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Abstract: Neurogenesis is a physiological response after cerebral ischemic injury to possibly repair
the damaged neural network. Therefore, promoting neurogenesis is very important for functional
recovery after cerebral ischemic injury. Our previous research indicated that hyperbaric oxygen
therapy (HBOT) exerted neuroprotective effects, such as reducing cerebral infarction volume. The
purposes of this study were to further explore the effects of HBOT on the neurogenesis and the
expressions of cell migration factors, including the stromal cell-derived factor 1 (SDF1) and its target
receptor, the CXC chemokine receptor 4 (CXCR4). Thirty-two Sprague–Dawley rats were divided
into the control or HBO group after receiving transient middle cerebral artery occlusion (MCAO).
HBOT began to intervene 24 h after MCAO under the pressure of 3 atmospheres for one hour per
day for 21 days. Rats in the control group were placed in the same acrylic box without HBOT
during the experiment. After the final intervention, half of the rats in each group were cardio-
perfused with ice-cold saline followed by 4% paraformaldehyde under anesthesia. The brains were
removed, dehydrated and cut into serial 20µm coronal sections for immunofluorescence staining to
detect the markers of newborn cell (BrdU+), mature neuron cell (NeuN+), SDF1, and CXCR4. The
affected motor cortex of the other half rats in each group was separated under anesthesia and used
to detect the expressions of brain-derived neurotrophic factor (BDNF), SDF1, and CXCR4. Motor
function was tested by a ladder-climbing test before and after the experiment. HBOT significantly
enhanced neurogenesis in the penumbra area and promoted the expressions of SDF1 and CXCR4.
The numbers of BrdU+/SDF1+, BrdU+/CXCR4+, and BrdU+/NeuN+ cells and BDNF concentrations
in the penumbra were all significantly increased in the HBO group when compared with the control
group. The motor functions were improved in both groups, but there was a significant difference
between groups in the post-test. Our results indicated that HBOT for 21 days enhanced neurogenesis
and promoted cell migration toward the penumbra area in transient brain ischemic rats. HBOT also
increased BDNF expression, which might further promote the reconstructions of the impaired neural
networks and restore motor function.

Keywords: brain ischemia; hyperbaric oxygen therapy; neurogenesis; stromal cell-derived factor-1;
CXC chemokine receptor 4

1. Introduction

Stroke is a major cause of death and disability worldwide. Cerebral ischemic injury
is the most common form of stroke. The field of the middle cerebral artery is the most
common involved area in brain ischemic injury. The impaired areas of the brain after
ischemic insult include the ischemic core and penumbra area [1]. The cells in the ischemic
core area are necrotic and non-reversible. However, for the cells in the penumbra area, cell
apoptosis is reduced if appropriate therapeutic interventions are given within a critical
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time limit. Therefore, early intervention to reduce cerebral ischemic injury has always been
an important guideline for the clinical treatment of stroke patients.

Neurogenesis is a normal physiological phenomenon after brain ischemic injury. There
are two main areas in the brain that have the function to regenerate new progenitor cells,
one is the subventricular zone (SVZ), and the other is the subgranular zone of the dentate
gyrus in the hippocampus [2–4]. The new progenitor cells produced in the SVZ can
transmit along the rostral migratory stream to the olfactory bulb and migrate to the sites of
injury [2,5]. Therefore, enhancing the progenitor cells migration to the lesion sites has the
potential to help the nervous system to self-repair and may help patients to rebuild their
function after cerebral ischemic injury.

It has been demonstrated that stromal cell-derived factor 1 (SDF1) and its target
receptor, C-X-C motif chemokine receptor 4 (CXCR4) controls the migration of neural
progenitor cells [6]. The expressions of SDF1 and CXCR4 are upregulated in the ischemic
brain [7,8]. SDF1-CXCR4 axis has also been suggested to promote the survival and migra-
tion of transplanted bone marrow stromal cells toward the lesion site [9,10] and regulate the
inflammatory responses and focal angiogenesis [8] in brain ischemic rats. In the traumatic
brain injury rat model, the SDF1-CXCR4 axis also promotes the migration of endogenous
neural stem cells (NSCs) [11]. Cui and colleagues indicated the SDF1-CXCR4 axis plays a
particularly important role in adult neurogenesis, including mediating the proliferation and
migration of neural progenitor cells [12]. Therefore, regulating the SDF1-CXCR4 signaling
might provide in maximizing the amount of migrated NSCs in the penumbra area and
contribute to functional recovery after stroke.

