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Abstract

The fate of orally inhaled drugs is determined by pulmonary pharmacokinetic processes

such as particle deposition, pulmonary drug dissolution, and mucociliary clearance. Even

though each single process has been systematically investigated, a quantitative under-

standing on the interaction of processes remains limited and therefore identifying optimal

drug and formulation characteristics for orally inhaled drugs is still challenging. To investi-

gate this complex interplay, the pulmonary processes can be integrated into mathematical

models. However, existing modeling attempts considerably simplify these processes or

are not systematically evaluated against (clinical) data. In this work, we developed a

mathematical framework based on physiologically-structured population equations to

integrate all relevant pulmonary processes mechanistically. A tailored numerical resolu-

tion strategy was chosen and the mechanistic model was evaluated systematically

against data from different clinical studies. Without adapting the mechanistic model or

estimating kinetic parameters based on individual study data, the developed model was

able to predict simultaneously (i) lung retention profiles of inhaled insoluble particles, (ii)

particle size-dependent pharmacokinetics of inhaled monodisperse particles, (iii) pharma-

cokinetic differences between inhaled fluticasone propionate and budesonide, as well as

(iv) pharmacokinetic differences between healthy volunteers and asthmatic patients.

Finally, to identify the most impactful optimization criteria for orally inhaled drugs, the

developed mechanistic model was applied to investigate the impact of input parameters

on both the pulmonary and systemic exposure. Interestingly, the solubility of the inhaled

drug did not have any relevant impact on the local and systemic pharmacokinetics.

Instead, the pulmonary dissolution rate, the particle size, the tissue affinity, and the sys-

temic clearance were the most impactful potential optimization parameters. In the future,

the developed prediction framework should be considered a powerful tool for identifying

optimal drug and formulation characteristics.
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Author summary

The use of orally inhaled drugs for treating lung diseases is appealing since they have the

potential for lung selectivity, i.e. high exposure at the site of action –the lung– without

excessive side effects. However, the degree of lung selectivity depends on a large number

of factors, including physiochemical properties of drug molecules, patient disease state,

and inhalation devices. To predict the impact of these factors on drug exposure and

thereby to understand the characteristics of an optimal drug for inhalation, we develop a

predictive mathematical framework (a “pharmacokinetic model”). In contrast to previous

approaches, our model allows combining knowledge from different sources appropriately

and its predictions were able to adequately predict different sets of clinical data. Finally,

we compare the impact of different factors and find that the most important factors are

the size of the inhaled particles, the affinity of the drug to the lung tissue, as well as the rate

of drug dissolution in the lung. In contrast to the common belief, the solubility of a drug

in the lining fluids is not found to be relevant. These findings are important to understand

how inhaled drugs should be designed to achieve best treatment results in patients.

Introduction

Oral drug inhalation can result in high pulmonary drug exposure while maintaining low sys-

temic exposure. Compared to other routes of administration, this can provide higher local pul-

monary efficacy, while simultaneously reducing systemic adverse effects (“lung selectivity”)

[1–3]. Therefore, orally inhaled drugs are considered first-line therapy (amongst other treat-

ment options) to treat respiratory diseases such as asthma bronchial or chronic obstructive

pulmonary disease [4, 5].

While qualitatively, the pharmacodynamic (PD) selectivity for the lung was previously

investigated, a sound quantitative understanding about the pulmonary pharmacokinetics (PK)

is still lacking. Specific pulmonary PK processes after oral drug inhalation were studied in

detail, such as the pulmonary particle deposition [6–8] or mucociliary clearance [9, 10]. For

example, it is well understood that the central airway deposition increases with an increasing

aerodynamic particle size [7] and that the mucociliary clearance depends on the localization

in the airways [10]. Hence, the impact of mucociliary clearance strongly depends on particle

deposition patterns. However, in contrast to investigations related to the individual processes,

the interplay of the many pulmonary PK processes has received less attention. A comprehen-

sive quantitative understanding of how these processes contribute to pulmonary and systemic

PK, and therefore to lung selectivity after drug inhalation, is often still lacking [11–14]. Thus,

identifying drug and formulation characteristics for orally inhaled drugs that maximize lung

selectivity as well as long-lasting pulmonary efficacy is still challenging.

To gain a better understanding on the interplay of pulmonary PK processes, mechanistic

modeling approaches can be applied. However, previous modeling approaches either reduced

the given complexity or lack adequate model evaluation. For example, the mucociliary clear-

ance was described as a first-order process [15, 16]. Other published population PK models

did not differentiate between undissolved and dissolved drug and consider pulmonary drug

absorption as a “one-way process”, i.e. back flow of drug to the lungs from the systemic dispo-

sition is not considered [17–19]. One mechanistic partial differential equation (PDE)-based

model is available, which included all relevant pulmonary PK processes [20]. This model, how-

ever, was not evaluated against clinical data. Hence, to our knowledge no fully mechanistic

model, with an adequate model evaluation based on clinical and in vitro data, is available.
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Consequently, there is currently no adequate framework to quantitatively identify the most

impactful drug and formulation characteristics to achieve good lung selectivity.

In this work, we aimed at developing such a mechanistic pulmonary PK model to capture

the complexity of all relevant pulmonary PK processes (compare Fig 1) and to determine

which parameters are the most suitable optimization criteria to achieve optimal lung selectiv-

ity. The biggest mathematical challenge related to such a model is to adequately describe the

joint effect of location-dependent nonlinear mucociliary clearance and particle size-dependent

dissolution. To achieve this, a size- and location-structured PDE model was developed. The

resulting PDE model was extensively evaluated, in particular based on clinical PK data for

both budesonide and fluticasone propionate, as these inhaled drugs represent the clinically

most studied compounds. Finally, a sensitivity analysis was performed to determine the most

impactful drug and formulation characteristics and therefore potential optimization parame-

ters to achieve a high lung selectivity.

Models

The mathematical model is introduced in a stepwise manner. First, the (sub)models describing

the considered pulmonary PK processes are given. Next, the full PDE model it presented. The

model parametrization is described in the Results section. Full details concerning derivations,

numerical resolution, and additional model evaluations are given in S1 Appendix, as refer-

enced below.

