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Abstract: The acquisition of drug resistance and virulence by staphylococcal species colonizing
humans is a growing public health concern. The present study was conducted to investigate the
prevalence, antimicrobial resistance and genetic characteristics of Staphylococcus isolates from the oral
cavity and skin (hand) of systemically healthy subjects with dental disease and dental staff in northern
Japan. Among a total of 133 subjects (91 patients and 42 staff), 87 coagulase-positive Staphylococcus
(83 S. aureus/4 S. argenteus) and 162 coagulase-negative Staphylococcus (CoNS) isolates were recovered
from 59 (44.4%) and 95 (71.4%) subjects, respectively. Three oral isolates were methicillin-resistant
S. aureus (MRSA) (3.6%, 3/83) that were genotyped as ST8-SCCmec-IVl, ST4775(CC1)-SCCmec-IVa
and ST6562(CC8)-SCCmec-IVa. Remarkably, the ST6562 isolate harbored PVL genes on ΦSa2usa
and type I ACME (arginine catabolic mobile element). Four methicillin-susceptible isolates were
identified as S. argenteus belonging to ST1223 and ST2250, which harbored enterotoxin genes egc-2
and sey, respectively. Among the fourteen CoNS species identified, methicillin-resistant (MR) isolates
were detected in five species (11 isolates, 13.3% of CoNS), with S. saprophyticus and S. haemolyticus
being the most common. ACME was prevalent in only S. epidermidis and S. capitis. These findings
indicated the potential distribution of USA300 clone-like MRSA, toxigenic S. argenteus and MR-CoNS
in the oral cavity of dental patients.

Keywords: MRSA; Staphylococcus argenteus; coagulase-negative Staphylococcus; oral cavity; hand;
SCCmec; PVL; enterotoxin; ACME

1. Introduction

Staphylococcus is well-known commensal bacteria in humans and most mammals and
forms the normal flora of the skin and mucous membrane. This genus has been divided
into coagulase-positive and -negative groups that include more than forty species [1].
Human-associated coagulase-positive Staphylococcus (CoPS) represents more pathogenic
groups of Staphylococcus, comprising at least three species, among which S. aureus is the
most common cause of a wide variety of diseases including skin and soft tissue infec-
tions, pneumonia, bacteremia, septic shock, food poisoning and toxic shock syndrome [2].
S. argenteus and S. schweitzeri, which were previously included in S. aureus, were reclassi-
fied as new species of CoPS in 2015 [3]. In particular, S. argenteus has been recognized as
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an emerging pathogen distributed to humans and animals that causes various diseases,
such as S. aureus, and reported worldwide [4]. S. aureus and S. argenteus produce diverse
virulence factors, such as exotoxins (enterotoxins, exfoliative toxins, etc.), exoenzymes
and adhesins, a part of which are associated with various symptoms due to infections of
these organisms [5,6]. While coagulase-negative Staphylococcus (CoNS) is regarded as a
less virulent group, some CoNS species are common opportunistic pathogens that pose
a significant health burden [2]. Nosocomial infections with some CoNS species become
difficult to treat, due to the ability of biofilm to form on indwelling medical devices [7].

During the past two decades, the global spread of methicillin-resistant S. aureus
(MRSA) in the community has also been noted as a cause of disease in immunocompetent
individuals, while it had traditionally been confined to hospital settings [8]. Similarly,
methicillin-resistant CoNS (MR-CoNS) has also been increasingly recognized as a nosoco-
mial pathogen in many species [2]. In its chromosome, methicillin-resistant Staphylococcus
carries the staphylococcal cassette chromosome mec (SCCmec), which contains mecA encod-
ing penicillin-binding protein 2a with low affinity to beta-lactams. The SCCmec of MRSA
has been classified into 14 genotypes (I-XIV) [9,10], among which types I, II, III, IV and V
are commonly reported for healthcare-associated (HA)-MRSA or community-associated
(CA)-MRSA. The acquisition of virulence factors in CA-MRSA, which may imply an in-
creased virulence, is a potential concern for public health. For example, a CA-MRSA clone
USA300 that has been predominant in the US, characteristically produces Panton Valentine
leukocidine (PVL) associated with severe symptoms and has an arginine catabolic mobile
element (ACME) in its genome that is implicated with an increased adaptability to human
skin [8,11].

The colonization of S. aureus/MRSA on anterior nares is associated with the pathogen-
esis of their infections [12], increasing the risk of bloodstream infections and other infections
resulting in an elevated medical burden [13,14]. Similarly, the carriage of CoNS in skin is
implicated in surgical site infections [15,16], and the spread of MR- and multidrug resistant
CoNS among healthy individuals has been described [17]. Thus, the colonization of Staphy-
lococcus has been characterized mainly for bacterial strains residing in the nasal cavity
and the skin, which are considered the primary ecological niche of this genus. Although
12–30% of individuals carry S. aureus in their nasal cavity persistently, 30% (range 16–70%)
are intermittent carriers [18]. In contrast, colonization in the oral cavity is considered more
persistent [19,20], and the reported carriage rate of S. aureus in the oral cavity is almost
similar to or higher than those in nare in some studies [21,22]. Furthermore, colonizing S.
aureus was only detected in the oral cavity in a substantial part (approximately 25%) of
carriers [23,24]. Accordingly, the oral cavity/oro-pharynx has been noted and described
as a more significant reservoir of staphylococci than anterior nares, for lower respiratory
infections, cross-infection and dissemination to other body sites [20,25–28].