Since the last decades, there have been many studies exploring the therapeutic benefits
of hyperbaric oxygen therapy (HBOT) on brain ischemia. HBOT refers to providing
100% oxygen above one atmospheric pressure in a pressure control chamber for a specific
period of time. HBOT has been demonstrated to reduce cell apoptosis, blood-brain barrier
damage, cerebral edema, inflammation, intracranial pressure, lipid peroxidation, and
free radical formation, stimulate vasculogenic stem cell growth, and improve energy
metabolism in brain ischemic rats [13–22]. In recent years, HBOT has been suggested to
play a role in promoting the proliferation of neural progenitor cells within the SVZ in
neonatal rats with hypoxic-ischemic brain injury, and in adult rats with brain ischemic
injury and traumatic brain injury [23–27]. These studies indicate the intervention of HBO
after brain ischemia may be effective to protect neural cells from damage and promote
neural plasticity. However, it is not fully known about the involvements of SDF1-CXCR4
axis in the HBOT. The purposes of the present study were aimed to explore the effects of
HBOT for 21 days on the protein expressions of SDF1 and CXCR4 and the migration of
newborn cells in the penumbra area in rats with transient middle cerebral artery occlusion
(MCAO) injury.

2. Results
2.1. HBO Improves the Motor Function

The result of the ladder-climbing test is shown in Figure 1. There was no significant
difference between groups in the pre-test. The motor functions in the post-test (C group:
9.12 ± 0.52; HBO group: 12.83 ± 0.44) were significantly improved in both groups when
compared with the pre-test (C group: 5.79 ± 0.36, p < 0.01; HBO group: 5.83 ± 0.31,
p < 0.01). The motor function in the post-test was shown a significant difference between
groups (p < 0.01). The results indicated that HBO intervention significantly enhanced motor
function recovery.
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were both significantly increased when compared with the control group (SDF1: 0.11 ± 
0.08, p < 0.05; CXCR4: 0.23 ± 0.21, p < 0.05). These results indicated that HBOT enhanced 
the expressions of cell migration factors, including the SDF1 and its targeted receptor 
CXCR4 in the affected motor cortex. 

Figure 1. The results of ladder climbing test between groups. **, p < 0.01 compared to the pre-test
data. ##, p < 0.01 compared to the C group. C: control; HBO: hyperbaric oxygen.

2.2. HBOT Enhances SDF1 and CXCR4 Expressions in the Affected Motor Cortex

The expressions of SDF1 and CXCR4 in the affected motor cortex are shown in Figure 2.
The protein expressions of SDF1 (0.42 ± 0.07) and CXCR4 (0.81 ± 0.16) in the HBO group
were both significantly increased when compared with the control group (SDF1: 0.11± 0.08,
p < 0.05; CXCR4: 0.23 ± 0.21, p < 0.05). These results indicated that HBOT enhanced the
expressions of cell migration factors, including the SDF1 and its targeted receptor CXCR4
in the affected motor cortex.

2.3. HBOT Enhances Neurogenesis and Cell Migration

The results of immunofluorescence of BrdU+ and SDF1+ cells in the penumbra area
are shown in Figure 3. The newborn cells (BrdU+) in the penumbra area of the HBO group
were much more than that in the control group. The quantifications of BrdU+/SDF1+ cells
(41.28 ± 4.13 cells) were significantly increased in the HBO group when compared with the
control group (22.18 ± 3.64 cells, p < 0.01). The results of immunofluorescence of BrdU+

and CXCR4+ cells in the penumbra area are shown in Figure 4. The quantifications of
BrdU+/CXCR4+ cells (47.41 ± 3.18 cells) were significantly increased in the HBO group
when compared with the control group (25.08 ± 4.34 cells, p < 0.01). These results indicated
that HBOT promoted the newborn cells migrating toward the penumbra area through the
SDF1-CXCR4 axis.

2.4. HBOT Promotes Differentiation of Neurons

The results of immunofluorescence of BrdU+ and NeuN+ cells in the penumbra area
are shown in Figure 5. The quantifications of BrdU+/NeuN+ cells (36.42 ± 3.08 cells)
were significantly increased in the HBO group when compared with the control group
(15.21 ± 5.86 cells, p < 0.01). These results indicated that the migratory progenitor cells
were partially differentiated into the matured neurons and HBOT enhanced the differentia-
tive properties.
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cells in the penumbra area between groups. (C) Illustration of penumbra and core area boundaries
(under 5× objective lens). Nuclei stained with DAPI (blue). **, p < 0.01. HBO: hyperbaric oxygen;
SDF1: Stromal cell-derived factor 1.

