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Tuberculosis (TB) disease caused by Mycobacterium tuberculosis (M. tb) remains one of the leading
infectious causes of death and disease throughout the world. The only licensed vaccine, Mycobacter-
ium bovis bacille Calmette–Guérin (BCG) confers highly variable protection against pulmonary
disease. An effective vaccination regimen would be the most efficient way to control the epidemic.
However, BCG does confer consistent and reliable protection against disseminated disease in child-
hood, and most TB vaccine strategies being developed incorporate BCG to retain this protection.
Cellular immunity is necessary for protection against TB and all the new vaccines in development
are focused on inducing a strong and durable cellular immune response. There are two main strat-
egies being pursued in TB vaccine development. The first is to replace BCG with an improved
whole organism mycobacterial priming vaccine, which is either a recombinant BCG or an attenu-
ated strain of M. tb. The second is to develop a subunit boosting vaccine, which is designed to
be administered after BCG vaccination, and to enhance the protective efficacy of BCG. This article
reviews the leading candidate vaccines in development and considers the current challenges in the
field with regard to efficacy testing.
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1. INTRODUCTION
Tuberculosis (TB) is one of the leading global causes
of death and disability from a single infectious agent,
Mycobacterium tuberculosis (M. tb), with an estimated
9.4 million new cases and 1.7 million deaths in 2008
[1]. The Stop TB Partnership goals include reducing
the global burden of TB (prevalence and mortality)
by 50 per cent by 2015 compared with 1990 levels
and eliminating TB as a public health problem by
2050 [2]. Prophylactic immunization is a key strategy
in reducing the incidence of TB. Mycobacterium bovis
bacillus Calmette–Guérin (BCG), the only licensed
TB vaccine, is a live attenuated strain of M. bovis
which was passaged by Calmette and Guérin almost
one hundred years ago. BCG was first administered
orally in 1921, and since then many clinical trials in
different parts of the world have evaluated the efficacy
of BCG in preventing TB disease. These trials demon-
strate that BCG confers consistent protection against
TB meningitis and disseminated TB in children, and
leprosy in areas of the world where that disease is
endemic [3–6]. However, BCG affords highly variable
protection against pulmonary disease, which accounts
for the major burden of global TB mortality and mor-
bidity throughout the world [7]. Furthermore,
revaccinating with BCG during adolescence in a
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population vaccinated with BCG at birth does not
improve protective efficacy as shown in a large, ran-
domized controlled trial (RCT) in Brazil [8]. BCG is
currently administered in mass immunization cam-
paigns to neonates in high-risk populations as part of
the World Health Organization (WHO) Expanded
Programme on Immunization (EPI). A more effective
vaccine is a major global health priority.

In order to design an improved vaccine against TB,
an understanding of the nature of protective immunity
is required. An intact and robust cellular immune
response is an essential prerequisite for protective immu-
nity against mycobacterial disease, and all the new TB
vaccines currently in development are directed towards
inducing high levels of cellular immunity. Human leuco-
cyte antigen (HLA) class II-restricted CD4þ T cells,
together with the Th-1 cytokines interferon gamma
(IFNg) and tumour necrosis factor alpha (TNFa) are
necessary for protective immunity [9–14]. Interleukin
2 (IL-2) is known to be important for central memory
T cell responses [15]. HLA class I-restricted CD8þ T
cells are probably also required for optimal protective
immunity [16,17]. More recently, evidence is emerging
for a protective role for CD4þ T cells that secrete IL17,
Th-17 cells [18]. However, it is becoming increasingly
clear that there may be a difference between aspects of
immunity known to be necessary for protection, and
an immune response that correlates with protection. In
preclinical studies, IFNg appears to be necessary but
not sufficient for protection, and the magnitude of the
response correlates with the degree of protection in
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Table 1. TB vaccine candidates that have undergone or are in clinical development.

vaccine type vaccine name stage key reference(s)

BCG replacements rBCG30 phase I Hoft et al. [25]
VPM1002 phase I Grode et al. [26]

Aeras 422 phase I Sun et al. [27]
Mycobacterium vaccae phase III efficacy von Reyn et al. [28]

BCG boosters M72 phase II safety Von Eschen et al. [29]
Hybrid I phase II safety van Dissel et al. [30]
HyVAC IV phase I Dietrich et al. [31]