In our previous study, the prevalence of MRSA and MR-CoNS in the oral cavity of
healthy children and their genetic traits were analyzed in Hokkaido, the northern main
island of Japan [29]. As a result, 6.3 and 50% of colonizing S. aureus and S. epidermidis
were identified as being MR, respectively, with MRSA belonging to five STs (ST1, ST5,
ST8, ST89 and ST120). The present study was conducted to investigate the drug resistance
and genetic characteristics of oral staphylococcal isolates from subjects of all age groups
(systematically healthy subjects with dental disease and dental staff) and compared with
isolates from the skin of the subjects’ hand, to understand the spread of bacterial strain
within a subject. The results of this study provided different features in the prevalence of
oral MR and methicillin-susceptible (MS) staphylococcus, with the first identification of
USA300 clone-like MRSA and MS S. argenteus in an oral cavity.

2. Results
2.1. Prevalence of Staphylococcal Isolates from Study Subjects

During a 15-month period starting in December 2019, a total of 133 subjects participated
in this study. They consisted of 91 systemically healthy dental patients (74 and 17 subjects
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with mild and severe dental disease, respectively) and 42 dental staff (35 dentists and 7 dental
hygienists). The age range of participants was 0–93 years (median age: 46.5 years), and sex
ratio was 0.99 (Table S1). Seventy percent of the patients with mild disease were children
(0–18 years), while most of those with severe disease were adults. For a bacterial culture,
a saliva and a skin swab on the hand (fingers and palm) were taken from all the subjects,
and additionally, a swab of the oral disease site was collected from the patients with severe
disease. During the study period, there were few or no participants from March to June 2020
because of the decrease in dental patients caused by the COVID-19 pandemic. However, in
other periods, the monthly number of study subjects was almost constant.

Among the 133 subjects, two CoPS species, S. aureus and S. argenteus, were isolated
from 63 (47.4%) and 3 (2.3%) subjects, respectively, while CoNS was isolated from 95 sub-
jects (71.4%). The CoPS-positive rates were higher in the dental patient groups (overall rate:
47.3%, 43/91) than in the staff (38.1%) (statistically not significant; p = 0.32) (Table 1). From
any sampling sites of all the subjects, a total of 83 S. aureus, 4 S. argenteus and 162 CoNS
isolates were recovered. CoPS was more frequently isolated from the oral cavity (58 isolates)
than the hand (29 isolates), though 87% of CoNS isolates (141/162) were derived from a
skin swab of the hand. Three MRSA and 11 MR-CoNS isolates were identified, showing
detection rates of 3.6 and 8.3% in S. aureus and CoNS, respectively. S. argenteus isolates
were all mecA-negative. MRSA was only isolated from the oral cavity (staff and dental
patients with mild disease), while most of MR-CoNS isolates were recovered from the hand
of patients.

Table 1. S. aureus, S. argenteus and CoNS isolates from study subjects (n = 133).

Study Subjects
Number of S. aureus/S.

argenteus-Positive
Subjects in Any Site (%)

Site
Number of Isolates [mecA-Positive]

S. aureus S. argenteus CoNS

staffs (n = 42) 16 (38.1) oral cavity (saliva) 14 [1] 6
hand (skin) 10 37

Patients with mild dental
disease (n = 74) 34 (45.9) oral cavity (saliva) 30 [2] 3 5 [1]

hand (skin) 13 1 79 [7]

Patients with severe
dental disease *1 (n = 17) 9 (52.9)

oral cavity (saliva) 7 4 [1]
dental disease site 4 6

hand (skin) 5 25 [2]

total (n = 133) 59 (44.4) 83 [3] 4 [0] 162 [11]

*1 Patients with dental diseases included subjects with periodontitis, implantitis, deep dental caries, abscess, fistula.

2.2. Genotypes, Antimicrobial Resistance, Virulence Factors and Resistance Genes in CoPS

Eighty-three S. aureus isolates were classified into 11 coagulase genotypes (coa-types)
and 20 STs, with coaXa/ST15 being the most common (11 isolates), followed by coa-IIIa/ST8
and coa-VIc/ST97 (10 isolates each), and coa-IVa/ST30 and coa-Vb/ST188 (8 isolates each)
(Table 2). Three MRSA isolates were genotyped as ST8-SCCmec IVl, ST4775-SCCmec IVa and
ST6562(CC8)-SCCmec IVa. ST4775 and ST6562 are single locus variants of ST1 (allelic profile:
1-712-1-1-1-1-1) and ST8 (allelic profile: 3-3-1-1-4-739-3), belonging to clonal complex (CC)
1 and CC8, respectively. The ST6562 isolate belonged to spa type t1188 having a repeat
profile (11-19-12-21-34-24-34-22-25) similar to that of t008 (11-19-12-21-17-34-24-34-22-25).