Fig 1. Overview of relevant pulmonary pharmacokinetic processes for orally inhaled drugs. Adapted and modified from [2].

https://doi.org/10.1371/journal.pcbi.1008466.g001
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Modeling of pharmacokinetic processes in the lung

Pulmonary particle deposition. Since orally inhaled drugs are deposited in the lungs

within a single breath, pulmonary drug deposition was considered as an instantaneous rather

than a time-dependent process. Pulmonary particle deposition was simulated with the MPPD

software [21] according to the study design of each investigated study (i.e., for monodisperse

particle size formulations as well as the specific particle size distributions of the Diskus and

Turbohaler devices, respectively [22]). To simulate deposition patterns for asthmatic patients,

who are characterized by a more central deposition compared to healthy volunteers [23, 24],

we corrected the deposition patterns in healthy volunteers based on scintigraphy data reported

in [25]. A full account of input parameters to predict the deposition patterns and the adaption

for asthmatic patients is provided in S1 Appendix(Section 4). While the pulmonary deposition

was considered different between healthy volunteers and asthmatic patients, other pulmonary

PK processes and physiologic characteristics were assumed identical.

This procedure generated aerodynamic particle size- and lung generation-resolved deposi-

tion patterns. The aerodynamic particle size (the size of a water droplet experiencing the same

aerodynamic forces as the considered particle) determines the deposition characteristics of the

inhaled particles [26]. In contrast, the real (geometric) size of an inhaled particle is relevant for

dissolution processes [27]. To convert aerodynamic to geometric particle sizes, which is more

relevant for dissolution characteristics, we assumed a spherical shape of particles and consid-

ered the relationship

dgeom ¼ daero
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rwater
rsubstance

r

;

where daero and dgeom are aerodynamic and geometric particle diameters, respectively; ρwater

and ρsubstance denote density of water and the considered inhaled substance, respectively [28].

In a post-processing step, the (geometric) particle size- and lung generation-resolved depo-

sition patterns were projected onto the computational grid, ensuring conservation of the num-

ber of molecules (full details are given in S1 Appendix, Section 2.5.1).

Mucociliary clearance. The mucociliary clearance process was parametrized based on a

model for mucociliary clearance published by Hofmann and Sturm (see S1 Appendix, Section

1.2 for details) [10]. In agreement with clinical data, mucociliary clearance of undissolved par-

ticles only depends on the particle location, not on (geometric) particle size [26]:

lmc xð Þ ¼ 0:8791
cm
min
�

rbrðxÞ
1 cm

� �2:808

; ð2Þ

where rbr(x) represents the radius of the conducting airways at location x.

Pulmonary drug dissolution. The dissolution of particles in the pulmonary lining fluids

was based on an adapted version of the Noyes-Whitney equation [27]:

dðs;CfluÞ ¼
4p kdiss
4

3
p

� �1=3
r
� 1 �

Cflu

Cs

� �

� s1=3; ð3Þ

where s denotes the particle volume, ρ the particle density, Cs the saturation solubility, kdiss =

D � Cs the maximum dissolution rate (D = diffusivity), and Cflu the local concentration of dis-

solved drug in the lining fluid. A derivation of this equation from the Noyes-Whitney equa-

tion, assuming spherical particle geometry, is provided in S1 Appendix, Section 1.1. To

represent the difference in fluid composition between conducting airways and the alveolar
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space, in particular in terms of fluid viscosity, different dissolution rate constants (kbrdiss/k
alv
diss)

were assumed in these two regions, leading to dissolution models dbr and dalv, respectively.

Absorption into the lung tissues. After drug dissolution in the pulmonary lining fluids,

the drug is absorbed through the airway epithelia into the lung tissue of the respective airway

generation or the alveolar space. Based on reported negligible to tenfold lower albumin con-

centrations in epithelial ling fluids in the lung compared to plasma [29–31], the absorption

rate is calculated assuming no drug binding in the lung lining fluids:

ka ¼ Papp � SA � Cflu �
Ctis

Kpu;tis

 !

; ð4Þ

where ka denotes the absorption rate, Papp the effective permeability, SA the airway surface

area, and Kpu,tis describes the lung-to-unbound plasma partition coefficient.

Systemic disposition. The systemic disposition models for both budesonide and flutica-

sone propionate were based on available literature information after intravenous administra-

tion and oral administration (to include the oral bioavailability of swallowed drug). In contrast

to many less mechanistic PK models, the backflow of drug from the systemic circulation into

the lung was mechanistically included in the PDE-based PK model.

Partial differential equation model for orally inhaled drugs

Model equations. To mechanistically combine the considered pulmonary processes in

the lung (lung deposition, mucociliary clearance, pulmonary dissolution, pulmonary absorp-

tion to the lung tissue and distribution between lung tissue and plasma), we adopted the

framework of physiologically structured population models (PSPMs) [32]. In this class of PDE

models, the time evolution of a density is described over a state space through a set of processes

that modify the state.

To describe the fate of undissolved particles deposited in the lung, we considered (i) a

PSPM with size and location structure in the conducting airways and (ii) a PSPM with size

structure in the alveolar space. In these models, size s represents the geometric volume of parti-

cles, and location x (length unit) the position along all conducting airways, between trachea

and terminal bronchioles. The state (x, s) of a particle is changed by mucociliary clearance

(impacts on x) and pulmonary dissolution (impacts on s).
The PSPMs were coupled to differential equations describing the PK of dissolved drug mol-

ecules in lung lining fluids and lung tissues (similar to [33]) and published systemic disposition

kinetics [15]. The full set of equations is stated below, a simplified outline of the underlying

geometry is provided in Fig 2 and a a detailed derivation of the full model from the separate

PK processes is given in S1 Appendix (Sections 1.3-1.5).

For ease of legibility, the following abbreviations are used as sub-/superscripts in the equa-

tions: br (bronchial, i.e., conducting airways), alv (alveolar space), sys (systemic), sol (solid, i.e.,

undissolved), flu (fluid, i.e., dissolved), tis (lung tissue), ctr (central), per (peripheral), mc

(mucociliary clearance).

