells from two biological replicate assays conducted 

for each isoform. Statistical differences were calculated using ANOVA, *p<0.05 **p<0.02. 

B. Degradation patterns of MDA-MB-231_c (control) and MDA-MB-231_SEPT9_v3 cells. 

Images of matrix channel are shown together with the degradation mask and the F-actin 

staining (red) together with the outlines of cell areas. Bar = 50μm. C. Bar plot depicting the 

percentage of gelatin degradation area (representative 4×5 panel use for analysis is shown in 

Supplementary Figure 4A). Bars represent the mean of the degradation area as % of total 

cell area and error bars represent the standard error of the mean (SEM). *, p < 0.033. Data 

was confirmed at least by three independent experiments. D-E. Degradation patterns of 

MDA-MB-231 transfected with SEPT9 siRNA or scramble (control) siRNA. Images of 

matrix channel are shown with the degradation mask and the F-actin staining (red) together 

with the outlines of cell areas (E). Bar = 50μm Bar plot depicting the percentage of gelatin 

degradation area (representative 4×5 panel use for analysis is shown in Supplementary 

Figure 4A). Bars represent the mean of the degradation area as % of total cell area and error 

bars represent the standard error of the mean (SEM).

*, p < 0.001. Data was confirmed at least by three independent experiments.
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Figure 3: SEPT9 overexpression induces MMP upregulation and promotes secretion of proteases 
into the cell media.
A. Representative images of protease arrays incubated with cell culture supernatants from 

MDA-MB-231_SEPT9_v3 cells (Top) and MDA-MB-231 cells transfected with SEPT9 
siRNA (Bottom). B. Quantification of MMP3 and MMP13 signals that were most 

suppressed in conditioned media from MDA-MB-231 transfected with SEPT9 siRNA (** 

p<0.005) is shown in A. Error bars indicate SEM. Abbreviations: MMP3 - matrix 

metalloproteinase-3 (Stromelysin-1); MMP13 - matrix metalloproteinase-13 (Collagenase 

3). C. Bar graphs depicting the quantification of MMP1, MMP3 and MMP13 in MCF7, 

MDA-MB-231 and T47D cells over expressing GFP-SEPT9_v3 relative their parental 

control lines (* p<0.005; ** p<0.001) are shown. Error bars indicate SEM. D. Violin plots 

depicting the expression levels of MMP9, MMP15, MMP24, and MMP25 in TCGA breast 

cancer provisional cases expressing SEPT9 mRNA 1.5 folds higher than the mean (n=210) 

or 1.5 folds lower than the mean (n=883).

(**** p<0.0001; *** p<0.0003; ** p<0.0035).
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Figure 4: SEPT9 overexpression promotes secretion of the active form of MMP3 into the cell 
media.
A. WB analysis of Cells (C), EV fraction (EVs), and supernatant fraction (S) of conditioned 

medium from MDA-MB-231 cells. MMP3 is secreted from the cells directly to the medium 

but not in EVs. Size of MMP3 is ~54 kDa and size of secreted MMP3’ is ~45kDa. The CD9 

was used as a marker for EVs. B. WB analysis of Cells (C), EVs fraction (EVs), and 

supernatant fraction (S) of conditioned medium from MDA-MB-231_c and MDA-

MB-231_v3 cells. The CD9 signal in the secreted EV fraction was used as a reference for 

the quantification of the levels of the secreted MMP3’.
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Figure 5: SEPT9 localizes to Focal Adhesions, gelatin degradation sites, and MMP3.
A-B. Representative images depicting F-actin (red), SEPT9 (yellow), and vinculin (green) 

staining of MDA-MB-231 cells. SEPT9 filaments partly colocalize with F-actin filaments 

(arrow points at FAs extending from SEPT9 filaments). Lower panels in A show enlarged 

views of the white-boxed regions. C. Representative images depicting matrix (grey), SEPT9 

(red), and vinculin (green) staining. Matrix degradation pattern colocalizes with vinculin. 