Antibiotics 2021, 10, 1316 4 of 14

Table 2. Prevalence of coa genotype, ST, drug resistance genes and antimicrobial resistance profiles of S. aureus (n = 83) and
S. argenteus (n = 4) isolates.

S. aureus/
S. argenteus Coa Genotype No. of Isolates

in Coa-Type (%) ST (CC) No. of Isolates
in ST

SCCmec type
[MRSA]

Antimicrobial
Resistance
Profile *2,3

Drug Resistance
Genes *4

S. aureus (n = 83)

IIa ST5 (CC5) 1 All susceptible

3 (3.6) ST26 1 AMP blaZ

ST1607 (CC97) 1 AMP blaZ

IIIa

11 (13.3)

ST8 (CC8) 10 SCCmec IVl (1
isolate)

OXA (10%), FOX
(10%), AMP

(60%), ERY (20%)
CLI-i (20%)

blaZ (60%), erm(C)
(10%), erm(A) (10%)

ST6562 *1 (CC8) 1 SCCmec IVa OXA, FOX, AMP,
ERY, LVX

blaZ, aph(3’)-IIIa,
msrA

IVa 8 (9.6) ST30 (CC30) 8 AMP, ERY, CLI-i,
GEN (12.5%)

blaZ, erm(A),
aac(6’)-Ie-aph(2”)-Ia

(12.5%)

Va 6 (7.2) ST121 (CC121) 6

AMP (66.7%),
ERY (33.3%),
CLI-i (33.3%),
GEN (66.7%),
LVX (16.7%)

blaZ (66.7%), erm(C)
(33.3%),

aac(6’)-Ie-aph(2”)-Ia
(16.7%)

Vb 8 (9.6) ST188 (CC1) 8 LVX (25%)

VIc 10 (12.0) ST97 (CC97) 10 AMP (20%) blaZ (20%)

VIIa

11 (13.3)

ST12 (CC12) 8 All susceptible

ST81 (CC1) 2 AMP, ERY, CLI-i blaZ, erm(A)

ST4775 (CC1) 1 SCCmec IVa OXA, FOX, AMP,
ERY, CLI-i blaZ, erm(A)

VIIb

9 (10.8)

ST45 (CC45) 5 AMP (20%) blaZ (20%)

ST508 (CC45) 2 All susceptible

ST291 (CC398) 1 All susceptible

ST398 (CC398) 1 ERY, CLI-i erm(C)

VIIIa 4 (4.8) ST20 (CC20) 4 AMP blaZ

Xa
12 (14.5)

ST15 (CC15) 11 AMP (91%),
GEN (36.7%)

blaZ (91%),
aac(6’)-Ie-aph(2”)-Ia

(36.7%)

ST718 1 ERY, CLI-i erm(A)

XIc 1 (1.2) ST109 (CC1) 1 AMP, ERY, CLI-i blaZ, erm(A)

S. argenteus (n = 4)
XId 2 (50) ST2250 2 All susceptible

XV 2 (50) ST1223 2 All susceptible

*1 Novel ST detected in this study. This isolate had PVL phage ΦSa2USA and ACME-I (USA300 related clone). *2 Abbreviations: ABK,
arbekacin; AMP, ampicillin; CFZ, cefazolin; CLI, clindamycin; CMZ, cefmetazole; ERY, erythromycin; FMX, flomoxef; FOF, fosfomycin; FOX,
cefoxitin; GEN, gentamicin; IPM, imipenem; LVX, levofloxacin; MIN, minocycline; OXA, oxacillin; SXT, sulfamethoxazole-trimethoprim;
CLI-i, inducible resistance to clindamycin (confirmed by D-zone test). *3 When a resistance gene is not present in all isolates of the same ST,
prevalence (%) is indicated in parentheses. None of the isolates showed resistance to ABK, CFZ, CMZ, FMX, IPM, MIN, FOF, SXT, LZD
(linezolid), TEC (teicoplanin) and VAN (vancomycin).*4 The following genes were not detected in any isolates: erm(B), ant(6)-Ia, aac(6’)-Im,
ant(9)-Ia, ant(9)-Ib, ant(3”)-Ia, aph(2”)-Ib, aph(2”)-Ic, aph(2”)-Id, optr-A, cfr and fexA.

Among the 18 antimicrobials examined for S. aureus, the highest resistance rate was
found against AMP (45.8%), followed by ERY (24.1%), and CLI (20.5%) (Table S2). All the
ST30 isolates showed resistance to these three antimicrobials, harboring blaZ and erm(A)
(Table 2, Table S2). A high resistance rate to AMP was observed for ST15, ST20 and ST121,
among which ST15 and ST121 included GEN-resistant isolates harboring aac(6′)-Ie-aph(2”)-
Ia. Three MRSA isolates showed multidrug resistance having any of the aminoglycoside
modifying enzyme genes and macrolide resistance genes. The ST6562 isolate had blaZ,
aph(3′)-IIIa and msr(A). All the isolates are sensitive to LZD with MIC ranging between
0 and 2 µg/mL and none of the isolates harbored optrA, fexA and cfr genes.