Aeras 402 phase II safety and efficacy Abel et al. [32]
MVA85A phase II safety and efficacy McShane et al. [33], Scriba et al. [34]
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some but not all studies [19–22]. Recent results from a
large cohort of BCG-vaccinated South African infants
have shown that the frequency of multi-functional T
cells making IFNg, TNFa and IL-2, 10 weeks post-vac-
cination was not associated with protection in this
population [23]. However, any immunological correlate
may be vaccine and disease-stage specific. Given the
diversity of vaccine candidates being developed, and
the diversity of clinical disease states, it is unlikely that a
single, simple immune correlate exists across all these
different populations.

Given the protection BCG does confer against dis-
seminated disease in childhood, most new vaccine
strategies being developed incorporate BCG, either by
genetically engineering BCG to be more immunogenic,
or by developing a subunit booster vaccine which is
designed to be given after BCG vaccination. There are
concerns regarding the safety of the existing BCG vaccine
in HIV-infected infants, and some of the recombinant
BCGs currently in development are designed to be
safer in this population [24]. Both strategies can be com-
bined, and a booster vaccine for an improved BCG could
potentially be administered. The focus of this review is on
new prophylactic TB vaccines which have progressed
into clinical evaluation. The lead candidates that have
progressed to clinical testing are summarized in table 1.
2. REPLACEMENTS FOR BACILLE
CALMETTE–GUÉRIN
(a) Recombinant bacille Calmette–Guérin strains

There have been two recombinant strains of BCG that
have been evaluated in clinical trials. The first rBCG30
was developed at the University of California, Los
Angeles [35]. This vaccine candidate, engineered to
over-express the 30 kDa major secreted antigen from
M. tb was more protective than the wild-type strain in
the guinea pig model. A phase I clinical trial with this
vaccine demonstrated that this candidate was safe and
immunogenic in humans [25]. This candidate is not
currently in clinical development. A second approach
to improving BCG is to generate a BCG strain
that targets specific immune-processing pathways. A
recombinant BCG strain, constructed to secrete lister-
iolysin, has been shown to be more protective than the
wild-type strain in the murine model [26]. The pro-
posed mechanism for the enhancement in efficacy
with this vaccine candidate is by way of increased acid-
ification of the phagosome, leading to antigenic escape
to the cytoplasm and enhanced cross-priming of an
HLA class I-restricted CD8þ T cell response. This
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vaccine has now been evaluated in a phase I clinical
trial in Germany and is currently being evaluated in a
phase IIa trial in South Africa (clinicaltrials.gov trials
identifiers NCT00749034; NCT01113281). A combi-
nation of the two approaches described above is being
pursued by the TB vaccine foundation Aeras, who have
developed a recombinant strain of BCG expressing
several antigens from M. tb together with perfringolysin
[27]. This recombinant BCG is soon to enter into a
phase I clinical trial in the US (http://www.aeras.org/port
folio/clinical-trials.php?id=17).

(b) Attenuated strains of Mycobacterium
tuberculosis
A second approach to improving BCG as a mycobac-
terial priming vaccine is to develop an attenuated
strain of M. tb. Two groups are currently evaluating
the safety and protective efficacy of attenuated strains
of M. tb in preclinical models [36,37]. One of these
vaccine candidates can confer levels of efficacy com-
parable with or superior to BCG in guinea pigs and
non-human primates [36]. There are some safety con-
cerns with the evaluation of attenuated strains of M. tb
in clinical trials and two recent WHO workshops have
addressed how this might best be achieved [38,39].
With detailed preclinical safety studies it is likely that
at least one of these candidates will advance to early
stage clinical testing in the next few years.