The size- and location-structured PSPM for the density of inhaled particles in suspension

in the conducting airways reads

@tr
brðt; x; sÞ þ @x½lmcðxÞrbrðt; x; sÞ� � @s½dbrðs;Cbr

fluðt; xÞÞr
brðt; x; sÞ� ¼ 0

rbrð0; x; sÞ ¼ rbr
0
ðx; sÞ ðsee S1 Appendix; Sections 2:5:1 and 4Þ

assuming zero inflow boundary conditions (i.e., no additional source of drug in the conduct-

ing airways after dosing). This PDE was complemented by differential equations for the
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Fig 2. Geometry of and key processes in conducting airways represented in the mathematical model. A representative airway (dark grey) is considered in the

mathematical model. At each location x (distance from throat) within this airway, we consider a cylindrical lung model, consisting of concentric layers of airway (with

radius rbr(x)), lung lining fluid (with cross-sectional area abrfluðxÞ), and lung tissue (with cross-sectional area abrtisðxÞ), respectively. Each drug particle (green) is

characterized by its location and size. Over time, particles are moved upwards by mucociliary clearance (yellow) and dissolve into the airway lining fluid (black

arrows).

https://doi.org/10.1371/journal.pcbi.1008466.g002
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concentration of dissolved drug in lining fluids and lung tissue at a particular airway location

x:

abrfluðxÞ@tC
br
fluðt; xÞ ¼

Zsmax

0

dbrðs;Cbr
fluðt; xÞÞr

brðt; x; sÞds

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dissolution

� 2prbrðxÞPapp Cbr
fluðt; xÞ �

Cbr
tisðt; xÞ
Kpu;tis

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
tissue uptake

abrtisðxÞ@tC
br
tisðt; xÞ ¼ 2prbrðxÞPapp Cbr

fluðt; xÞ �
Cbr
tisðt; xÞ
Kpu;tis

 !

� qbrðxÞ
BPCbr

tisðt; xÞ
Kp;tis

� Csys
ctr ðtÞ

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
systemic uptake

both with zero initial conditions.

In the alveolar space, the size-structured PSPM for the density of inhaled particles in sus-

pension reads

@tr
alvðt; sÞ � @s½dalvðs;Calv

fluðtÞÞr
alvðt; sÞ� ¼ 0

ralvð0; sÞ ¼ ralv
0
ðsÞ ðsee S1 Appendix; Sections 2:5:1 and 4Þ

Again, zero inflow boundary conditions were assumed (no additional source of drug in the

alveolar space after dosing) and the PDE is complemented by differential equations for the

concentration of dissolved drug in alveolar lining fluids and alveolar lung tissue:

Valv
flu

dCalv
flu

dt
ðtÞ ¼

Zsmax

0

dalvðs;Calv
fluðtÞÞr

alvðt; sÞds � Papp SAalv Calv
fluðtÞ �

Calv
tis ðtÞ
Kpu;tis

 !

Valv
tis
dCalv

tis

dt
ðtÞ ¼ Papp SAalv Calv

flu ðtÞ �
Calv
tis ðtÞ
Kpu;tis

 !

� Qalv BP Calv
tis ðtÞ

Kp;tis
� Csys

ctrðtÞ

 !

with zero initial conditions.

The equations describing the PK in the conducting airways and the alveolar space are cou-

pled through the systemic circulation:

Vctr
dCsys

ctr

dt
ðtÞ ¼

ZxTB

0

qbrðxÞ
BP Cbr

tisðt; xÞ
Kp;tis

� Csys
ctrðtÞ

 !

dx

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
exchange with conducting airways

þ Qalv BP Calv
tis ðtÞ

Kp;tis
� Csys

ctrðtÞ

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
exchange with alveolar space

� QsysðCsys
ctr ðtÞ � Csys

perðtÞÞ � CL � Csys
ctrðtÞ

Vper

dCsys
per

dt
ðtÞ ¼ QsysðCsys

ctr ðtÞ � Csys
perðtÞÞ

The following expressions appear in these equations:

• x is the location within a prototypical airway, varying from 0 (trachea, corresponding to air-

way generation 1) to xTB (terminal bronchioles, corresponding to airway generation 16).

• s is the geometric particle volume, varying between 0 and smax (device- and formulation-spe-

cific maximum particle size deposited)

• ρbr/ρalv are the PSPM densities, with units
number of particles

mL � cm and
number of particles

mL , respectively
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• Cy
z is the concentrations of dissolved drug in lining fluid (z = flu) or lung tissue (z = tis) in a

particular location of the conducting airways (y = br) or in the alveolar space (y = alv)

• dbr / dalv are the dissolution rates in conducting airways / alveolar space, depending on parti-

cle size s and concentration of already dissolved drug

• λmc is the mucociliary clearance in the conducting airways, assumed to depend only on loca-

tion x, not on (geometric) particle size s.

• Papp is the apparent permeability of the drug

• SAalv is the surface area of the alveolar space

• rbr(x) is the airway radius (including lining fluid) at location x (see Fig 2)

• Kp,tis / Kpu,tis are the lung-to-plasma and lung-to-unbound plasma partition coefficients,

respectively

• BP is the blood-to-plasma ratio of the drug

• abrfluðxÞ / abrtisðxÞ is the cross-sectional area of lung lining fluid / lung tissue at location x within

the conducting airways

• qbr(x) is the location-resolved blood flow (see section Model parametrization below)

Numerical resolution. To solve the mathematical model numerically, we employed an

upwind discretization of the PSPMs [34] together with an implicit discretization of all linear

processes (MCC, absorption, systemic processes) [35, 36]. The fluxes across PDEs (mucociliary

elevator and dissolved / absorbed drug) were discretized ensuring that all conservation laws

were fulfilled at the discrete level. The discretized model and all analyses were implemented in

MATLAB R2018b [37]. A full description of the discretization scheme is given in S1 Appendix

(Section 2) and the MATLAB implementation is provided as S1 File.

Results

Key findings from literature review

As a first step, PK studies for both budesonide and fluticasone propionate were identified.

These drugs were selected as they represent the most studied inhaled drugs for which the inter-

play between pulmonary deposition, pulmonary dissolution, mucociliary clearance, as well as

pulmonary absorption has been systematically discussed [2, 24]. In total, ten different clinical

PK studies on these drugs were identified (see S1 Table).

After reviewing all PK studies, we identified two important aspects. First, the area under the

curve reported by Usmani et al. [38] could not be reproduced considering the systemic clear-

ance for fluticasone propionate reported by Mackie et al. [39]. Even in the most extreme and

certainly unrealistic assumptions, namely with 100% of inhaled drug particles deposited in the

lungs and no mucociliary clearance, the systemic AUC would still be at least 25% lower than

reported (see calculation in S1 Appendix, Section 3.3).

Second, there is a considerable between-study variability in reported (dose-normalized) sys-

temic drug exposure (same drug, comparable dose, comparable patient population, same inha-

lation device). For example, both Möllmann et al. [40] and Harrison and Tattersfield [41]

investigated the systemic PK after budesonide inhalation with the Turbohaler for slightly dif-

ferent doses of 1000 μg and 1200 μg. The reported dose-normalized Cmax and AUC0-Inf values

varied by more than twofold. In contrast, the relative shape of the PK profiles, which are not
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dependent on the absolute plasma concentrations, were in good agreement between both stud-

ies. A full summary of exposure metrics is given in S1 Table.