The prevalence of virulence factors was analyzed in 38 S. aureus isolates with different
genotypes and four S. argenteus isolates (Table S3). ST6562 (CC8) MRSA harbored PVL
genes (lukS-PV-lukF-PV) located on a phage ΦSa2usa and had also type I ACME that
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included speG encoding spermine/spermidine N-acetyltransferase as typically seen in the
USA300 clone [30], while ST8/SCCmec-IVl MRSA had tst-1, sec, sep and also spj encoding
a cell wall-anchored protein unique to SCCmec IVl [31]. An enterotoxin gene cluster (egc:
egc-1, seg-sei-sem-sen-seo; egc-2, seg-sei-sem-sen-seo-seu) was identified in various genotypes
of MSSA, including ST20, ST30 and ST121, among which ST30 isolates also harbored tst-1.
Enterotoxin genes sea and seb were present in ST8 and ST12 MSSA isolates, respectively.
Exfoliative toxin genes eta or etd were detected in MSSA isolates with ST26, ST121, ST291
and ST1607. A variant gene of the elastin-binding protein (ebpS-v) [32] was only identified
in ST121 isolates.

Four S. argenteus isolates were genotyped as coa-XV/ST1223 (two isolates) and coa-
XId/ST2250 (two isolates), which carried egc-2 and sey, respectively. These showed suscep-
tibility to all of the 18 antimicrobials examined.

S. aureus or S. argenteus were recovered from both the oral cavity (saliva, disease site)
and the hand of 19 subjects (Table 3). Among them, isolates from the two sites of the
13 subjects showed identical genotypes and other genetic traits, and resistance profiles.
The presence of ST2250 S. argenteus in saliva and on the hand was confirmed in a patient
(12 years, female) with mild dental disease. In a single subject (B20-H05) with mild dental
disease, though the isolates from saliva and the hand belonged to the same genotype
(coa-X/ST15), they showed different profiles of resistance and their responsible genes.

Table 3. Characteristics of S. aureus / S. argenteus isolated from both oral cavity and hand of subjects (n = 19).

No. Age/Sex Isolate ID Subject
Category *1

Site
(Sample) S.aureus/S.argenteus Coa Type ST (CC) Antimicrobial

Resistance Profile
Drug Resistance

Genes

1 26/M A20-KT 1
saliva S.aureus VIIa ST20 (CC20) AMP blaZ
hand S.aureus VIIa ST20 (CC20) AMP blaZ

2 25/M A20-IHB 1
saliva S.aureus Vb ST188 (CC1) All susceptible
hand S.aureus Vb ST188 (CC1) All susceptible

3 25/M A20-EK 1
saliva S.aureus Va ST121

(CC121) AMP, GEN blaZ, aac(6’)-Ie-
aph(2”)-Ia

hand S.aureus Va ST121
(CC121) AMP, GEN blaZ, aac(6’)-Ie-

aph(2”)-Ia

4 26/M B20-KF 1
saliva S.aureus VIIb ST45 (CC45) AMP blaZ
saliva S.aureus IIIa ST8 (CC8) AMP blaZ
hand S.aureus XIc ST109 (CC1) AMP, ERY, CLI-i blaZ, erm(A)

5 28/M B20-HS 1
saliva S.aureus IIIa ST8 (CC8) All susceptible
hand S.aureus IIIa ST8 (CC8) All susceptible

6 29/M A21-OY 1
saliva S.aureus IIIa ST8 (CC8) All susceptible
hand S.aureus IIIa ST8 (CC8) All susceptible

7 28/M A21-OYK 1
saliva S.aureus Xa ST15 (CC15) All susceptible
hand S.aureus Xa ST15 (CC15) All susceptible

8 17/M A20-H10 2
saliva S.aureus VIIa ST12 (CC12) All susceptible
hand S.aureus VIIa ST12 (CC12) All susceptible

9 9/M A20-H16 2
saliva S.aureus VIIa ST12 (CC12) All susceptible
hand S.aureus VIc ST97 (CC97) All susceptible

10 8/M A20-H20 2
saliva S.aureus VIIa ST12 (CC12) All susceptible
hand S.aureus VIIa ST12 (CC12) All susceptible

11 10F A20-H21 2
saliva S.aureus VIIa ST12 (CC12) All susceptible
hand S.aureus VIc ST97 (CC97) All susceptible

12 7/F A20-H22 2
saliva S.aureus VIIa ST12 (CC12) All susceptible
hand S.aureus VIc ST97 (CC97) All susceptible

13 8/M A20-H24 2
saliva S.aureus VIc ST97 (CC97) All susceptible
hand S.aureus VIc ST97 (CC97) All susceptible

14 9/F A20-H40 2
saliva S.aureus VIIb ST45 (CC45) All susceptible
hand S.aureus VIIb ST45 (CC45) All susceptible

15 12/F A21-H09 2
saliva S.argenteus XId ST2250 All susceptible
hand S.argenteus XId ST2250 All susceptible

16 10/F B20-H05 2
saliva S.aureus Xa ST15 (CC15) AMP blaZ

hand S.aureus Xa ST15 (CC15) AMP, GEN blaZ, aac(6’)-Ie-
aph(2”)-Ia

17 15/M A20-D3 3
disease site S.aureus VIc ST97 (CC97) AMP blaZ

hand S.aureus VIc ST97 (CC97) AMP blaZ
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Table 3. Cont.