(c) Mycobacterium vaccae
An inactivated whole cell strain of Mycobacterium vaccae
(M. vaccae) was developed initially as a therapeutic TB
vaccine candidate [40]. Variable results have been
obtained in different geographical locations. There was
no difference between treatment and placebo groups in
a double blind RCT in South Africa [41]. Mycobacterium
vaccae has since been evaluated as a prophylactic vaccine.
One RCTof five doses of M. vaccae in BCG-vaccinated,
HIV-infected patients in Tanzania demonstrated signifi-
cant protection against the secondary endpoint of
definite TB, although not against the primary endpoint
of disseminated (bacteraemic) disease or against the
other secondary endpoint, probable TB [28].
3. BACILLE CALMETTE–GUÉRIN BOOSTER
VACCINES
The main alternative strategy to replacing BCG is to
leave BCG in its current form, administered in early
infancy, and develop a booster vaccine, to be
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administered at a later point in time. Such a booster
vaccine might either be administered in infancy, soon
after BCG vaccination, or might be administered in
adolescence, when the effects of BCG are starting to
wane. Development of a subunit booster vaccine
requires selection of both antigen(s) for inclusion in
the vaccine and also identification of a suitable antigen
delivery system. There are two main approaches to the
development of a booster vaccine currently being pur-
sued in the field. The first is to use a protein vaccine, in
which case an adjuvant needs to be co-administered in
order to induce high levels of cellular immunity. The
alternative approach is to develop a recombinant
viral vector, as some viruses themselves are an effective
method of inducing strong cellular immunity.
(a) Protein–adjuvant vaccines

(i) M72/MTB72F
One such recombinant protein is MTB72F (now remade
as M72), a 72 kDa polyprotein of the M. tb32 and
M. tb39 antigens, which is being developed by Glaxo-
SmithKline Biologicals (GSK). M72 is being delivered
with the GSK adjuvants AS01 and AS02, which are a
mixture of either a liposomal formulation (AS01) or a
proprietary oil-in-water emulsion (AS02) with the
immunostimulants monophosphoryl lipid A and Quillaja
saponaria fraction 21. Preclinical efficacy studies with
this protein–adjuvant combination have demonstrated
efficacy comparable with BCG in mice and guinea pigs
[42]. A phase I study with MTB72F and AS02A,
administered as a three dose regimen in purified protein
derivative (PPD)-negative healthy volunteers demon-
strated a moderately reactogenic profile, with nine of
12 subjects (75%) enrolled experiencing a Grade 3
adverse event [29]. This trial demonstrated the induction
of antigen-specific CD4þ T cells measured both
by short-term enzyme-linked immunosorbent spot
(ELISPOT) assay (where peripheral blood mononuclear
cells (PBMC) are restimulated in vitro for one day prior
to transferring to an ELISPOT plate) and flow cyto-
metry. The median peak response measured on
short-term ELISPOT assay, at day 56 (day of second
vaccination), was approximately 100 spot-forming cells
per million PBMC. IgG antibody responses were also
demonstrated and also peaked at day 56. A further
phase I study with this vaccine candidate demonstrated
a similar safety profile and comparable CD4þ T cell
responses, with no detectable CD8þ T cell responses
[43]. This vaccine is currently being evaluated in phase
IIa studies in South Africa (clinicaltrials.gov identifiers:
NCT00600782; NCT00950612).
(ii) Hybrid I/HyVAC IV
Hybrid I is a fusion protein of two secreted antigens, the
early secreted antigenic target 6 (ESAT 6) and antigen
85B, being developed by Statens Serum Institut,
Copenhagen. In preclinical models, this fusion protein
has been administered with the mucosal adjuvant
LTK63, and leads to an improvement in BCG-induced
protection in mice but not guinea pigs [44,45]. A phase I
clinical trial with this fusion protein, administered with
a novel adjuvant composed of an anti-microbial peptide
and an immunostimulatory oligodeoxynucleotide, IC31
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(Intercell, Vienna), demonstrated an acceptable safety
profile and the induction of antigen-specific CD4þ

T cells, as measured by short-term ELISPOT assay
and enzyme-linked immunosorbent assay (ELISA)
[30]. The peak short-term ELISPOT response in the
high-dose group was approximately 600 spot-forming
cells per million PBMC. However, the inclusion of
ESAT6 in a subunit vaccine has the potential to con-
found the new generation of diagnostic tests which are
increasingly in routine clinical use for the diagnosis of
latent M. tb infection [46]. In this phase I study with
Hybrid I, two of the 12 subjects (17%) in the high-
dose group developed a positive Quantiferon gold
response, owing to the ESAT6 antigen component of
the fusion protein. In one of these subjects, this response
remained positive at 131 weeks post-vaccination [30].
The replacement of ESAT6 with another immunogenic
antigen from M. tb, TB10.4, in the next-generation vac-
cine, HyVAC IV, circumvents this issue [31]. Hybrid I is
currently being evaluated in a phase I trial in Ethiopia
(clinicaltrials.gov trial identifier NCT01049282) and
HyVAC IV is currently being evaluated in phase I
trials in Sweden and South Africa (http://www.aeras.
org/portfolio/clinical-trials.php?id=19).
(b) Recombinant viral vectors

