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Accurately predicting the survival prospects of patients suffering from pancreatic
adenocarcinoma (PAAD) is challenging. In this study, we analyzed RNA matrices of
182 subjects with PAAD based on public datasets obtained from The Cancer Genome
Atlas (TCGA) as training datasets and those of 63 subjects obtained from the Gene
Expression Omnibus (GEO) database as the validation dataset. Genes regulating the
metabolism of PAAD cells correlated with survival were identified. Furthermore, LASSO
Cox regression analyses were conducted to identify six genes (XDH, MBOAT2, PTGES,
AK4, PAICS, and CKB) to create a metabolic risk score. The proposed scoring framework
attained the robust predictive performance, with 2-year survival areas under the curve
(AUCs) of 0.61 in the training cohort and 0.66 in the validation cohort. Compared with the
subjects in the low-risk cohort, subjects in the high-risk training cohort presented a worse
survival outcome. The metabolic risk score increased the accuracy of survival prediction in
patients suffering from PAAD.
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INTRODUCTION

The global adenocarcinoma statistics in 2020 based on the GLOBOCAN estimates taken from the
International Agency for Research on Adenocarcinoma demonstrate that pancreatic
adenocarcinoma (PAAD) has a high fatality rate (466,000 deaths in 496,000 cases) because of its
poor prognosis. Moreover, it is the seventh leading cause of adenocarcinoma death in both sexes
(Sung et al., 2021). Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with a 5-year
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survival rate of approximately 9% (Flowers et al., 2021). Somatic
mutations are the most prevalent genetic alterations such as
KRAS, GNAS, and tumor suppressor genes such as CDKN2A,
TP53, and SMAD4 (Singhi and Wood, 2021). Other genes
associated with DNA repair also contribute to PDAC
development, including BRCA2, ATM, PALB2, FANCC, and
FANCG. In addition to genetic mutations, PDAC involves
molecular abnormalities such as hyperactivated growth factor
signaling, dysregulated gene expression (transcriptional or
posttranscriptional), epigenetic changes, and abnormal
posttranslational modifications (Vaziri-gohar et al., 2018).

In PAAD, metabolic reprogramming, including rewired
glucose, lipid, and amino acid metabolism, and abnormal
metabolism characteristics within the tumor
microenvironment, contribute to tumor progression. These
phenomena are related to drug resistance to chemotherapy,
radiotherapy, and immunotherapy (Qin et al., 2020). Genetic
alterations and the tumor microenvironment related to PDAC
development participate in the metabolic rewiring process
(Dasgupta et al., 2019; Xu et al., 2020). Glycolytic flux is the
main carbon metabolism process in all cells. It does not only
produce adenosine triphosphate (ATP) but also provides biomass
for anabolic processes that support cell proliferation. Increased
expression levels of glucose transporters and rate-limiting
enzymes that regulate the rate of glycolytic flux are increased
(Akakura et al., 2001; Mikuriya et al., 2007; Commisso et al., 2013;
Guillaumond et al., 2013), in addition to the elevated levels of
glycolysis and pentose phosphate pathways being the
characteristic of early tumors (Vernucci et al., 2019).
Consequently, glycolytic metabolites, including lactate, are
elevated in pancreatic cancer cells (Mikuriya et al., 2007;
Guillaumond et al., 2013; Shi et al., 2014). Targeting glucose
metabolism can sensitize pancreatic cancer to MEK inhibition
and underlines the potential of co-targeting glycolysis andMAPK
as an alternative approach to treating KRAS-driven PDAC (Yan
et al., 2021).

Increased secretion of the arginine metabolite inducible nitric
oxide (NO) synthase (iNOS) and endothelial nitric oxide synthase
(eNOS) has been detected in PDAC tissues compared with
normal tissues (Vickers et al., 1999; Lim et al., 2008). In
PDAC, high levels of iNOS are associated with the
proliferation and invasiveness of tumor cells (Wang et al.,
2016). The function of NO and related signaling pathways in
the monitoring of pancreatic cancer development and
progression has been reported (Fujita et al., 2014; Wang et al.,
2016). The importance of dysregulated NO in cellular glutamine
metabolism is increasingly recognized in PDAC patients, which is
integral to the invasive property of cancer cells and can stimulate
angiogenesis and regulate oxidative phosphorylation. Given that
PDAC patients exhibit an increased dependence on glutamine
metabolism, small molecular inhibitors targeting the initiating
enzyme GLS1 in glutamine metabolism have been actively
investigated (Altman et al., 2016). Previous studies have
reported that targeting glutamine metabolism can increase the
sensitivity of PAAD to gemcitabine and improve its curative
effect (Chen R. et al., 2017). Recently, clinical studies evaluating
the combination of small molecular inhibitors and chemotherapy

or targeted therapy against various solid tumors have been
conducted (NCT02861300, NCT03965845, NCT04250545,
NCT02771626, NCT03944902, and NCT03875313). Moreover,
the safety, tolerability, and efficacy of these methods have been
evaluated (Xu et al., 2020).