No. Age/Sex Isolate ID Subject
Category *1

Site
(Sample) S.aureus/S.argenteus Coa Type ST (CC) Antimicrobial

Resistance Profile
Drug Resistance

Genes

18 10/F A20-D10 3
saliva S.aureus VIIa ST81 (CC1) AMP, ERY, CLI-i blaZ, erm(A)

hand S.aureus VIIb ST508
(CC45) All susceptible

19 58/M A21-D04 3
saliva S.aureus VIc ST97 (CC97) All susceptible
hand S.aureus VIc ST97 (CC97) All susceptible

*1 1, hospital staff (n = 7); 2, patient with mild dental disease (n = 9); 3, patient with severe dental disease (n = 3).

2.3. CoNS Species, Prevalence of MR-CoNS and Antimicrobial Resistance

A total of 162 CoNS isolates were differentiated into 14 species, with S. warneri and
S. capitis being dominant (35.8 and 32.1%, respectively) and prevalent mainly on the
hand (Table 4). These two species and four other common species, i.e., S. saprophyticus,
S. epidermidis, S. caprae and S. haemolyticus, accounted for 90% of all the CoNS isolates.
MR-CoNS was detected in 13.3% (11 isolates; two from the oral cavity, nine from the hand)
of all the isolates in the five species, with S. saprophyticus and S. haemolyticus being the
most common. The SCCmec of MR-CoNS was mostly non-typeable (Table S4). ACME
was only detected in S. epidermidis and S. capitis, with detection rates of 66.7 and 50%,
respectively. The highest resistance rate was observed against FOF (46.9%), followed by
ERY (21%) and AMP (16.7%) (Table S5). FOF resistance was common in S. warneri, S. capitis,
S. saprophyticus, S. haemolyticus and S. caprae. Resistance to GEN was found mostly in
S. warneri, and LVX resistance was only detected in S. saprophyticus and S. haemolyticus.
In MR-CoNS isolates, the macrolide resistance genes (erm(A), erm(B), erm(C), or msrA) were
commonly detected, in addition to the most prevalent blaZ (Table S6).

Table 4. Species of CoNS isolated from subjects.

CoNS Species
No. of Isolates [mecA-Positive]

Oral Cavity Hand Dental Disease Site Total (n = 162) (%)

S. warneri 6 51 [1] 1 58 (35.8) [1]
S. capitis 2 46 4 52 (32.1)

S. saprophyticus 2 [1] 10 [4] 0 12 (7.4) [5]
S. epidermidis 4 [1] 4 1 9 (5.6) [1]

S. caprae 0 8 0 8 (5.0)
S. haemolyticus 0 7 [3] 0 7 (4.3) [3]

S. cohnii 0 5 0 5 (3.1)
S. lugdunensis 1 2 [1] 0 3 (1.9) [1]

S. pasteuri 0 2 0 2 (1.2)
S. xylosus 0 2 0 2 (1.2)

S. auricularis 0 1 0 1 (0.6)
S. condimenti 0 1 0 1 (0.6)

S. hominis 0 1 0 1 (0.6)
S. petrasii 0 1 0 1 (0.6)

Total 15 [2] 141 [9] 6 162 [11]

3. Discussion

In the present study, we first revealed the prevalence and genotypes (coa-type, ST) of
MRSA and MSSA from the oral cavity of dental patients, and also the spectrum of CoNS
species with their resistance phenotype and determinants. The prevalence of S. aureus and
MRSA in an oral cavity reported to date varies depending on the study design having
different subjects [33]. In four studies on systemically healthy dental patients, the isolation
rate of S. aureus ranged from 5.9 to 36.6%, while MRSA 0–8.6% [34–37]. For other study
subjects, the rates of oral S. aureus were described as 38–40% in admitted patients [21,24],
35–48% in healthcare workers [24,38], 15–45% in healthy dental students [22,34] and 26–36%
in healthy children [23,28,29]. A study in Ireland showed a lower rate of S. aureus isolation
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from patients than healthcare workers, while there was a slightly higher rate of MRSA
in patients [24]. The oral carriage rates of MRSA in healthy subjects were 1.9% (dental
students) [22] and 4.1% (healthcare workers) [38], with MRSA accounting for 9–21% of
colonizing S. aureus. Among the S. aureus from oral specimens, approximately 10% of
the isolates were identified as MRSA [26]. In our present study aimed at dental patients
and staff, the overall isolation rate of S. aureus (44.4%) represented a high level compared
with those reported for dental patients as well as healthy individuals as described above.
However, MRSA was detected at a low rate among study subjects (2.3%, 3/133), which
was similar to that in our previous study on healthy children (MRSA rate, 1.7%) [29]. Thus,
it is suggested that the low prevalence of MRSA career (approx. 2%) has been persisting in
our study site. In addition, though the isolation rates of S. aureus were slightly higher in
the dental patients than the dental staff, this difference was not statistically significant, and
MRSA was identified in both groups. Accordingly, it seems that S. aureus and MRSA may
be distributed evenly to the oral cavity of the two groups of subjects.