(i) Aeras 402/Ad35-85B-TB10.4
This vaccine candidate is a recombinant, replication-
deficient adenovirus, serotype 35, expressing a fusion
protein created from the sequences of the antigens
Ag85A, Ag85B and TB10.4 from M. tb. While recom-
binant adenoviral vectors are a potent way to induce
cellular immunity, particularly an HLA class I-restricted
CD8þT cell response, pre-existing immunity induced by
natural exposure to circulating adenoviral strains limits
the utility of some strains, e.g. AdHu5 [47]. Pre-existing
immunity to AdHu35 is known to be lower [48]. This
vaccine is immunogenic and protective in mice and
non-human primates [49,50]. A phase I clinical trial in
BCG-vaccinated South African adults has demonstrated
this vaccine to be safe and to induce high levels of pre-
dominantly monofunctional CD8þ T cells, with lower
levels of polyfunctional CD4þ T cells [32]. This vaccine
is currently being evaluated in a phase II safety and effi-
cacy clinical trial in HIV-infected adults, in South
Africa (clinicaltrials.gov identifier NCT01017536). A
phase I/II safety and efficacy trial in BCG-vaccinated
infants is also now underway (clinicaltrials.gov identifier
NCT01198366).
(ii) Modified vaccinia virus Ankara 85A
This vaccine is a recombinant strain of modified vaccinia
virus Ankara (MVA) expressing antigen 85A from M. tb.
MVA is an attenuated strain of vaccinia virus, and was
used at the end of the smallpox eradication campaign
in Southern Germany [51]. It has an excellent safety pro-
file and does not replicate in human tissue. Antigen 85A
is part of the immunodominant antigen 85 complex, a
component of which is part of many of the subunit vac-
cines in development. In preclinical studies, MVA85A
can improve BCG-induced protection in mice, guinea
pigs, non-human primates and cattle [22,52–54].
Cattle are relevant, not only as a preclinical animal
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Figure 1. Gantt chart summarizing clinical trials with MVA85A since 2002.
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model but also as a target species in their own right, as
bovine TB is a significant problem throughout the
world [55]. All four preclinical animal models allow
the opportunity to identify potential immunological
correlates of protection which can then be evaluated in
clinical trials. In an M. bovis challenge experiment in
cattle, BCG boosted with either MVA85A or AdHu5
expressing antigen 85A resulted in significantly more
lesion free animals than BCG alone [22]. Cultured ELI-
SPOT responses, presumed to measure central memory
T cell responses [56], evaluated on the day of challenge
were higher in the protected animals than in the disea-
sed animals. Furthermore, levels of IFNg and IL-17
measured by reverse transcriptase real-time–polymerase
chain reaction (RT-PCR) on the day of challenge also
correlated with protection in these animals.

MVA85A was first evaluated in a phase I study in
2002. Since then, 12 clinical trials have been completed
and four more are underway. Figure 1 is a Gantt chart
that summarizes these clinical trials. This vaccine is
currently the most clinically advanced new TB vaccine,
and is discussed in greater detail below in order to
illustrate the development path for new TB vaccines.

When MVA85A first entered into clinical evaluation
in 2002, there was considerable concern within the field
of TB vaccines regarding the potential induction of
immunopathology, or a so-called Koch reaction, in
people who were latently infected with M. tb. This con-
cern arose from Robert Koch’s original experiments
with the ‘cure’ he developed, which was essentially cul-
ture filtrate from M. tb. This ‘cure’ induced severe
reactions in some of the TB patients whom he injected,
with some fatalities [57]. A similar effect of immuno-
pathology has since been demonstrated in preclinical
animal models with a high burden of disease, but
does not seem to occur in animals with low bacillary
Phil. Trans. R. Soc. B (2011)
burdens corresponding with latent M. tb infection
[58]. For this reason, the trials with MVA85A were
commenced in subjects believed to be as ‘myco-
bacterially naive’ as possible, i.e. tuberculin skin test
negative, BCG-naive healthy subjects [33]. Once
safety and immunogenicity had been demonstrated in
this group, trials in BCG-vaccinated subjects were con-
ducted. The results of these early studies demonstrated
that MVA85A was safe and highly immunogenic, and
that the antigen-specific CD4þT cell response induced
was significantly higher in BCG-vaccinated subjects,
than in BCG-naive subjects [33]. Further studies
demonstrated that the interval between BCG priming
and boosting with MVA85A did not appear to be criti-
cal, and comparable boosting was achieved whether
BCG was administered many years or one month
prior to boosting [59]. Results from these early studies
also demonstrated the induction of Class I-restricted
CD8þ T cells, and that the CD4þ T cell responses
induced were highly polyfunctional [60,61]. Subsequent
studies in M. tb latently infected subjects demonstrated
safety and equivalent immunogenicity in this group to
that seen in BCG-vaccinated subjects [62].