Accurate risk stratification is important for therapeutic
decision-making and survival prediction. However, a metabolic
signature panel has not been explored to accurately stratify
patients suffering from PAAD to predict their prognosis and
treatment management.

In this study, a prognostic survival model based on metabolic
genes was constructed according to the gene expression data
obtained from TCGA dataset. The model was further validated
using the GEO dataset to explore an efficient metabolic signature
to more accurately manage the stratification of PAAD.

MATERIALS AND METHODS

Data Collection
Normalized RNA sequencing (fragments per kilobase million,
FPKM) and relevant clinical data (sex, age, histological grade,
AJCC-TNM stage, survival time, and survival status) for TCGA-
PAAD were obtained from TCGA (https://portal.gdc.cancer.gov/
). A total of 182mRNA samples (178 PAAD and 4 normal tissues)
were analyzed. The microarray data of 63 PAAD samples in
GSE57495 based on GPL15048 (Rosetta/Merck Human RSTA
Custom Affymetrix 2.0 microarray HuRSTA 2a520709.CDF)
(Affymetrix, Tampa, FL, United States) were obtained from
the GEO database (http://www.ncbi.nlm.nih.gov/geo/). The
expression profile data were log2-transformed. Furthermore,
the detailed clinicopathologic data, including disease stage,
survival time, and survival status, were used. The two datasets
underwent a batch correction process via the “sva” R package so
that they were comparable.

Construction and Validation of a Metabolic
Risk Score
Data obtained from TCGA dataset were used to construct the
metabolic risk score model, which was used as the training
dataset. A total of 940 candidate metabolism-related genes
(MRGs) were extracted considering KEGG pathway genes, 872
of which were common in the training dataset and GSE57495.
The “limma” R package was used to identify differentially
expressed MRGs (DEMRGs) (p ≤ 0.05 indicated that genes
exhibited at least 1.5-fold changes) compared with normal
tissues. After removing seven cases without follow-up, 171
cases with tumor samples and relevant clinical data were
included in the subsequent analysis. Univariable Cox
regression analysis was applied to assess the correlation of
DEMRGs with PAAD patients’ overall survival rate (OS, p ≤
0.01). Subsequently, these genes were categorized as the
prognostic DEMRGs (PDEMRGs). Then, the least absolute
shrinkage and selection operator (LASSO) Cox regression
analysis was conducted to determine the best weighting
coefficient for prognosis-metabolic genes. After conducting a
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1,000,000-fold cross-validation on the maximum-likelihood
estimate of the penalty, the minimum criterion was
determined by using the optimal penalty parameter λ. Finally,
a metabolic model was established. The GSE57495 dataset was
used as the validation cohort. The patients in each dataset were
divided into high- and low-risk cohorts based on the median risk
score of the training dataset. Univariable and multivariable Cox
regression analyses were performed to evaluate the independent
prognostic value with respect to the metabolic risk score. p ≤ 0.05
was considered statistically significant.

Gene Set Enrichment and Molecular
Functional Relevance Analyses
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
were used to assess the significance of the metabolic risk scores.
The gene set enrichment analysis (GSEA; GSEA v4.1.0 software,
http://software.broadinstitute.org/gsea/login.jsp) was performed
to evaluate the enriched pathways in the high- and low-risk
cohorts. The metabolic pathway-related gene sets of “c2.cp.kegg.
v7.4.symbols” was the reference gene set used in GSEA to be
compared against. Any pathway with p ≤ 0.05 and a false
discovery rate q ≤ 0.25 was considered statistically significant.

Molecular and functional relevance analyses of the PDEMRGs
were performed using Metascape (http://metascape.org). The
search tool for the retrieval of interacting genes (STRING;
https://cn.string-db.org) was used to analyze the
protein–protein interaction network.