Our present study revealed the clonal structure of S. aureus from the oral cavity and
showed the broad genetic diversity of MSSA with common genotypes coa-IIIa (ST8), coa-IVa
(ST30), coa-Vb (ST188), coa-VIc (ST97), coa-VIIa (ST12) and coa-Xa (ST15). Among them, ST8,
ST30 and ST15 were considered to be persistently prevalent because they were also found
in the oral cavity of healthy children in our previous study [29]. Furthermore, ST12, ST15,
ST20, CC45, ST97 and CC398, which accounted for 51% (42/83) of all S. aureus isolates, have
been described as common genotypes among livestock-associated MSSA/MRSA [39–41].
This finding suggests that in the present study population, an unexpectedly large part of
the S. aureus isolates in the oral cavity were presumably transmitted from animals followed
by colonization, due to their reduced pathogenicity to humans. Most of the MSSA isolates
were generally susceptible to the antimicrobials tested and harbored less virulence factors,
suggesting less pathogenic significance to humans. However, several clones, including
ST8, ST12, ST30 and ST121, harbored sea, seb, egc, tst-1, eta or etd, which are related to
pathogenicity in staphylococcal infections [5,6]. In addition, the concomitant distribution of
the same S. aureus clones to the oral cavity and the hand was confirmed in approx. 70% of
the subjects demonstrating S. aureus in both sites. These observations may indicate that the
oral cavity has a potential role as a reservoir of S. aureus that mediates disease in humans,
through transmission via oral droplet or the direct contact of body sites contaminated with
this microorganism.

Among the clinical isolates of MRSA from healthcare and community settings in
Hokkaido, Japan, coa-IIa (CC5) is predominant, and coa-IIIa (CC8) and coa-VIIa (CC1,
CC59) are also commonly detected [42–44]. Unlike these dominant clones, three MRSA
isolates in the present study (ST8-SCCmec IVl, ST4775-SCCmec IVa, ST6562-SCCmec IVa)
had unique characteristics. ST4775, a single-locus variant of ST1, was reported previously
in only an MRSA with an SCCmec IVa strain from a pet cat in Japan [45], suggesting its
potential relation to the animal. The ST8-SCCmec IVl isolate, which was derived from a
young dental patient (13y) in the present study, was PVL-negative and harbored sec, sep,
tst-1 and spj, which was characteristic of the CA-MRSA/J clone that emerged in Japan in
2003 as a cause of skin infections among children [31]. Despite the low prevalence, this
clone has been identified among the CA- and HA-MRSA isolated from all ages in the
Japanese population, occasionally leading to severe diseases [42–44,46,47]. Moreover, this
clone was demonstrated in the oral cavity of healthy children in our previous study [29].
Therefore, it is conceivable that CA-MRSA/J has been potentially spread among the
community in our study site. The colonizing nature as well as the pathogenic traits of this
clone are suggested to be ascribable to the unique adhesin, a cell wall-anchored surface
protein (CWASP/J) encoded by spj carried within SCCmec IVl [31,48]. A remarkable
finding in our present study was the identification of ST6562 SCCmec IVa MRSA harboring
PVL genes in Φsa2usa and ACME-I, which are typical traits of the USA300 clone [30].
ST6562 is a novel ST representing a single locus variant of ST8, and this isolate has a spa
type closely related to that of the ST8 USA300 clone. Accordingly, the ST6562 MRSA is
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considered to be a genetic variant that originated from the USA300 clone. As a dominant
CA-MRSA in the US, the USA300 clone has been evidently recognized since 2000, followed
by global dissemination [49,50]. In Japan, since the first detection of this clone in 2007 [51],
a low prevalence of this clone (0.2–3.1%) has been reported in community and healthcare
settings [42,43,52,53]. Nevertheless, an increasing trend was also noted [53], and 5.1% of the
isolates from blood samples were identified as this clone in our recent study [44]. Therefore,
associated with the persistent spread of the USA300 clone among the Japanese population,
ST6562 is suggested to have emerged as a local variant. Although the nasal colonization
of the USA300 clone was described as a risk of infection route [54,55], the oral carriage of
this clone has been scarcely reported, while only a report showed its colonization on the
throat [56]. Our finding may indicate that the oral cavity should also be considered as a
reservoir of such virulent MRSA clones.

It was notable that two genotypes of S. argenteus (ST1223, ST2250) were identified
firstly in the oral cavity, in three subjects, with one carrying the same clone on their hand,
while the nasal colonization of S. argenteus was demonstrated in tropical regions [57,58].
Except in highly endemic regions (Australia, Southeast Asia, Amazon), the prevalence of
S. argenteus is very low [4]. In northern Japan, we reported that the frequency of S. argenteus
corresponded to 0.6–0.7% of the total number of S. aureus clinical isolates [6,59]. In contrast,
the incidence of colonizing S. argenteus, i.e., 5% of subjects (3/59) and 4.6% of isolated CoPS
(4/87), in the present study appear to be remarkably high, suggesting that S. argenteus
is prone to be carried asymptomatically by humans. As shown in the present study, the
ST1223 and ST2250 strains specifically possess egc and sey, respectively [6,59], and a food
poisoning outbreak due to ST1223 strain harboring seb was reported [60]. More research is
necessary to evaluate S. argenteus colonization as a potential risk of disease in humans.