Once sufficient safety data had been generated from
the UK studies, phase I/IIa clinical trials with MVA85A
commenced in TB endemic countries, first The
Gambia, and then South Africa and most recently Sene-
gal. Studies in Gambian adults demonstrated safety and
immunogenicity, although interestingly the immuno-
genicity in BCG-naive and BCG-vaccinated subjects
was comparable in this population [63]. Studies in
South African adults confirmed these safety and immu-
nogenicity results, and again immunogenicity in BCG-
naive and BCG-vaccinated subjects was comparable
[64]. It is likely that the contribution of BCG vaccin-
ation to cumulative mycobacterial immunity in adults
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living in tropical climates is significantly less than in more
temperate climates, and that cumulative exposure to
non-tuberculous mycobacteria and M. tb contributes
significantly to the resulting total anti-mycobacterial
immunity. Further results from the South African age
de-escalation studies have demonstrated safety and
the induction of a highly polyfunctional CD4þ T cell
response after vaccination in adults, adolescents and
children [34,64]. These vaccine-induced responses
were sustained at levels significantly higher than baseline
until the last follow-up visit in the trial. A more recent
study has evaluated the effect of co-administration of
the routine Expanded Programme on Immunization
childhood vaccines with MVA85A in BCG-vaccinated
Gambian infants, to determine any immunological inter-
ference with either the cellular immune response
induced by MVA85A or the humoral immune response
induced by the EPI schedule vaccines (clinicaltrials.gov
Identifier NCT00480454).

HIV-infected adults are significantly more sus-
ceptible to TB disease than their HIV-uninfected
counterparts, and thus represent an important target
population for an improved TB vaccine [65]. Clinical
trials with MVA85A are currently underway in HIV-
infected adults in the UK, South Africa and Senegal
(clinicaltrials.gov trial identifiers NCT00395720,
NCT00480558 and NCT00731471). It is important
to demonstrate safety in this population and in par-
ticular to evaluate any effect of vaccination on HIV
RNA load and CD4 count, as well as evaluating
vaccine-induced immunogenicity.
4. EFFICACY TESTING
In every clinical trial conducted to date with MVA85A,
this vaccine has demonstrated an excellent safety pro-
file. The cellular immunity induced by MVA85A is
known to be essential for protective immunity, even
if the individual cytokine responses have not been
shown to correlate with protection. Furthermore, in
preclinical models, MVA85A can improve BCG-
induced protection. However, the most important
question is: ‘is MVA85A effective at preventing TB
disease in people?’ This is a difficult question to
address. In the absence of immunological correlates
of protection that would allow us to predict with
some certainty which vaccine candidates would be
effective, and in the absence of a validated animal
model which is known to predict efficacy in humans,
we are left with clinical efficacy trials as the only way
to answer this question for this and all the other vac-
cines in clinical development. Such clinical efficacy
trials must be carried out in areas of the world with
the highest incidence of disease, but even so require
large numbers of subjects and long periods of follow-
up. Such trials are hugely resource intensive and
there are only a few clinical trial sites in the world
where such trials are currently possible. Robust and
detailed epidemiological data are required in order
that the efficacy trials are powered accordingly. Con-
siderable infrastructure is required, not only in terms
of facilities but also in terms of clinical trial expertise,
at these sites. There are three main target populations
for an improved vaccine against TB: infants,
Phil. Trans. R. Soc. B (2011)
adolescents and HIV-infected adults. In these latter
two populations, such a vaccine may also need to
work as a post-exposure vaccine in latently infected
individuals. These three populations are mycobacter-
ially and immunologically very different and require
different expertise, and potentially a vaccine might be
effective in one of these populations but not another.