2.5. HBOT Up-Regulates BDNF Expression in the Affected Motor Cortex and Serum

The expression of BDNF in the affected motor cortex and serum is shown in Figure 6.
HBOT significantly increased the expression of BDNF in the affected motor cortex
(50.87 ± 3.66 pg/mg protein) when compared with the control group (40.66 ± 2.34 pg/mg
protein, p < 0.05). The serum BDNF level in the HBO group (54.04 ± 3.59 pg/mg protein)
was also significantly increased than that in the control group (31.10 ± 1.78 pg/mg protein,
p < 0.01). These results indicated that HBOT could increase the expressions of neurotropic
factors, such as BDNF.
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3. Discussion

Neurogenesis is a natural mechanism of the nervous system, which continues through-
out life to provide the plasticity of the nervous system. Many studies confirmed that
damage to the nervous system will promote neurogenesis [28–30]. Several factors regulate
neurogenesis including the fibroblast growth factor 2, epidermal growth factor, pigment
epithelium-derived factor, betacellulin, vascular endothelial growth factor, glial cell line-
derived neurotrophic factor, nerve growth factor, and BDNF et al. [4,31,32]. Inhibition of
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neurogenesis can result in poor functional recovery and synaptic connection in the ischemic
brain [33,34]. In addition, Penti and colleagues indicated that there is a peak increase in cell
proliferation in the SVZ on the 14th day, followed by a subsequent decrease on the 28th day
post-MCAO [35]. Therefore, it is important to promote neurogenesis as soon as possible
after the brain suffers from ischemic injury.

In our previous study, HBOT for 14 to 21 days provides a significant reduction in the
infarct volume and improvement in motor function [21]. In the present study, HBOT for 21
days significantly increased the expressions of SDF1 and CXCR4 and neurogenesis in the
penumbra area. Therefore, based on the results of these studies, we may suggest that the
sustained HBOT after cerebral ischemic insult not only exerts a neuroprotective effect but
also promotes the newborn cells migrating toward the penumbra area.

In addition to being able to migrate to damaged brain regions, the neural progenitor
cells must also be able to differentiate into mature cells and integrate into the neural
network, so that they can repair the damaged nervous system effectively. In the present
study, we noted that some of the newborn cells in the penumbra area differentiated into
the mature neuron cells, especially in the HBO group. This result could be inferred that
sustained HBOT might also promote the differentiation of new neuronal cells. Ardelt
and colleagues reported that application of SDF1 after brain ischemia-reperfusion injury
modulates synaptic transmission to the neural progenitors in the peri-lesion site. They
concluded that SDF1 plays a role in regulating neurogenesis during the repair process after
brain ischemia [36]. It has also been suggested that SDF1-CXCR4 axis promotes neural
progenitor cells differentiation and neuronal cells survival [37,38]. In the present study, the
expressions of SDF1 and CXCR4 in the penumbra area were both significantly increased
after HBOT. Besides, BDNF concentration in the penumbra area and serum were also
significantly increased in the HBO group. It is well-known that BDNF not only protects
neural cells from injury but also plays an important role in neuroplasticity [39,40]. Meng
and colleagues demonstrated HBOT promotes significant functional recovery by activating
the SDF1-CXCR4 axis and increases the expression of BDNF in the incomplete spinal
cord injury rat model [41]. Taken together, modulations of SDF1-CXCR4 axis and BDNF
expression by HBOT as shown in the present study might participate in the repair process
after brain ischemia and contribute to motor function improvement.

A recent study report that the SDF1 and CXCR4 axis may be a possible prognostic
indicator of clinical acute ischemic stroke. The plasma levels of SDF1-α and the numbers of
circulating CD34+/CXCR4+ cells measured within seven days show negative correlations to
the prognostic values measured by the modified Rankin scale on the 90-day post-ischemia.
This result indicates that increases in the expressions of SDF1-CXCR4 axis during the acute
phase of ischemic stroke are associated with better functional recovery of daily activity [42].
Other clinical studies indicated that HBOT reduces functional impairments and improves
neurocognitive functions in stroke patients [43–45]. Therefore, the utilization of HBO
intervention in clinical trials might be a potential strategy for patients with brain ischemia.