Based on these findings, we decided that predicting the absolute plasma concentrations of

one single selected PK study is not meaningful or could even result in a selection bias. Instead,

PK studies with multiple study arms, which allow for a direct within-study comparison of dif-

ferent PK profiles, were considered (i.e., studies with only a single investigated drug, a single

inhaled particle size and a single investigated population were not included). A short overview

of the reviewed PK studies, including a comment on why specific studies were considered, can

be found in S1 Table. In summary, the selected PK studies comprised the following aspects rel-

evant for model building and model evaluation: (i) the lung retention profiles for insoluble

particles [26], (ii) the impact of different particle sizes on the systemic PK [38], (iii) different

systemic PK profiles after inhalation of either budesonide or fluticasone propionate [40, 41],

and (iv) different systemic PK profiles between healthy volunteers and asthmatic patients [41].

Model parametrization

The PDE-based model was not adapted to individual studies, i.e., no (pharmacokinetic)

parameters were estimated based on the studies which were used for model evaluation.

Instead, the pulmonary part of the PDE model was fully parametrized based on physiological

and drug-specific in vitro data (a priori predictions).

Both pulmonary drug deposition and mucociliary clearance were considered as drug-inde-

pendent generic processes based on particle size and airway characteristics alone, not requiring

any drug-specific parameters. Drug-specific parameters, such as the maximum dissolution

rate (kdiss), as well as drug solubility in pulmonary lining fluids were either based on literature

information or in-house data on in vitro dissolution and solubility. No direct comparison

between alveolar and mucus dissolution kinetics could be retrieved from literature or in-house

data. Therefore, a 5-fold decrease of kdiss in the conducting airways compared to the alveolar

space was assumed for all model-based simulations. A comprehensive list of parameter values

is given in Table 1 (physiological parameters) and Table 2 (drug-specific parameters).

To achieve a location-resolved parametrization of the conducting airways, we used genera-

tion-specific anatomical data of the conducting airways from [53], namely the length l(g) and

Table 1. Physiological parameters#1.

Parameter Symbol(s) Value

Perfusion of conducting airways Qbr 7.8 L/h #2

Perfusion of alveolar space Qalv 312 L/h #3

Bronchial tissue volume Vbr
tis 144 mL #4

Alveolar tissue volume Valv
tis 388 mL #4

Alveolar fluid volume Valv
flu 36 mL [42]

Alveolar surface area SAalv
flu

130 m2 [43]

Location-resolved parameters rbr, abrflu, abrtis, q
br see main text

#1 Physiological parameters were assumed identical for healthy volunteers and asthmatic patients. Only deposition

patterns were corrected for asthmatic patients.
#2 calculated based on 2.5% of cardiac output [44]
#3 equal to cardiac output, taken from [45, Table 22]
#4 computed from lung tissue weight of 532 g [45], assuming a tissue density of 1 g/mL and 27% central/73%

peripheral lung tissue weight fraction as in [33, Supplement].

Summary of physiological parameters obtained from literature.

https://doi.org/10.1371/journal.pcbi.1008466.t001
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radius r(g) of each airway generation g. From these values, location-resolved blood flows and

cross-sectional lining fluid and lung tissue areas were calculated by assuming the following:

• Using length of airway generations, we determined a continuous representation rbr(x) of the

airway radius by linear interpolation between airway centerpoints.

• We assessed literature data on lining fluid height hbrfluðxÞ for different airway generations and

found an appropriate linear location-to-height of lining fluid-relationship (see S1 Appendix,

Section 3.2, for details). Using the cylindrical geometry assumption depicted in Fig 2, abrfluðxÞ
could be determined from hbrfluðxÞ and the airway radius rbr(x) via

abrfluðxÞ ¼ p
�
rbrðxÞ2 � ðrbrðxÞ � hbrfluðxÞÞ

2
�
:

• We assumed the cross-sectional area of conducting airway tissue abrtisðxÞ to be proportional

to cross-sectional lining fluid area abrfluðxÞ, with proportionality constant determined by the

known total tissue volume of the central lung Vbr
tis , i.e., via the relation

R xTB
0

abrtisðxÞdx ¼ Vbr
tis .

• We assumed a homogeneous perfusion of drug tissue within the conducting airway tissue,

i.e., a location-resolved blood flow qbr(x) proportional to abrtisðxÞ and matching the total blood

flow in the central lung Qbr, i.e. such that
R xTB

0
qbrðxÞdx ¼ Qbr.

We emphasize that the pulmonary PDE model was fully parametrized based on in vitro and

physiological data, not fitted to the clinical data described in section Model evaluation below.

A single adaptation was done based on physiological reasoning since no quantitative literature

Table 2. Drug-specific parameters.

Parameter Symbol Fluticasone propionate Budesonide

Central volume of distribution Vctr 31 L [15] 100 L [15]

Peripheral volume of distribution Vper 613 L [15] 153 L [15]

Clearance CL 73 L/h [15] 85 L/h [15]

Intercompartmental clearance Qsys 55.2 L/h [15] 1701 L/h [15]

Oral bioavailability (of swallowed drug) Foral 0% [15] 11% [15]

Absorption rate constant from GI tract ka – 0.45 1/h [15]

Fraction unbound in plasma fu,plasma 1.16%#1 16.1%#1

Lung:plasma partition coefficient Kp,tis 2.47#2 8 [46]

Permeability Papp 92.6 � 10−6 cm/s#1 5.33 � 10−6 cm/s [47]

Blood:plasma ratio BP 1.83#1 0.8 [48, 49]

Molecular weight MW 500.57 g/mol 430.53 g/mol

Density ρ 1.43 mol/L 3.02 mol/L

Solubility Cs 12.0 μM#1 69.8 μM#1

Maximum dissolution rate kalvdiss 6:17 � 10� 5 nmol
cm�min

#3
3:3 � 10� 4 nmol

cm�min
#3

Inhalation device-specific parameters see S1 Appendix, Section 4

#1 in-house data: fraction unbound was determined with an in vitro binding assay as described in [50], permeability was determined based on an in vitro permeability

assay with Calu cells, with assay conditions as described for MDCK II cells in [50]. The in vitro assay setup for determining Blood:Plasma ratio and drug solubility in

surfactant-containing media is described in S1 Appendix, Section 5.
#2 calculated based on fu,plasma (in-house data) and rat lung slice binding [51]
#3 determined from in vitro dissolution data from [52] (see S1 Appendix, Section 3.1 for full details).