Validation of the Identified
Metabolism-Related Mutations Through
Public Computational Tools
The PAAD mRNA levels reported in the gene expression profiling
interactive database (GEPIA, http://gepia.cancer-pku.cn/) were used
to verify the PDEMRG expressions adopted in the proposed model.
GEPIA corroborated the differences in the gene expression between
PAAD (n = 179) and normal pancreatic tissues (n = 171).

Tumor immune estimation resource version 2 (TIMER2.0;
http://timer.cistrome.org), Gene-DE, and Gene-Surv modules
were used to analyze the differential PDEMRG expressions
between tumor and adjacent normal tissues and their
relationship with pan-cancer outcomes. The correlation
between PDEMRG expressions and immune infiltration
concerning different immune cell types was also obtained
from TIMER2.0 database.

Statistical Analysis
R packages “survival” and “survminer” were used to divide the
subjects into high- and low-risk cohorts with respect to the
median risk score. The receiver operating characteristic (ROC)
curves and area under the curve (AUC) value calculated using the
“survivalROC” package of the Rstudio software were used to
identify the metabolic risk score accuracy. The Kaplan–Meier
curves with log-rank tests were used to compare the survival rates
with each other. Univariable and multivariable Cox regression
analyses were performed for the subsequent clinical analyses. The
resulting data were presented using the “pheatmap” and
“ggplot2” packages of Rstudio.

RESULTS

Identification of DMREGs in Pancreatic
Adenocarcinoma Patients
In the training dataset, 77 DEMRGs were identified compared
with normal tissues, among which there were 43 upregulated
genes and 34 downregulated genes in PAAD (Supplementary
Figure S1).

A total of six PDEMRGs (five high-risk genes and one low-risk
gene) were significantly related to the OS in PAAD patients
(Figure 1). The mRNA expressions of all six genes were
upregulated in PAAD.

Establishment and Validation of the
Prognostic Risk Model
Using LASSO Cox regression analysis, six genes with high
coefficients were selected to develop the metabolic risk score
(Table 1). Among them, xanthine dehydrogenase (XDH),
membrane-bound O-acyltransferase domain containing 2
(MBOAT2), prostaglandin E synthase (PTGES), adenylate kinase
4 (AK4), and phosphoribosylaminoimidazole carboxylase and

FIGURE 1 | Identification of PDEMRGs in PAAD using TCGA database:
forest plot of six PDEMRGs obtained from univariable Cox regression analysis
(p ≤ 0.01): high-risk genes are represented in red (hazard ratios, HR > 1) and
low-risk genes are represented in green (HR ≤ 1).

TABLE 1 |Metabolic risk score with respect to the six genes developed according
to LASSO Cox regression analysis.

Gene Coef Metabolic-related
KEGG pathways

XDH 0.0208 Purine metabolism
MBOAT2 0.0440 Glycerolipid metabolism
PTGES 0.0025 Arachidonic acid metabolism
AK4 0.0062 Purine metabolism and thiamine metabolism
PAICS 0.0229 Purine metabolism
CKB −0.014 Arginine and proline metabolism
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synthase (PAICS) were identified as high-risk genes; while creatine
kinase B-type (CKB) was identified as a low-risk gene. The formula
for the metabolic risk score is as follows: metabolic risk score =
(0.0208 × expression ofXDH) + (0.0286 × expression ofMBOAT2)
+ (0.0025 × expression of PTGES) + (0.0620 × expression ofAK4) +
(0.0229 × expression of PAICS) − (0.0140 × expression of CKB).
The metabolic risk score of each subject in the training and
validation cohorts was calculated according to this formula.
Then, the subjects were divided into high- and low-risk groups
based on the median score of the training cohort.

The overall survival results of the patients in the high- and
low-risk cohorts were compared using the Kaplan–Meier curves
in the training (Figure 2A) and validation (Figure 2B) cohorts to
identify the prognostic differences. The OS of the high-risk group
was poorer than that of the low-risk group (p ≤ 0.05)
(Figures 2A,B).

The ROC analysis was used to assess the sensitivity and
specificity of the metabolic risk score. The 2-year survival
AUCs were 0.61 and 0.66 in the training (Figure 2C) and
validation cohorts (Figure 2D), respectively.

Heat maps were used to compare the expressions of six
metabolic genes. In each dataset, their expressions slightly
varied but overall remained relatively consistent (Figures
2E,F). Moreover, dot plots demonstrated that the survival rate
of patients in the low-risk cohort was better than that of the
patients in the high-risk cohort (Figures 2E,F).