The underlying mechanisms of HBOT in modulating neuroplasticity after brain is-
chemia are still not fully known. It has been noted that the HBOT increases the expression
of hypoxia-inducible factor 1α (HIF-1α) in brain ischemic rats [26]. HIF-1α is mainly a
gene regulatory factor stimulated by hypoxia, which can regulate at least 100 genes related
to promoting cell survival [46]. One possible mechanism for the increase in HIF-1α after
HBOT may be the change of oxygen level mimicking the hypoxia-like condition. The
other proposed mechanism may be HBOT modulates the ratio of reactive oxygen species
(ROS) and ROS scavengers. HIF-1α is quickly hydroxylated when ROS interacts with the
HIF-1 hydroxylated proteins in the normoxic state. However, repeated HBOT up-regulate
the contents of ROS scavengers and prolong their half-life. Therefore, if more ROS is
eliminated by HBOT, more HIF-1α can be reserved and enter the nucleus to dimerize with
the HIF-1β to form the active HIF promoter. [47]. Our previous study also confirmed that
HBOT enhances the antioxidative effects in brain ischemic rats [21]. Furthermore, HIF-1α
is suggested to promote neurogenesis in brain ischemic rats and regulate the SDF1-CXCR4
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axis to enhance bone marrow-derived mesenchymal stromal cell migration in rats with
traumatic brain injury [26,48]. Therefore, the up-regulation of the SDF1-CXCR4 axis as
shown in the present study might also be related to the effect of HBO on the modulation of
HIF-1α. Future experiments are suggested to confirm this inference.

Finally, although the results of the present study indicated that sustained HBOT
promoted the migration of newborn cells toward the penumbra area through the SDF1-
CXCR4 axis, there were some limitations that should be addressed. First, the types of
newborn cells besides the neuronal cells were not investigated. Second, the interactions of
cells were not investigated, such as the synaptic connections and signal transduction among
cells et al. Future studies are suggested to investigate these points to better understand the
effects of HBOT after brain ischemia.

4. Materials and Methods
4.1. Animals and Grouping

32 male Sprague-Dawley rats (8 weeks of age, body weight 300–350 g) were randomly
divided into the normal air control (C, n = 16) or hyperbaric oxygen (HBO, n = 16) groups
after receiving transient middle cerebral artery occlusion (MCAO). Animals in the HBO
group were given HBOT at a pressure of 3 atmospheres for one hour, starting from 24-h
post MCAO, once a day for 21 days. Animals in the control group were given a relative
rest intervention for 21 days. All experiments were performed during daytime. Animals
were housed in an environment with an automatic light cycle (light on between 7:00 A.M.
and 7:00 P.M) and constant temperature control (22 ± 1 ◦C) and provide unlimited food
and drinking water. All experimental procedures had been reviewed and approved by the
Institutional Animal Care and Use Committee (IACUC) of National Yang-Ming Chiao Tung
University, Taiwan, R.O.C. (IACUC number: 1090609).

4.2. Middle Cerebral Artery Occlusion

Animals received transient MCAO surgery under sodium pentobarbital anesthesia
(50 mg/kg BW) as described in our previous studies [21,49]. In brief, A 2 mm burr hole was
drilled at the junction of the squamous bone and the right zygomatic arch. The right middle
cerebral artery (MCA) trunk was explored and occluded by a 10-0 suture needle. The blood
flow was completely interrupted and confirmed under a microscope. According to the
original model descriptions, bilateral common carotid arteries (CCAs) were occluded using
nontraumatic aneurysm clips to successfully reduce the blood flow in the supplied field
of MCA [50]. After 1 h of occlusion, the aneurysm clips and the 10-0 suture needle were
removed. The blood flow in all three arteries was observed directly under a microscope to
ensure fully retorted. During the MCAO procedures, the rectal temperature was monitored
and maintained at 37.0 ± 0.5 ◦C by a temperature-controlled heating blanket (WATLOW
050100C1, Bowdoinham, ME, USA). Rats were returned to their cages after the wound was
sutured and fully recovered from anesthesia. 24 h post-MCAO, the neurological score was
tested according to the neurological grading scale (0–4) [51]. Median neurological scores
were 3 (range: 1–3) in the normal air control group and 3 (range: 1–3) in the HBO group,
respectively. The neurological scores did not differ significantly between groups.