In our study, CoNS isolates were more commonly recovered from the hand than the
oral cavity, and the frequencies by species were different from those observed for clinical
isolates, with S. epidemidis being the most common and including more MR strains than
other species [1,61]. In a German study, the mecA-positive rate of CoNS from the nasal cav-
ity was 7% [17], which is comparable to that in our study (8.3%), although the composition
of the CoNS species was considerably different. Though our CoNS isolates from the oral
cavity/hand showed a susceptibility to most antimicrobials, a relatively high resistance
rate (46.9%) was noted against FOF (fosfomycin), especially in S. warneri and S. capitis, in
contrast to the susceptibility in all the S. aureus isolates. FOF resistance in staphylococcus is
mediated by either a defective transporter with mutation in the chromosomal genes or the
plasmid-associated FOF-inactivating enzyme, FosB [62]. Moreover, diverse variants have
been known for the fosB gene depending on the staphylococcal species [63]. The identifi-
cation of the fosB in the two CoNS species with FOF resistance is necessary to define its
origin. Among CoNS, ACME has been most commonly identified in S. epidermidis clinical
isolates [61,64]. However, in our study, S. capitis showed a prevalence of ACME (50%)
comparable to S. epidemidis (67%), suggesting its increased colonizing ability. Accordingly,
the genetic and phenotypic traits of S. capitis should be carefully monitored.

In conclusion, we revealed the prevalence, antimicrobial resistance and genetic char-
acteristics of Staphylococcus from the oral cavity of dental patients and staff in northern
Japan. PVL-positive USA300 clone-like MRSA, ST1223 and ST2250 S. argenteus were first
identified as orally colonizing isolates. The results from the present study underscored
the importance of the oral cavity as reservoir of staphylococci with diverse genetic traits
related to human disease.

4. Materials and Methods
4.1. Study Design

This was an observational, cross-sectional study conducted in dental hospitals affili-
ated with Health Sciences University of Hokkaido, Ishikari-Tobetsu town, in Hokkaido,
which is the northern main island of Japan. Two samples (saliva and skin swab from hand)
taken from individual participants (dental patients or staff) were cultured for isolation of
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staphylococcus. The grown bacterial colonies were analyzed genetically for species, geno-
types, virulence factors and drug resistance genes, as well as antimicrobial susceptibility
testing. Informed consent was obtained from all the participants as shown below, and the
confidentiality of participants’ information was ensured throughout the study, as approved
by the institutional review board.

4.2. Study Subjects and Isolation of Staphylococcus

During the period between December 2019 and February 2021, oral (saliva) and hand
(skin swab) samples were collected from dental patients and staff in two dental treatment
facilities who agreed to participate to this study. Saliva specimens were collected from
the floor of the mouth by using a sterile cotton swab. For hand swab specimens, a sterile
cotton swab moistened with normal saline was rubbed on palms and fingers. Dental
disease site samples were taken by using a sterile cotton swab. All the swab samples
were directly plated on CHROMagar Staph aureus (Kanto Chemical Industry Co., Ltd.,
Tokyo, Japan) and incubated at 37 ◦C for 48 h aerobically. Staphylococcus-like colonies were
subculture on blood agar plates followed by incubation at 37 ◦C overnight aerobically.
Identification of bacterial species was performed by analysis of partial 16Sr RNA gene
sequencing of PCR products with primers 16Sr-1: GATGAACGCTGGCGGCGTGCCT
and 16Sr-2: TGTTACGACTTCACCCCAATC designed in this study. Individual isolates
were stored in cryovials (Microbank, Pro-Lab Diagnostics, Richmond Hill, ON, Canada) at
−80 ◦C and recovered when they were analyzed.

DNA samples were extracted from cultured bacterial cells by the use of achromopepti-
dase (FUJIFILM Wako Pure Chemical Corp., Osaka, Japan) as described previously [65].
The PCR mixture contained 200 µM dNTP, 0.5 µM each primer, 1.25 U Ex Taq DNA poly-
merase (Takara Bio Inc., Shiga, Japan) and its buffer with Mg2+ (final conc. 2 mM), extracted
bacterial DNA (approximately 2–3 ng), and sterile distilled water to a final volume of 25 µL.
A PCR was performed on a thermal cycler (Gene Atlas, ASTEC, Fukuoka, Japan) with the
following conditions: preheating at 94 °C for 2 min, 30 cycles of denaturation at 94 °C for
15 s, annealing at 55 °C for 15 s and extension at 72 °C for 15 s, and a final extension at
72 °C for 3 min. PCR amplicons were analyzed for their size using electrophoresis on a
2% agarose gel. Nucleotide sequence was determined using Sanger sequencing with the
PCR products using the BigDye Terminator v3.1 Cycle Sequencing kit (Applied Biosys-
tems, Foster City, CA, USA) on an automated DNA sequencer (ABI PRISM 3100, Applied
Biosystems, Foster City, CA, USA).