Univariable and Multivariable Analyses
In addition to the metabolic risk score, the following values were
examined in the training cohort: age, sex, grade, stage, T-stage,
and N-stage (Figures 3A,B). Moreover, the stage values were
assessed in the validation cohort regarding univariable and
multivariable Cox regression analyses (Figures 3C,D).

The clinical covariates of the training and validation cohorts
are listed in Table 2. Among other clinical factors, the results of
multivariate analysis suggest that the metabolic risk is an
independent prognostic factor, with hazard ratios of 2.539
(95% CI: 1.271–5.073) and 3.648 (95% CI: 1.495–8.905) in the
training (Figure 3B) and validation cohorts (Figure 3D),
respectively.

FIGURE 2 | Establishment and validation of the metabolic genes prognostic risk model: (A,B) Kaplan–Meier curve analysis comparing the OS between patients in
high-risk and low-risk groups in training and validation cohorts; (C,D) survival prediction ROC curves of the risk model and other clinical indices from two cohorts; (E,F)
from top to bottom, there are the six PDEMRG expression patterns, risk score distribution of patients, and their survival status scatter plots in the training and validation
cohorts.
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Gene Set Enrichment and Molecular
Functional Relevance Analyses
GSEA was performed on each dataset to explore metabolism-
related and other enriched KEGG pathways associated with
metabolic covariates. In the training cohort, a high-risk group
with significant enrichment pathways was concentrated on the
p53 signaling pathway, cell cycle, glycosphingolipid
biosynthesis lacto and neolacto series, pentose phosphate,
glycolysis gluconeogenesis, drug metabolism enzymes,
pyrimidine metabolism, and pancreatic cancer pathways
(Figure 4A).

Other identified pathways included the galactose metabolism
glycosaminoglycan biosynthesis of keratan sulfate, adherens
junction, tight junction, mismatch repair, base excision repair,
nucleotide excision repair, and proteasome pathways. Moreover,
the following pathways were present in cancer cells: O glycan
biosynthesis, N glycan biosynthesis, and oocyte meiosis pathways
(Figure 4B). The pathways with significant enrichment in the
high-risk validation cohort included glycosaminoglycan
degradation, DNA replication, and drug metabolism enzymes
pathways (Supplementary Figure S2).

From the Metascape analysis results, two enriched gene
ontology biological process terms (GO-BP) were obtained
among the six PDEMRGs: the AMP metabolic (three genes)
and organophosphate biosynthetic process results (four genes)
(Figure 4C). The protein–protein interactions among the six

PDEMRGs obtained from the STRING database were also
analyzed, and no interactions were found (Figure 4D).

Validation of the Identified
Metabolism-Related Mutations Through
Public Computational Tools
GEPIA showed that all the genes included (XDH, MBOAT2,
PTGES, AK4, PAICS, and CKB) in the model exhibited different
PAAD mRNA expressions compared with normal pancreatic
tissues (p ≤ 0.05) (Figure 5A). However, their expression levels
did not differ with the stages (Figure 5B). XDH, MBOAT2,
PTGES, AK4, PAICS, and CKB were upregulated and their
results were consistent with those of the proposed model.

The correlations between the gene expression level in pan-cancer
and other TCGA tumors, as well as the clinical outcomes, were
analyzed using the TIMER database. The expressions of six
PDEMRGs varied among TCGA tumors, which could be a
prognostic factor in some tumors (Supplementary Figures
S3–S5). The expression of XDH was higher in bladder urothelial
carcinoma, cervical squamous cell carcinoma, endocervical
adenocarcinoma, esophageal carcinoma, kidney renal clear cell
carcinoma, kidney renal papillary cell carcinoma, lung
adenocarcinoma, lung squamous cell carcinoma, and uterine
corpus endometrial carcinoma, compared with corresponding
normal tissues. However, its expression was lower in breast

FIGURE 3 | Independent value of themetabolism-related gene prognostic riskmodel: (A,B) forest plots of the univariable andmultivariable Cox regression analyses
of the relationship between risk model or clinical factors and OS in the training cohort; (C,D) forest plots of the univariable andmultivariable Cox regression analyses in the
validation cohort.
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invasive carcinoma, cholangiocarcinoma, colon adenocarcinoma,
liver hepatocellular carcinoma, and rectum adenocarcinoma. The
XDH expression was a poor prognostic factor in adrenocortical
carcinoma and kidney chromophobe but a good prognostic factor in
liver hepatocellular carcinoma clinical outcomes (Supplementary
Figures S3, S5). The correlation between the other five PDEMRG
expression levels in pan-cancer and other TCGA tumors and clinical
outcomes is documented in (Supplementary Figures S3–S5).