For both drugs, two-compartment systemic PK models proposed in the literature were used.

https://doi.org/10.1371/journal.pcbi.1008466.t002
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information could be retrieved, namely a 5-fold decrease of dissolution rate in the conducting

airways compared to the alveolar space. The reason for this adapted dissolution rate constant

is that the epithelial lining fluid in the conducting airways –the mucus– contains a lower con-

centration of surfactants (which facilitate dissolution), compared to the alveolar lining fluid. In

addition, the upper layer of the mucus is characterized by a high viscosity, which can also lead

to a slower dissolution in comparison to the alveolar space.

Model evaluation

The mathematical model was evaluated in a stepwise approach. The first evaluation of the

PDE-based inhalation PK model was based on a simulation of inhaled gold / polystyrene

particles. As these particles do not dissolve in the pulmonary lining fluids, the interplay of

deposition and mucociliary clearance can be evaluated independent of other pulmonary PK

processes such as pulmonary dissolution or drug absorption. The initial particle retention was

well described with 53% of the deposited particles retained over 8 h (observed median at 8–10

h: 48.5%) and 26% retained over 24 h (observed median at 20–26 h: 34%), see Fig 3 (left). How-

ever, the retention after 48 h was underpredicted, i.e. the data indicated a fraction of 7–36%

not being cleared from the lung, whereas the simulation indicated less than 5% retention (Fig

3, right). The squared correlation coefficient between observed and model-predicted retention

(all time points pooled) was r2 = 0.86 (see S4 Fig).

After evaluating the interplay of pulmonary deposition and mucociliary clearance, the pul-

monary dissolution process was evaluated based on data from inhaled monodisperse drug

formulations. In this evaluation step, the systemic PK of 1.5, 3, and 6 μm-sized particles

Fig 3. Pulmonary retention profiles of inhaled insoluble particles. Pulmonary retention of inhaled monodisperse 5 μm-sized (aerodynamic diameter) gold and

polystyrene (PSL) particles. The amount retained is described as a fraction of the initially deposited lung dose. Left: retention-time profile over 24 h, right: retention-

time profile over 10 days. Data points: digitized data from six subjects from [26]; solid line: model-based predictions of lung retention.

https://doi.org/10.1371/journal.pcbi.1008466.g003
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(aerodynamic diameter) were simulated for the slowly dissolving inhaled drug fluticasone pro-

pionate. Simulation results were compared to the determined AUC0-12h, Cmax, and Tmax pub-

lished by Usmani et al. [38]. As explained above, the absolute exposure metrics stated in the

publication could not be reproduced. Rather than through goodness of prediction of absolute
exposure measures, we therefore evaluated the model by comparing the relative change of

exposure metrics across the three considered particle sizes. Of the model-predicted exposure

metrics AUC0-12h and Cmax, 67% were within 2-fold and 83% within 3-fold of the reported

ratios (compare Table 3). The predicted 1.5 μm: 3 μm Tmax ratio matched the experimental

data well, however the other predicted Tmax ratios showed larger discrepancies due to a pre-

dicted very flat concentration-time profile for 6 μm particles.

As a last step of the PDE model evaluation, systemic PK profiles of fluticasone propionate

and budesonide were simulated for both healthy volunteers and asthmatic patients, the only

assumed difference between both populations being a more central particle deposition in

asthma patients (see deposition profiles in S2 Fig). For fluticasone propionate inhaled by

healthy volunteers with the Diskus device, a Cmax of 0.38 nM per mg dose, an AUC0-12h of 1.8

nM � h per mg dose, and a Tmax after 41 min were predicted. For budesonide (Turbohaler), dis-

solution as well as absorption to the systemic circulation were predicted to be faster compared

to fluticasone propionate, with a Cmax of 2.2 nM per mg dose; Tmax was similar and AUC0-12h

larger (10 nM � h per mg dose). The model-predicted PK profiles for fluticasone propionate

and budesonide in comparison to observed clinical data from healthy volunteers [40, 41] are

displayed in Fig 4 and S5 Fig. For fluticasone propionate, the dose-normalized data from litera-

ture were in agreement, and the simulation results closely matched these data (r2 = 0.94). For

budesonide, there was a between-study, but not within-study discrepancy between reported

dose-normalized concentration-time profiles; model predictions were well within the reported

range (r2 = 0.76). The discrepancy in the data was not explainable by dose-nonlinear PK, since

a 2.5-fold dose change in [40] did not impact on the normalized profiles. Of note, the model-

predicted dose-normalized concentration-time profiles based on these scenarios all over-

lapped, which agrees with the clinically observed absence of dose-dependent pharmacokinetics

in plasma for both fluticasone propionate and budesonide.

The same simulations for asthmatic patients resulted in lower systemic exposure. For fluti-

casone propionate, 28% of the initially deposited lung dose was predicted to be eliminated via

mucociliary clearance in healthy volunteers, compared to 53% in asthmatic patients due to the

more central particle deposition. For budesonide, 6% and 29% of the initially deposited lung

Table 3. Evaluation of model predictions for different particle sizes.

Exposure metric ratio AUC0-12h Cmax Tmax

Data Model Data Model Data Model

1.5 μm: 3 μm 1.04 1.65 1.52 4.23 0.40 0.52

1.5 μm: 6 μm 4.16 4.92 5.00 20.7 0.26 0.09#1

3 μm: 6 μm 4.01 2.98 3.27 4.90 0.63 0.17#1

#1 For 6 μm particles, the predicted concentration-time profile was very flat, resulting in a late Tmax and therefore low 1.5 μm: 6 μm and 3 μm: 6 μm Tmax ratios.