A phase IIb efficacy trial evaluating MVA85A in
BCG-vaccinated South African infants commenced
enrolment in July 2009 (clinicaltrials.gov trail identifier
NCT00953927). This is a double blind RCT, where
18–26-week-old infants are randomized to receive
either MVA85A or placebo. The objectives of this trial
are safety, in expanded numbers, immunogenicity
in a subset of subjects, and efficacy, both against
infection and against disease. A second phase IIb
efficacy trial in HIV-infected adults is scheduled to
commence in 2011 (clinicaltrials.gov trail identifier
NCT01151189). This study will also evaluate safety,
immunogenicity and efficacy against both disease and
infection. Two phase I/II safety and efficacy trials
with Aeras 402 are also underway in South Africa
in HIV-infected adults (clinicaltrials.gov trails identifier
NCT01017536) and infants (clinicaltrials.gov trails
identifier NCT01198366).

Importantly, in both of these efficacy trials, samples
are being stored from all subjects in order that these
can be used for immune correlate studies at the end of
the trial. These samples are a unique and valuable
resource for the identification of potential immunologi-
cal correlates of protection. Such studies are essential to
facilitate the development of TB vaccine in the future.
The power of such efficacy trials to attempt to identify
immune correlates has been demonstrated by a large
RCT of BCG vaccination in infants in South Africa
[66]. A nested case-control study was embedded in the
design of this clinical trial, and samples taken 10 weeks
after BCG vaccination were stored for the identification
of immune correlates. To date, levels of polyfunctional
CD4þT cells in these samples do not correlate with pro-
tection and further ongoing work is investigating many
other aspects of cellular immunity using both immuno-
logical assays and gene expression studies [23]. One
caveat here is that any immunological correlate may be
vaccine- and disease-stage specific.
5. SUMMARY
In the past 10 years, there has been substantial pro-
gress in the field of TB vaccine development. In
2010, there were 11 candidate vaccines being evalu-
ated in clinical trials, compared with none 10 years
previously. Despite concern 10 years ago, there have
been no safety issues or immunopathology identified
with any of the candidate vaccines currently being
evaluated. Two of these candidates, MVA85A and
Aeras 402, are currently being evaluated in efficacy
trials. In the absence of immune correlates and predic-
tive animal models, efficacy testing is currently the
only way to evaluate whether any of the new generation
of vaccines prevents TB disease in humans. Protective
immunity against mycobacterial disease is a complex
interaction between the innate immune response, the
Th1, Th2, Th17 pathways and regulatory T cells
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(Treg). In the absence of an immune correlate, there is
a need for better models with which to evaluate the
efficacy of new TB vaccines. Several preclinical
animal models have utility and it is necessary to
show some efficacy in at least some of these models
before progressing into clinical trials. However, all of
these preclinical models fail to represent the human
situation in important ways, (i) BCG confers consist-
ent protection in these models (unlike in humans)
and (ii) most of these models are relatively simple
pre-exposure models where all animals develop dis-
ease, and efficacy is measured as a reduction in
colony forming unit (CFU) counts. Until we have an
effective vaccine in humans, we will not be able to
determine how representative these preclinical
models are in predicting efficacy in humans.

The challenges for the next 10 years are clear. It is
unlikely that any simple immunological correlate of pro-
tection will be identified. There is a limited capacity to
conduct these large efficacy trials, both in terms of
available clinical trial sites and in terms of resources
available to fund such trials. Therefore, it is essential
that we develop tools to select which vaccines should
progress. This lack of reliable, relevant models with
which to select which vaccines should go forward into
these large-scale trials is the single most significant chal-
lenge within the field of TB vaccine development. As
more vaccine candidates progress from preclinical
models to early stage clinical testing, there will be an
increasing need for the development of in vivo and in
vitro models with which these candidates can be evalu-
ated. Once established, such models would initially
need validating in efficacy trials, by demonstration
that efficacy in such a model correlates with efficacy
in human efficacy trials. Such a model would then be
of great utility in enabling a rational selection of
vaccines for entry into these large efficacy trials.
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