The correlations among the expression of six PDEMRGs and
different types of immune cells in PAAD were also identified; they
were correlated with the infiltration of tumor purity, CD4+ T cells,
CD8+ T cells, B cells, neutrophils, and myeloid-derived suppressor
cells (MDSC) (Figures 6A–F). The CKB expression was positively
correlated with tumor purity (Cox = 0.196, p = 1.01e−02) and
infiltration of some immune cells, including CD4+ T cells (Cox =
0.161, p = 3.54e−02), MDSC (Cox = 0.227, p = 2.86e−3). On the
other hand, it was negatively correlated with CD8+ T cells (Cox =
−0.185, p = 1.54e−02) and neutrophils (Cox = −0.223, p = 3.39e−3)
(Figure 6F). The expression of XDH andMBOAT2 was positively
correlatedwith the infiltration of B cells (Cox = 0.255, p = 7.71e−04;
Cox = 0.205, p = 7.28e−03) and MDSC (Cox = 0.384, p = 2.14e−7;
Cox = 0.564, p = 1.0e−15) (Figures 6A,B). A negative correlation
between PTGES expression and infiltration of CD4+ T cells (Cox =

−0.16, p = 3.65e−02), and positive correlation with the infiltration
of MDSC (Cox = 0.522, p = 2.52e−13) was observed (Figure 6C).
The expressions of AK3L1 and PAICS were positively correlated
with the infiltration of B cells (Cox = 0.199, p = 9.19e−03; Cox =
0.232, p = 2.31e−03), neutrophils (Cox = 0.174, p = 2.27e−02; Cox =
0.161, p = 3.50e−02), andMDSC (Cox = 0.407, p = 3.27e−08; Cox =
0.519, p = 3.74e−13). On the other hand, they were negatively
correlated with the infiltration of CD4+ T cells (Cox = −0.169, p =
2.74e−02; Cox = −0.261, p = 5.72e−04) (Figures 6D,E).

DISCUSSION

A novel six-metabolism-related gene prognostic risk score was
constructed based on TCGA-PAAD dataset, whose results were

TABLE 2 | Clinical covariates of the training and validation cohorts.

Characteristic Training
cohort (n = 175)

Validation cohort GSE
(n = 63)

Sex
Female 74 (42%) —

Male 88 (51%) —

Unknown 13 (7%)
Age (years)
≤60 52 (30%) —

>60 110 (63%) —

Unknown 13 (7%)
Grade
High 25 (14%) —

Moderate 88 (51%) —

Poor 49 (28%) —

Unknown 13 (7%)
Stage
I 16 (9%) 13 (21%)
II 139 (80%) 50 (79%)
III 3 (2%) —

IV 4 (2%) —

Unknown 13 (7%)
T-stage
1 5 (3%) —

2 20 (11%) —

3 134 (77%) —

4 3 (2%) —

Unknown 13 (7%)
N-stage
0 45 (26%) —

1 117 (67%) —

Unknown 13 (7%)
Metabolic risk score
High 85 (50%) 33 (52%)
Low 86 (50%) 30 (48%)

Survival
Alive 84 (48%) 21 (33%)

FIGURE 4 | Significantly enriched KEGG pathways in the training cohort
via GSEA and molecular functional relevance analysis: (A,B) enriched
pathways of the high-risk group in the training cohort. (C) Enriched terms of
GO-BP among the six PDEMRGs obtained from Metascape. (D)
Protein–protein interactions among the six PDEMRGs obtained from STRING.
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FIGURE 5 | Expression levels of the six PDEMRGs obtained from GEPIA database: (A–F) mRNA expression levels of the six PDEMRGs in PAAD and normal
pancreatic tissues obtained from GEPIA database (*p ≤ 0.05)—red represents PAAD and gray represents normal pancreatic tissues, and (G–L)mRNA expression levels
of the six PDEMRGs in PAAD with disease stage obtained from GEPIA database.
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FIGURE 6 | Correlation among the expressions of six PDEMRGs and different immune cell types in PAAD patients obtained using TIMER 2.0 database (A–F)
Correlation among the expression levels of XDH, MBOAT2, PTGES, AK3L1, PAICS, and CKB and infiltration of immune cells in PAAD.
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validated using the GSE57495 dataset. GEPIA corroborated the
differences in six-metabolism-related gene expression between
PAAD tissues (n = 179) and normal pancreatic tissues (n = 171).
Multivariable analysis demonstrated that the metabolic risk score
was an independent prognostic factor in PAAD.