Comparison of model-predicted and reported PK between three different inhaled monodisperse particle formulations of fluticasone propionate, with aerodynamic

diameters of 1.5, 3, and 6 μm, respectively [25]. Due to uncertainty in reported absolute PK parameter readouts, the ratios between both listed particle sizes are reported

instead. For example, the 1.5 μm-sized particles yielded a 4.16 fold higher measured AUC0-12h in comparison to the 6 μm-sized particles, whereas the model-based

prediction resulted in 4.92 fold higher AUC0-12h.

https://doi.org/10.1371/journal.pcbi.1008466.t003
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dose were predicted to be eliminated via mucociliary clearance in healthy volunteers and asth-

matic patients, respectively. A comparison of model-predicted and clinically observed differ-

ences between healthy volunteers and asthmatic patients is given in Table 4. For fluticasone

propionate, simulations were in good agreement with clinical data, whereas for budesonide,

the model overpredicted the impact of asthma on AUC0-12h and Cmax, which was reported as

non-significant in [41] (i.e., ratios of exposure metrics close to 1). However, the model-pre-

dicted stronger disease effect for fluticasone propionate compared to budesonide –in terms of

a larger AUC0-12h ratio– was in agreement with the clinical data.

Fig 4. Pharmacokinetics after drug inhalation of clinical formulations. Plasma concentration-time profiles after drug inhalation of fluticasone propionate inhaled

with the Diskus inhalation device (left panel) and budesonide inhaled with the Turbohaler inhalation device (right panel). Data points: digitalized raw data from [40,

41], solid lines: PDE-model based predictions for 200, 500, and 1000 μg doses of fluticasone propionate and 400, 1000, and 1200 μg doses for budesonide (due to an

almost dose-linear PK, model predictions overlap).

https://doi.org/10.1371/journal.pcbi.1008466.g004

Table 4. Evaluation of model-predicted PK differences between healthy volunteers and asthmatic patients.

Healthy:asthmatic ratio for substance AUC0-12h Cmax Tmax

Data Model Data Model Data Model

Fluticasone propionate 1.76 1.64 1.67 1.48 1 1.05

Budesonide 0.88 1.43 1.07 1.51 NA#1 1.05

#1 since the reported Tmax values both corresponded to the first observed time point, no meaningful statement about Tmax ratios can be made.

Comparison of model-based and literature-reported PK difference between healthy volunteers and asthmatic patients. Data are taken from [41] (1000 μg fluticasone

propionate with Diskus / 1200 μg budesonide with Turbohaler). Ratios larger than 1 indicate higher values in healthy volunteers, whereas ratios smaller than 1 indicate

higher values in asthmatic patients. NA, not available.

https://doi.org/10.1371/journal.pcbi.1008466.t004
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Sensitivity analysis

As a last step of the analysis, a sensitivity analysis was applied to the evaluated PDE model to

determine the most impactful parameters (among formulation-dependent, physiological, and

drug-specific parameters) on the following PK readouts:

(i). AUC0-24h in conducting airway tissue,

(ii). the average concentration in the conducting airway tissues after 24 h (which is supposed

to correlate with long-lasting efficacy of an inhaled drug), and

(iii). lung selectivity, which is expressed as a ratio between the pulmonary AUC (in conduct-

ing airways) and the systemic AUC.

This last quantity is supposed to provide a metric of local efficacy weighed against systemic

safety, which is an important optimization criterion for inhaled drugs. As the relevance of an

input parameter can depend on the complete set of the initial input parameters, the sensitivity

analysis was performed starting with the parameters for (i) a 250 μg fluticasone propionate

dose (see Fig 5) and (ii) a 800 μg budesonide dose (see S1 Fig), both representing approved

doses [54, 55].

Overall, the order of impactful parameters only differed marginally for the different expo-

sure metrics and different drugs. A more than 50% change was observed for tissue volume, tis-

sue partition coefficient, perfusion, dissolution rate and systemic clearance. Particle size had a

considerable impact for fluticasone propionate, and less for budesonide. For fluticasone propi-

onate, the impact of drug solubility in the airway lining fluids was negligible, whereas for bude-

sonide, although being the more soluble drug, a relevant impact was predicted since lining

Fig 5. Results of the performed sensitivity analysis for fluticasone propionate. For each of three different exposure measures readouts (AUC, C24, and lung

selectivity), the impact of a 2-fold increase (blue) and decrease (red) are depicted for the formulation parameter particle size (top bar) and a set of physiological (middle

bars) and drug-dependent parameters (bottom bars). The larger a bar, the stronger the impact of the varied parameter on the respective PK readout.

https://doi.org/10.1371/journal.pcbi.1008466.g005
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fluid concentrations approached the solubility (see S3 Fig). Other parameters, such as lining

fluid volume and all physiological parameters related to the alveolar space were characterized

by negligible impact on the exposure metrics. The impact of deviating the model parameters

by a 2-fold increase and 2-fold decrease was typically antithetical. As a notable exception, the

dissolution rate in the conducting airways resulted in lower lung tissue concentration after

24 h for fluticasone propionate, regardless of whether the dissolution rate was increased or

decreased 2-fold.

Discussion

The pulmonary pharmacokinetics of orally inhaled drugs are highly complex as pulmonary

deposition, pulmonary dissolution, mucociliary clearance, and pulmonary absorption create

a complex interplay. Consequently, defining adequate optimization parameters for orally

inhaled drugs remains challenging. To adequately capture and mechanistically predict the

complex interplay of all pulmonary PK processes and to identify optimization parameters, a

PDE-based mechanistic PK framework was developed.

To build sufficient trust into a pulmonary PK model to use it for identification of optimal

drug characteristics, an adequate and systematic model evaluation is a prerequisite. However,

previous mechanistic modeling attempts, most noticeably the ones by Caniga et al. [56] and

Boger et al. [20], lack such a thorough evaluation. Indeed, the approach by Caniga et al., differ-

entiating between airways and alveolar space albeit less mechanistically than in the here-pre-

sented model, was evaluated for inhaled mometasone [56] and more recently for additional

fast dissolving drugs (formoterol, salbutamol, and budesonide) [57]. However, these drugs

would not provide the same insights into the pulmonary interplay of deposition, mucociliary

clearance, and dissolution as the slowly dissolving drug fluticasone propionate. An adequate

prediction quality for healthy and diseased populations, different particle sizes, slowly dissolv-

ing drugs or even insoluble particles remains to be demonstrated.

A PDE model published by Boger et al. mechanistically included all pulmonary PK pro-

cesses [20]. However, this model was based on a hypothetical drug, and while most of the char-

acteristics of this hypothetical drug can be considered reasonable, such as a Kp,lung of 4.9 or the

oral bioavailability of 20%, no in vitro assays can be used to characterize drug characteristics

such as permeability, dissolution kinetics, and solubility. Therefore, and since a model evalua-

tion against clinical data is not feasible for a hypothetical drug, no assessment of the model’s

predictive capacities was made.