4.3. Antimicrobial Susceptibility Testing

For all the isolates, minimal inhibitory concentrations (MICs) within limited ranges
were measured using a broth microdilution test using Dry Plate Eiken DP32 (Eiken, Tokyo,
Japan) for the following 18 antimicrobials: oxacillin (OXA), ampicillin (AMP), cefazolin
(CFZ), cefmetazole (CMZ), flomoxef (FMX), imipenem (IPM), gentamicin (GEN), arbekacin
(ABK), erythromycin (ERY), clindamycin (CLI), vancomycin (VAN), teicoplanin (TEC),
linezolid (LZD), minocycline (MIN), fosfomycin (FOF), levofloxacin (LVX), cefoxitin (FOX)
and trimethoprim/sulfamethoxazole (SXT). MICs of GEN, ciprofloxacin (CIP), tetracycline
(TET), doxycycline (DOX) and lincomycin (LIN) were measured manually using a broth
microdilution test for selected isolates.

Resistance was judged according to the break points mentioned in the Clinical Lab-
oratory Standards Institute guidelines for most of the antimicrobials tested (CLSI). For
antimicrobial drugs, whose breakpoints are not defined by CLSI guidelines, we employed
the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoint
for FOF (32 µg/mL, Staphylococcus spp.), and a unique breakpoint for ABK (4 µg/mL,
which is higher than the 2 µg/mL defined by the Japanese Society of Chemotherapy for
a respiratory infection), and a breakpoint of FMX (16 µg/mL) defined by the Japanese
Society of Chemotherapy for a urinary tract infection.
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4.4. Genetic Typing

For all the isolates, the presence of nuc, mecA, PVL genes and ACME-associated arcA
was confirmed by a multiplex PCR assay as described by Zhang et al. [66]. In addition, to
discriminate species of non-S. aureus complex (S. argenteus, S. schweitzeri) from S. aureus, a
PCR targeting the non-ribosomal peptide synthetase (NRPS) gene with the primers nrps-F
and nrps-R was performed as described previously [67]. For all the methicillin resistant
(mecA-positive) isolates, SCCmec type and subtype of SCCmec-IV were determined using a
multiplex PCR using previously published primers and conditions [68,69]. Long-range-
PCR (LR-PCR), as described previously, was applied for all the ACME arcA-positive strains
to assign ACME type I, II, II’ [61]. Genotype of staphylocoagulase gene (coa) of S. aureus was
determined by partial coa sequences (D1, D2 and the central regions) and analyzed for their
highly similar coa sequence by a BLAST search (http://blast.ncbi.nlm.nih.gov/Blast.cgi,
accessed on 30 April 2021) to assign coa-type. Accessory gene regulator (agr) group was
assigned by the PCR with specific primers, as previously described [70]. Sequence type
(ST) was determined according to the scheme of multilocus sequencing typing (MLST) [71]
and sequence of protein A gene X-region (spa type) was determined using a PCR and direct
sequencing [72], using Ridom SpaServer (http://spa.ridom.de/index.shtml, accessed on
30 April 2021) for some selected S.aureus isolates. PVL-encoding phages (Φ108, ΦPVL,
ΦSa2958, ΦSa2MW, ΦSLT, ΦTCH60, ΦSa2usa and ΦSa119) for the PVL-positive isolates
were determined using a multiplex or uniplex PCR as described previously [73].

4.5. Detection of Virulence Factors and Drug Resistance Genes

The presence of 28 staphylococcal enterotoxin (SE) (-like) genes (sea-see, seg-selu, selx,
sey, selw, selz, sel26 and sel27), the TSST-1 gene (tst-1) and exfoliative toxin genes (eta,
etb and etd), leukocidins (lukDE and lukM), haemolysins (hla, hlb, hld and hlg), adhesin
genes (eno, cna, sdrC, sdrD, sdrE, fib, clfA, clfB, fnbA, fnbB, icaA, icaD, edinA, edinB, bap, spj),
modulators of host defense (sak, chp and scn) and ACME-I component speG was analyzed
using multiplex or uniplex PCRs as described previously [43,74]. Genes conferring resis-
tance to penicillin (blaZ), macrolides-lincosamides-streptogramins (ermA, ermB, ermC, msrA,
lnuA, lnuB), aminoglycosides (aac(6′)-Im, aac(6′)-Ie-aph(2”)-Ia, ant(3”)-Ia, ant(4′)-Ia, ant(6)-Ia,
ant(9)-Ia, ant(9)-Ib, aph(2”)-Ib, aph(2”)-Ic, aph(2”)-Id and aph(3′)-IIIa), linezolid (optrA) and
chloramphenicol (cfr) were detected using a uniplex or multiplex PCR using the primers
previously reported [43,75]. A PCR was performed as described above (4.2), while the
annealing temperature of a PCR was different depending on the target gene.

4.6. Statistical Analysis

Statistical analyses were performed using IBM SPSS Statistics ver.26. The chi-square
test was used to analyze the differences in the prevalence of bacterial attribute information
among identified STs. A p-value < 0.05 was considered statistically significant.
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resistance profile of CoNS isolates, Table S6: Drug resistance profile/gene in MR-CoNS (n = 11).
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