The formula of the metabolic risk score proposed in this study
underlined that CKB was related to a favorable survival outcome;
moreover, the other five genes (XDH, MBOAT2, PTGES, AK4,
and PAICS) were associated with unfavorable survival outcomes.

XDH belongs to a group of molybdenum-containing
hydroxylases that are involved in the oxidative metabolism of
purines. These encoded proteins perform different mechanistic
functions. XDH can be converted into xanthine oxidase through
reversible sulfhydryl oxidation or irreversible proteolytic
modification. XDH is highly expressed in the small intestine,
duodenum, liver, and colon tissues. The expression of XDH
decreased in some cancer types such as prostate, colon, breast,
liver, bladder, and leukemia (Xu et al., 2019). Moreover, the low
expression of XDH was associated with poor prognoses in various
types of cancers, including colorectal cancer (Linder et al., 2009),
early-stage gastric cancer (Linder et al., 2006), breast cancer
(Linder et al., 2005), ovarian cancer (Linder et al., 2012), and
hepatocellular carcinoma (Chen G.-L. et al., 2017; Sun et al., 2020;
Lin et al., 2021). Indeed, decreased XDH may mediate immune
evasion by affecting the immune cell infiltration into the tumor
microenvironment (Lin et al., 2021). Other researchers have
demonstrated that low XDH can induce cancer stem cell-
related gene expression in hepatocellular carcinoma (Chen R.
et al., 2017; Sun et al., 2020). Among non-small-cell lung cancer
(NSCLC) patients who received adjuvant chemotherapy, high
xanthine oxidase expression levels were associated with a better
prognosis (Kim et al., 2011). Other researchers have reported that
high tumoral XDH expression is an independent predictor of
poor prognosis in patients with lung adenocarcinoma (Konno
et al., 2012). Using the TIMER2.0, we found that the expression of
XDH was a poor prognostic factor in adrenocortical carcinoma
and kidney chromophobe but a good prognostic factor in liver
hepatocellular carcinoma clinical outcomes. Furthermore, the
expression of XDH varied among TCGA tumors
(Supplementary Figures S3, S5). In our model, a high mRNA
level of XDH could increase the risk score, resulting in poor
survival in PAAD patients. The expression of XDH was positively
correlated with the infiltration of B cells and MDSC in PAAD
cases (Figure 6A).

MBOAT2 is broadly expressed in the bone marrow, brain,
esophagus, prostate, and skin. This gene is involved in
phospholipid metabolism. The results of previous studies were
consistent with the results of this study, indicating thatMBOAT2
was overexpressed in the neoplastic epithelia of pancreatic ductal
adenocarcinoma and was inversely correlated with patient
survival (Badea et al., 2008). The role of circ-MBOAT2 in
modulating tumor development and glutamine catabolism in
pancreatic cancer has been confirmed in the literature (Zhou
et al., 2021). MBOAT2 is differentially expressed in various types
of tumors (Supplementary Figure S3). The mRNA expression of
MBOAT2 might be responsible for the prognosis of multiple
tumors. For example, the high mRNA level of MBOAT2 can

increase the risk of poor prognosis of adrenocortical carcinoma,
bladder urothelial carcinoma, head and neck squamous cell
carcinoma HPV+, liver hepatocellular carcinoma,
mesothelioma, pheochromocytoma, paraganglioma, uterine
corpus endometrial carcinoma, and uveal melanoma. However,
it can decrease the risk of poor prognosis in breast invasive
carcinoma-basal (Supplementary Figure S5). The expression of
MBOAT2 is positively correlated with the infiltration of B cells
and MDSC in PAAD cases (Figure 6B).