MDA-MB-231 cells were seeded on Alexa Fluor 405–labeled gelatin. D. Representative 

images depicting filamentous MMP3 signals associated with F-actin filaments emerging 

from the cell center towards focal adhesions (vinculin staining, green). Arrows point at 

MMP3 foci localized at sites of FAs. Lower panels show enlarged views of the white-boxed 

region. Bar=10μm. Cells were seeded on non-fluorescent gelatin.
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Figure 6: SEPT9 promotes FA stabilization and MMP3 trafficking.
A. Representative images of MDA-MB-231 cells transfected with SEPT9 siRNA or 

scramble (control) siRNA grown on gelatin; F-actin (red), vinculin (green), and MMP3 

(cyan). Also shown are highlighted images depicting FA highlights (FAs in yellow and cell 

outlines in red) and MMP3 highlights (MMP3 in yellow and cell outlines in red). Bar=20 

μm. B-C. Bar graphs depicting the quantification of FA server analysis for FAs in MDA-

MB-231 cells transfected with control siRNA (n= 18 cells, 1480 FAs) or SEPT9 siRNA (n= 

30 cells, 1940 FAs). See corresponding FA highlights in supplementary Figure 7. B. Bar 

graph indicating the FA average length (μM). C. Bar graph indicating FA number per cell. 

D. Histogram of the distribution of the FAs according to their distance from the cell edge 

(μM). E-F. Bar graphs indicating the quantification of MMP3 signals in MDA-MB-231 cells 

transfected with control siRNA (n= 20 cells, 1922 MMP3 signals) or SEPT9 siRNA (n= 30 

cells, 1669 FAs). See corresponding MMP3 highlights in supplementary Figure 8. E. 

Histogram indicating the distribution of the MMP3 signals according to their length (μm). F. 

Graph indicates the MMP3 signal average length (μm). We detected no significant difference 

between transfected with control or SEPT9 siRNA. Error bars indicate SEM.

*, p<0.1; **, p < 0.05; ***, p < 0.01.
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Figure 7: Inhibition of Septins by FCF results in impairment of FAs and MMP3 trafficking.
A. Representative images of MDA-MB-231 control cells (DMSO) or FCF treated; F-actin 

(red), vinculin (green), and MMP3 (cyan). Also shown are FA highlights (FAs in yellow and 

cell outlines in red) and MMP3 highlights (MMP3 in yellow and cell outlines in red). Bar = 

20μm. B–C. Bar graphs indicating the quantification of FAs in MDA-MB-231 cells (n= 15 

cells) treated with DMSO (n= 2523 FAs) and FCF (n=1307 FAs). See corresponding FA 

highlights in supplementary Figure 9. B. Bar graph indicating FA average length (μm). C. 

Bar graph indicating the number of FAs per cell. D. Histogram indicating the distribution of 

the FAs according to their distance from the edge of the cell (μm). E-F. Bar graphs 

indicating the quantification of MMP3 signals in MDA-MB-231 cells (n= 15 cells) treated 

with DMSO (n=1510 MMP3 signals) and FCF (n=853 MMP3 signals). See corresponding 

MMP3 highlights in supplementary Figure 10. E. Histogram indicating the distribution of 

MMP3 signals according to their length (μm). F. Bar graph indicating the MMP3 signal 

average length (μm). Error bars indicate SEM.

*, P<0.5; **, P < 0.1; ***, P < 0.01.
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Figure 8: General model of functional consequences of SEPT9 overexpression in breast cancer 
cells.
A. In the absence of SEPT9 upregulation, degradation of the ECM in cancer cells occurs at 

invadopodia (protrusions that assemble at the ventral side of cells). After synthesis, MMPs - 

mainly MMP2 and MMP9 (open mouth blue circles) - are directed to the endoplasmic 

reticulum (ER, light blue structure at the top of the cell) and after Golgi processing (pink 

large vesicular structures), MMPs are delivered to the plasma membrane primarily via 

exosome secretion. B. In SEPT9-overexpressing cells, septin filaments (red = SEPT9 and 

gray = other septins) assemble into a network directed to FAs. The septin network promotes 

the delivery of MMP3 and MMP13 (open mouth yellow circles) to FAs, which represents 

the main ECM degradation pathway in these cells. The mechanisms by which SEPT9 and 

possibly other septins promote MMP3 and MMP13 secretion at FAs remains to be 

elucidated (red question mark). Likewise, whether SEPT9 promotes the secretion of MMPs 
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or ECM-degrading enzymes other than MMP3 and MMP13 at FAs requires further 

investigation.
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Table 1:

Common DE genes in MCF7_SEPT9 clones

Gene MCF7_SEPT9_v1 MCF7_SEPT9_v2 MCF7_SEPT9_v3

AMPH 1.710 −2.502 3.554

SEC14L4 −4.751 −4.262 −3.601

SHISA2 −0.973 −1.295 −0.822

SULF1 −1.246 1.386 −1.067

SLC17A9 −4.262 2.205 −1.313

TARP 1.616 1.528 3.461

UPK1A-AS1 3.809 3.554 4.135

Values are expressed as folds of DE relative to MCF7_c
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