Therefore, the here-presented model represents –to the best of our knowledge– the first sys-

tematically evaluated and publicly available mechanistic pulmonary PK model. First, to evalu-

ate the mechanistic implementation of the mucociliary clearance, model-based lung retention

profiles were compared to the pulmonary retention of insoluble gold and polystyrene particles.

Short-term particle retention was adequately predicted, whereas long-term retention was

underpredicted. One potential explanation could be that even with small inhaled volumes, a

fraction of the inhaled particles can deposit in alveoli e.g., due to asymmetry in airway branch-

ing. Since drug deposited in the alveolar space is not cleared by the mucociliary clearance, this

would result in higher long-term lung retention than predicted. Other explanations might

be that the mucus flow is not uniform in the conducting airways with more “static” mucus

regions, in which particles are slowly cleared [58]. Or alternatively that the gel phase of the

mucus is not continuous and particles, which are sinking deeper into the mucus (due to the

“missing” gel phase) are subsequently cleared slower [59]. A more detailed discussion of this

phenomenon is provided by Smith et al. [26]. Even though there are still discussions ongoing

on the details of the mucociliary clearance, there is a high evidence for a slower mucociliary
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clearance in peripheral airways and absence of mucociliary clearance in the alveolar space,

which is adequately represented in our mechanistic pulmonary PK model. Furthermore, as

long-term pulmonary drug retention should not be relevant for orally inhaled drugs, the iden-

tified discrepancy was considered acceptable.

Second, to evaluate the mechanistic implementation of the interplay of particle deposition,

mucociliary clearance, and pulmonary drug dissolution, the PK of fluticasone propionate for

different monodisperse particles (1.5, 3, and 6 μm aerodynamic diameter) were predicted and

compared to published data [38]. It has to be stated that the reported absolute exposure metrics

could not be reproduced. However, they appear extraordinarily high and could not be reached

even if the provided dose had been administered intravenously. Nevertheless, the publication

by Usmani et al. contains a unique data set, and therefore we still considered the dataset, but

by comparing the relative, not absolute, differences between the predictions for different parti-

cle sizes. The trends in this dataset, namely a decrease in exposure and a delayed uptake with

increasing particle size, were well predicted by the model. Quantitative mismatches of the pre-

dicted particle size effect might have been caused partially also by high inter-occasional vari-

ability (which can be relevant for group sizes of n = 15). Furthermore, the sampling scheme

underlying the calculation of exposure metrics was not reported in [38] and might have an

impact in particular on Cmax and Tmax values. Based on this evaluation, we considered the

model-based predictions for the varying particle size effect as good.

Third, the modeling framework was used (without estimating additional input parameters)

to simultaneously predict the PK of both fluticasone propionate and budesonide. For both

drugs, plasma concentration-time profiles in healthy volunteers were very well predicted.

In addition, the difference in pharmacokinetics between healthy volunteers and asthmatic

patients was well predicted for fluticasone propionate. In contrast, the impact of disease on the

PK of budesonide was overpredicted, i.e. in asthmatic patients more drug was predicted to be

cleared by mucociliary clearance before it could be absorbed. One potential reason for this dis-

crepancy is the strongly increased deposition of drug particles in the first airway generations

assumed for asthmatic patients (see S2 Fig), which resulted from the assumption that the depo-

sition probability across all airway generations is increased to a similar extent by local airway

obstructions. This assumption contrasts with literature discussing qualitatively that airway

obstructions in asthma are located more peripherally in the conducting airways (in higher air-

way generations) [60] and therefore the deposition would increase in more peripheral con-

ducting airways rather than in the trachea and first airway generations (as can be seen in the

imaging data in [25]). Unfortunately, we are not aware of quantitative data or deposition mod-

els based on such data, which would allow to better account for differences between healthy

volunteers and asthmatic patients. Therefore, we were unable to integrate a more adequate

representation into our mechanistic model. In comparison to pulmonary deposition, even less

quantitative information is available on altered physiology in asthmatic patients. Some studies

indicated e.g., thicker airway walls or peripheral airway closing, as well as airway remodeling

in asthmatic patients [61, 62]. As airway remodeling in asthma was discussed to increase over

time as a result of the inflammation, it was discussed more relevant for severe asthma [63].

Therefore, and based on missing quantitative data, we assumed that the physiological parame-

ters (e.g., pulmonary perfusion and pulmonary surface areas) are identical between healthy

volunteers and (mild to moderate) asthmatic patients. For severe asthma as well as other

(restrictive) pulmonary diseases, adapting the lung physiology might however be necessary.

Based on the overall good agreement between the predictions and observed clinical data,

we consider the here-published PDE-based PK model as the currently best-evaluated mecha-

nistic model for orally inhaled drugs. However, even this mechanistic PK model still represents

a simplification of reality and only includes the above-mentioned pulmonary PK processes;
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macrophage clearance as well as pulmonary metabolism were assumed not relevant. For some

specific inhaled drugs, this assumption might not hold true. For example, pulmonary metabo-

lism was discussed to be of importance for inhaled macromolecules (e.g., insulin [64, 65]).

Macrophage clearance from the alveolar space to the conducting airways was characterized by

a very long half-life of 35–115 days [66, 67]. Consequently, compared to pulmonary absorption

and dissolution kinetics of most inhaled drugs, macrophage clearance is expected to be negligi-

ble. Furthermore, the considerable between-study variability in reported data has to be kept in

mind when judging the model evaluation accuracy. To recognize all of these assumptions, to

understand their potential impact on the pulmonary PK, and finally to adequately apply the

here presented model framework, a sound understanding of respiratory drug delivery remains

essential.

As a last step of the presented analysis, we investigated the most relevant optimization

parameters for orally inhaled drugs. To this end, we performed a model-based sensitivity anal-

ysis to identify the most impactful model parameters on pulmonary exposure metrics. The

pulmonary AUC was considered as a surrogate for pulmonary efficacy and the average con-

centration in the conducting airways after 24 h was considered a surrogate for the effect dura-

tion of an inhaled drug. Finally yet importantly, the ratio between pulmonary and systemic

exposure was considered as a surrogate for lung selectivity of an inhaled drug (i.e. the larger

the ratio, the better the lung selectivity).