4.3. Hyperbaric Oxygen Therapy

The HBOT was administered in an acrylic glass pressure chamber (UO 300AR, United
Oxygen Biotech, Inc., Taipei, Taiwan). 24 h post-MCAO, rats in the HBO group received
HBOT at a pressure of 3 atmospheres without air breaks for 1 h with 100% oxygen, once a
day for 21 days. To ensure the oxygen level, an oxygen sensor (MAXO2 Oxygen Sensor,
Maxtec, Salt Lake City, UT, USA) was used during HBOT, and the oxygen level was
maintained at 100% O2 [21,52]. In order to absorb the accumulation of CO2 during HBOT,
a box of calcium carbonate crystals was placed at the corner of the chamber and renewed
every day [53]. The compression and decompression were achieved within 5 min before
and after the 1 h HBO intervention. Rats in the C group were placed in the same box as
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used in the HBO group and sham-treated in the pressure chamber for 1 h, once a day for
21 days.

4.4. Motor Behavior Test

Motor-behavior performance was tested at two time points, including 24 h post-MCAO
(pre-test) and 2 h post the final experimental intervention (post-test). The ladder-climbing
test was used to determine the coordination of all four limbs as described in previous
studies [49,54]. In brief, rats were encouraged to climb a stainless-steel vertical ladder
(2 cm interval) for 1 min and the number of rungs climbed within 1 min was recorded.
The test was performed 3 times with a 5 min rest, and the average score was used for
comparison. These tests were performed by a well-trained research assistant who was
blinded to group allocation.

4.5. Tracking the Neurogenesis Cells

In order to trace the newborn cells in the penumbra area, rats were intraperitoneally
injected with Bromodeoxyuridine (5-Bromo-2′-deoxyuridine, BrdU, 50 mg/kg body weight)
before the daily experimental interventions started from 24 h post-MCAO. BrdU was
dissolved in sterile PBS solution (pH = 6.8).

4.6. Sample Preparation

After the final motor behavior test, half of the rats in each group were anesthetized with
an overdose of anesthetic (sodium pentobarbital, 100 mg/kg), and cardio-perfused with
40-mL ice-cold PBS (pH = 6.8) and 60-mL ice-cold 4% paraformaldehyde/PBS (pH = 6.8).
The brain was removed and dehydrated with 30% sucrose/PBS (pH = 6.8), and then cut
into slices with a thickness of 20 µm each on a cryostat (CM3050S, Leica, Buffalo Grove, IL,
USA) from 1.5 mm anteriorly to −0.5 mm posteriorly of the Bregma, which involves the
motor and somatosensory areas of the rat brain [55]. The brain slices were stored at −20 ◦C
before the immunofluorescent exanimation.

The other half of the rats in each group were anesthetized with an overdose of anes-
thetic (sodium pentobarbital, 100 mg/kg), the brain was quickly removed and rinsed with
ice-cold PBS (pH = 6.8) to remove excess blood. The right motor cortex was collected and
ground with the lysis buffer (SI-C3228, Sigma-Aldrich, St. Louis, MI, USA) containing
cocktail protease inhibitors (ROC-04693132001, Sigma-Aldrich, St. Louis, MI, USA). The
tissue lysates were centrifuged at a speed of 12,500-rpm for 30 min at 4 ◦C, then the tissue
supernatants were separated for the subsequent analysis. The total protein concentration
in the supernatant was measured with a Bradford-red protein detection reagent (SI-B6916,
Sigma-Aldrich, St. Louis, MI, USA).