The protein encoded by the PTGES gene is a glutathione-
dependent prostaglandin E synthase. PTGES is biased-expressed
in the placenta, urinary bladder, appendix, skin, and testis. PTGES
can produce prostaglandin E2 (PGE2) through the pro-
inflammatory cytokine interleukin 1 beta (IL1B). In addition,
PGE2 mediates inflammation, pain, and fever (Ackerman et al.,
2008;Wang et al., 2019). PTGES can promote bone cancer growth
and bone cancer pain in mice (Isono et al., 2011). In patients with
NSCLC, the expression of PTGES is significantly elevated and
strongly related to poor clinical outcomes (Wang et al., 2019).
PTGES/PGE2-signaling promotes lungmetastasis in a lung tumor
suppressor gene Gprc5a-knockout mouse model by creating an
immunosuppressive microenvironment (Wang et al., 2020). The
expression of PTGES varies among TCGA tumors and is related
to the poor prognosis of glioblastoma multiforme, kidney renal
clear cell carcinoma, liver hepatocellular carcinoma, rectal
adenocarcinoma, and uveal melanoma. However, it is related
to the good prognosis of head and neck squamous cell carcinoma
HPV+ (Supplementary Figures S3, S5). The expression of
PTGES is negatively correlated with the infiltration of CD4+

T cells but positively correlated with the infiltration of MDSC
in PAAD cases (Figure 6C).

AK4, also known as “AK3L1,” is a member of the adenylate
kinase enzyme family that is involved in energy metabolism. AK4
is biased-expressed in the kidney, liver, fat, heart, skin, and brain
tissues. The encoded protein is localized to the mitochondrial
matrix and can regulate the adenine and guanine nucleotide
compositions within a cell by catalyzing the reversible transfer of
phosphate groups among these nucleotides. Subsequently, it
affects stress, ATP regulation, drug resistance, hypoxia
tolerance, and malignant transformation in cancer (Fujisawa
et al., 2016). Previous studies have found that AK4 is a poor
prognosis marker of lung cancer (Jan et al., 2012) because it can
negatively regulate the transcription factor ATF3 to promote the
metastasis of lung cancer (Jan et al., 2012; Kong et al., 2013). AK4
also acts as a carcinogen in ovarian carcinoma (Tan et al., 2021)
and is associated with multidrug resistance in osteosarcoma cell
lines (Lei et al., 2018). The expression of AK3L1 varies among
TCGA tumors and is negatively correlated with the prognosis of
cervical squamous cell carcinoma, endocervical adenocarcinoma,
head and neck squamous cell carcinoma, head and neck
squamous cell carcinoma HPV+, kidney chromophobe, liver
hepatocellular carcinoma, lung adenocarcinoma, stomach
adenocarcinoma, uterine corpus endometrial carcinoma, and
uveal melanoma. However, it is positively correlated with the
clinical outcomes of lymphoid neoplasm diffuse large B-cell
lymphoma (Supplementary Figures S4, S5). The expression
of AK3L1 is positively correlated with the infiltration of
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B cells, neutrophils, and MDSC but negatively correlated with the
infiltration of CD4+ T cells in PAAD cases (Figure 6D).

PAICS encodes a bifunctional enzyme that catalyzes purine
biosynthesis and contains phosphoribosylaminoimidazole
carboxylase activity in its N-terminal region and
phosphoribosylaminoimidazole succinocarboxamide synthetase
in its C-terminal region. PAICS is ubiquitously expressed in the
placenta, appendix, adrenal gland, lymph node, testis, and liver.
PAICS, a de novo purine metabolic enzyme, is significantly
overexpressed in several tumor types, including lung
adenocarcinoma, breast cancer, diffuse large B-cell lymphoma,
and prostate cancer (Chakravarthi et al., 2017; Akashi et al., 2019;
Zhou et al., 2019). The expression of PAICS varies among TCGA
tumors and is a poor prognosis factor responsible for breast
invasive carcinoma, breast invasive carcinoma-LumA, cervical
squamous cell carcinoma, endocervical adenocarcinoma, head
and neck squamous cell carcinoma, kidney chromophobe, kidney
renal papillary cell carcinoma, brain lower grade glioma, liver
hepatocellular carcinoma, lung adenocarcinoma, mesothelioma,
sarcoma, and thyroid carcinoma (Supplementary Figures S4,
S5). The expression of PAICS is positively correlated with the
infiltration of B cells, neutrophils, and MDSC but negatively
correlated with the infiltration of CD4+ T cells in PAAD cases
(Figure 6E).