4.7. Immunofluorescent Examination

The procedures of immunofluorescence staining are according to the previous study
with a minor modification [2]. The brain slices were fixed by immersing in the acetone for
10 min and rehydrated in the PBS for 10 min at room temperature. Brain slices were then
incubated in the 2N HCl for 30 min at 37 ◦C and 10 nM sodium citrate buffer (pH = 6.0)
for 5 min at 85 ◦C to break down the DNA chain and retrieve the antigens. After washing
in the PBS for 5 min, the brain slices were incubated in an immunofluorescence blocking
buffer (12411S, Cell Signaling, Danvers, MA, USA) for 1 h at room temperature and washed
in the PBS for 5 min thrice. Brain slices were then incubated in the antibody dilution buffers
(12378S, Cell Signaling, Danvers, MA, USA) containing the mixtures of rat anti-BrdU-Alexa
Fluor 488 (1:500, ab220074, Abcam, Cambridge, UK) and rabbit anti-NeuN-Alexa Fluor 674
(1:500, ab190565, Abcam, Cambridge, UK) antibodies or rat anti-BrdU-Alexa Fluor 488 and
rabbit anti-CXCR4 (1:250, ab124824, Abcam, Cambridge, UK) antibodies or rat anti-BrdU-
Alexa Fluor 488 and rabbit anti-SDF1 (1:500, PA5-114344, Invitrogen, Waltham, MA, USA)
antibodies overnight at 4 ◦C. After washing the slices in the PBS for 5 min thrice (protect
from light), the brain slices were then incubated in the antibody dilution buffer containing
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the goat anti-rabbit IgG Alexa Fluor 647 antibody (1:1000, A21244, Invitrogen, Waltham,
MA, USA) in the dark for 1 h at room temperature, excepted for the slices that were
incubated in the mixture containing rat anti-BrdU-Alexa Fluor 488 and rabbit anti-NeuN-
Alexa Fluor 674 antibodies. The slices were washed in the PBS for 5 min thrice, mounted
with an antifade solution with DAPI (8961, Cell Signaling, Danvers, MA, USA), and sealed
by cover-glass (protect from light). The fluorescence emitted was observed through each
appropriate filter on fluorescence microscopy (Leica DM 6000B, Leica, Wetzlar, Germany)
and was digitally photographed using a cooled CCD camera. Three non-overlapping areas
within the penumbra area of each brain slice were photographed for calculating the target
cells of interest. Six brain slices per rat were used in the present study.

4.8. Brain-Derived Neurotrophic Factor Examination

10 µL of tissue supernatant and serum for each sample was taken and used to deter-
mine the concentration of BDNF by using an ELISA kit (BEK-2211, Biosensis, Thebarton
SA, Australia). The procedures were according to the manufacturer’s protocols. The
concentration of BDNF was presented as pg/mg protein in the present study.

4.9. SDF1 and CXCR4 Protein Examination

For western blot, an equal amount of protein (30 mg) from each sample was resolved
using a 12% SDS-PAGE and the proteins on the colloid were transferred onto the polyvinyli-
dene fluoride membrane (IPVH00010, Millipore, Burlington, MA, USA). The membrane
was incubated in the 0.1% Tween 20/tris-buffered saline (0.1% TBST, pH = 8.0) containing
5% skimmed milk to fill and block the non-specific bonding sites on the membrane for 1 h
at room temperature. After washing the membrane with 0.1% TBST for 5 min thrice, the
membrane was incubated in the 0.05% TBST (pH = 8.0) containing 3% skimmed milk and
primary antibodies for the specific proteins at 4 ◦C overnight. The excess antibodies that
were not bound to the target protein on the membrane were washed out with 0.1% TBST
thrice (10 min each wash) and then incubated in the 0.05% TBST containing 3% skimmed
milk and horseradish peroxidase-conjugated secondary antibodies for 1 h at room tempera-
ture. After another three-times of wash with 0.1% TBST, the membrane was incubated in the
western blot chemiluminescence reagent (XR-IGE-RPN2106, Sigma-Aldrich, St. Louis, MI,
USA) for 3 min, and the expression of the target protein was detected with X-ray film. The
specific protein primary antibodies used in the present study include the rabbit anti-SDF1
(1:1000, PA5-114344, Invitrogen, Waltham, MA, USA), rabbit anti-CXCR4 (1:1000, ab124824,
Abcam, UK) and mouse anti-β-actin (1:3000, MAB8929, R&D system, Minneapolis, MN,
USA); The secondary antibodies include the goat anti-rabbit HRP (1:6000, ab205718, Abcam,
Cambridge, UK) and goat anti-mouse HRP (1:6000, ab205719, Abcam, Cambridge, UK).
The signals of protein expression were detected and quantified using an Image-Gauge
software (Fujifilm, Minato-ku, Tokyo, Japan). The β-actin was used as the standard protein.
The expressions of SDF1 and CXCR4 were presented as a ratio to β-actin.

4.10. Statistical Analysis

All data were expressed as mean± standard error of mean. An independent t-test was
performed to determine the differences in the numbers of BrdU+/NeuN+, BrdU+/SDF1+,
and BrdU+/CXCR4+ cells and the protein expressions of BDNF, SDF1, and CXCR4 be-
tween groups. Differences in motor tests were examined by two-way repeated-measures
(group x time) ANOVA. Significance was set at p < 0.05.
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