CKB encodes a cytoplasmic enzyme that is a member of the
ATP:guanido phosphotransferase protein family involved in
energy homeostasis. It can reversibly catalyze the transfer of
phosphate between ATP and various phosphagens such as
creatine phosphate. It is broadly expressed in the colon, brain,
prostate, and stomach tissues. The mRNA expression level of
CKB increases with an unmethylated CKB promoter in
hematologic malignancies (Ishikawa et al., 2005). However,
public RNA-seq datasets indicate that CKB is downregulated
in human solid tumors, and its lower expression is associated with
a worse prognosis in cervical, head–neck, colon (Mooney et al.,
2011), gastric (Mello et al., 2015), kidney, ovarian, pancreatic and
sarcoma prostate cancer patients (Wang et al., 2021). Another
study reported that the CKB expression level is increased in some
ovarian cancer tissues, and the knockdown of CKB can delay
disease progression by decreasing glycolysis (Li et al., 2013). The
expression of CKB varies among TCGA tumors and is associated
with a good prognosis of cervical squamous cell carcinoma,
endocervical adenocarcinoma, and kidney chromophobe.
However, it is associated with poor prognosis of thyroid
carcinoma prognosis (Supplementary Figures S4, S5). We
identified CKB as a low-risk gene. In addition, the public
transcriptomic data reported in TIMER 2.0 identified a
negative correlation between CKB and infiltration of immune
cells in PAAD patients. This serves as another validation method
for our analysis. Although we have identified CKB as a low-risk
gene; public transcriptomic data reported in TIMER 2.0 identified
a negative correlation between CKB and infiltration of CD8+
T cells and neutrophils in PAAD patients (Figure 6F).

GSEA demonstrated that the most-abundant metabolism-
related pathways are concentrated in the high-score risk score
groups. Regarding the enrichment of genes regulating the
glycosphingolipid biosynthesis of lacto and neolacto series,

pentose phosphate and glycolysis gluconeogenesis, galactose
metabolism, glycolysis gluconeogenesis, pyrimidine
metabolism, galactose metabolism, O glycan biosynthesis, N
glycan biosynthesis, and glycosaminoglycan
biosynthesis–keratan sulfate pathway, the related biosynthesis
pathway indicates an increased nutrient demand by cancer cells.
Other pathways, including the p53 signaling pathway, cell cycle,
adherens junction, tight junction, pancreatic cancer, base excision
repair, nucleotide excision repair, mismatch repair, and
proteasome pathways, in cancer indicate the promotion of cell
biosynthesis.

Themost involved GO-BPs among the six PDEMRGs were the
AMP metabolic process and organophosphate biosynthetic
process. They might synergize to transduce a molecular
pathway even though there were no protein–protein
interactions described between them until now. Note that this
needs to be further verified.

The expressions of six PDEMRGs in pan-cancer were obtained
from TCGA, and their association with outcomes was obtained
from TIMER2.0 database. Accordingly, we can observe that these
genes are crucial in the development of different tumor types. The
expressions of six PDEMRGs were associated with immune
infiltration in PAAD patients.

This study had several important limitations. First, it was not
possible to obtain more clinical information using the data
obtained from the GEO database. Second, it was not possible
to adjust the data regarding the impact of therapy on survival
rates. Therefore, the score obtained should be considered as
prognostic rather than predictive because therapeutic factors
cannot be excluded. Third, in real-world applications, the
significance of the metabolic-related gene risk model should be
further confirmed. To that end, basic experiments should be
conducted to explore the potential pathogenesis, which include,
but are not limited to, the use of the six PDEMRGs siRNA/cDNA
in vitro to transfect pancreatic cancer cell lines to silence or
overexpress target genes or inhibit the expression or function of
high-risk genes with inhibitors. Then, cell viability, cell cycle,
apoptosis, tumor metastasis, and invasion should be evaluated,
which require other phenotypic experiments. In vivo experiments
include utilizing PDEMRG inhibitors on xenogeneic tumor
transplanted mice and the transplantation of ordinary tumor
cells and gene knockout/overexpression tumor cells to observe
the tumor growth and metastasis ability. Further research should
be conducted to study the signaling pathways affecting the
influence of PDEMRGs on tumor growth and interaction with
their corresponding signal pathway markers. With the wide
application of second-generation sequencing technologies in
clinical practice, researchers will be able to conduct
prospective research using our model.

In conclusion, a prognostic survival model for PAAD cases
based on the expressions of metabolism-related genes was
developed and validated in this study. Multivariable analyses
showed that the metabolic risk score was an independent
predictor of the survival rate and reflected the disordered
metabolism of PAAD patients.

This risk model can be used as an effective method to predict
the prognosis of PAAD patients.
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