An impactful formulation-dependent model parameter was the particle size distribution of

the inhaled fluticasone propionate formulation. This might not be surprising as the particle

size simultaneously affects various pulmonary PK processes, i.e., larger particles deposit more

centrally, dissolve slower and therefore a higher fraction of drug would be cleared by the

mucociliary clearance. As a result, model-based predictions for larger particles indicated less

lung exposure, shorter drug residence times in the lung, as well as a lower lung selectivity. In

contrast, smaller fluticasone propionate particles would improve all exposure metrics. In con-

clusion, the model-based prediction framework indicates that reducing the particle size for

inhaled fluticasone propionate would be a reasonable optimization parameter. However, this

optimization parameter was predicted relevant only for fluticasone propionate. In contrast, the

sensitivity analysis predicted no relevant impact of the particle size to be expected for a drug

like budesonide.

Impactful drug-specific optimization parameters for both drugs were (i) the lung partition

coefficient, (ii) the systemic clearance, and (iii) the dissolution rate. An increase in the pulmo-

nary partition coefficient, which indicates an increase in the pulmonary tissue affinity, was

already previously suggested as an optimization parameter for lung selectivity [17, 68, 69].

This parameter however has to be considered carefully as a high tissue affinity / binding also

would decrease the free pulmonary concentration. The systemic clearance had low impact on

the pulmonary drug concentrations, but a higher systemic clearance provided a better lung

selectivity. Therefore, especially for drugs with a critical systemic safety profile increasing the

systemic clearance can be considered meaningful. In agreement, the relevance of a high sys-

temic clearance to reduce systemic adverse effects for orally inhaled drugs was previously dis-

cussed [17, 70]. The pulmonary dissolution rate for fluticasone propionate already seems to be

nearly optimal to achieve a long-lasting efficacy, which would be a good property for a once-

daily administered drug. An additional decrease in the dissolution kinetics was predicted to

rather decrease the long-lasting pulmonary exposure. This finding is in agreement with recent

observations that increasing the tissue affinity might be a better strategy to prolong the efficacy

compared to slow dissolution [71]. Interestingly, while the dissolution rate constant can still be

considered an optimization criterion, the solubility in the airway lining fluid was not impactful

for fluticasone propionate. This underlines that actually the dissolution rate and not the
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solubility might be important for pulmonary drug administration. For budesonide, which is

characterized by faster dissolution kinetics compared to fluticasone propionate, the solubility

was as important as the dissolution rate constant. The reason is that for budesonide, four

parameters simultaneously increased local drug concentrations in the epithelial lining fluids:

(i) a higher inhaled dose compared to fluticasone propionate, (ii) a higher fraction of the drug

deposited in the lungs, (iii) a lower permeability of budesonide resulting in a higher residence

time of dissolved drug, as well as (iv) a faster dissolution, which leads to more dissolved drug

in the lining fluids.

Besides drug- and formulation-specific parameters, the sensitivity analysis also provides

insights into the most impactful physiological parameters, namely tissue volume, pulmonary

perfusion as well as mucociliary clearance. This would mean that patients with a higher local

perfusion would have a smaller pulmonary selectivity after oral inhalation of fluticasone propi-

onate. To our knowledge, these physiological parameters are not available on an individual

(patient) level, so that individual PK predictions are currently not possible with the here-pre-

sented model. Furthermore, it should be recognized that oral drug inhalation is characterized

by high inter-occasional variability [72, 73], potentially being a result of varying inhalation

characteristics such as the inhalation flow [74, 75], the inhaled volume (see S6 Fig) or also the

actuation of the inhalation device [72]. Therefore, while we consider the mechanistic PDE

modeling framework a good tool for optimizing drug or formulation characteristics, currently

we do not consider it meaningful for performing individual PK predictions.

Even though this sensitivity analysis provides good insights into potential optimization

parameters, it has to be recognized that varying a single input parameter at a time might not

always be realistic. For example, a higher lipophilicity would result in slower dissolution kinet-

ics, higher permeability, and higher tissue affinity. Therefore, as an extension of the here pre-

sented sensitivity analysis, a multi-parameter investigation might be meaningful during drug

optimization. Alternatively, the model-based evaluation allows comparing completely different

drugs in a drug optimization program to select the best drug candidate. However, here we

evaluated the impact of the input parameters on the exposure in the conducting airways.

These exposure metrics only represent surrogate parameters and have to be carefully selected

based on the mode of action and the target location, i.e., for a target that would be located

in the alveolar space other exposure metrics should be considered relevant for a sensitivity

analysis.

In addition to identifying optimization parameters or potential reasons for inter-individual

variability, this sensitivity analysis allows to identify the important physiological model param-

eters, which have to be understood to adequately predict the PK after oral inhalation. Vice
versa, not knowing the exact values of less impactful (physiological) parameters is less critical

to predict the drug exposure in human. The most impactful physiological parameters were tis-

sue volume, perfusion, and mucociliary clearance. Less important physiological parameters

were, for example, fluid volume or surface area. An additional highly uncertain parameter

was the more central deposition pattern for asthmatic patients (which was corrected with an

empirical correction factor). Therefore, to improve the PK predictions for patients, it would be

valuable to generate and implement quantitative lung imaging data in patients [76]. As dis-

cussed before, the impactful parameters, including the deposition patterns, would also have to

be understood on an individual level to ultimately predict individual (pulmonary) PK profiles.

Another important uncertainty was the dissolution rate constant in the mucus. To our knowl-

edge, no head-to-head comparison is available for in vivo relevant dissolution assays for both

dissolution in the mucus and the alveolar lining fluids. This was why we had to make an

assumption, namely a fivefold slower dissolution in the conducting airways compared to the

alveolar lining fluid. The reason for these adapted dissolution rate constants is that the
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epithelial lining fluid in the conducting airways –the mucus– contains a lower concentration

of surfactants, which facilitate dissolution [77], compared to the alveolar lining fluid. In addi-

tion, the upper layer of the mucus is characterized by a higher viscosity [78], which can also

lead to a slower dissolution in comparison to the alveolar space. However, even though this

assumption described the data well, it should be verified with in vitro dissolution experiments.

In contrast, other uncertain (physiological) input parameters, such as the volume of the lung

lining fluids, were not impactful and therefore could be considered less critical.

The previously mentioned data-based limitations also represent the main opportunities to

improve the mechanistic PK model. First, it would significantly improve the applicability of

the PK model framework if an adequate pulmonary deposition model for asthmatics could

also be implemented (and later also for e.g., idiopathic pulmonary fibrosis). Furthermore, a

more mechanistic representation of tissue distribution (e.g., separating extra- vs. intracellular

concentrations) might increase the predictive power for drugs with a high pulmonary tissue

binding. Adapting the model to clinical PK data (e.g., by estimating parameters) might

improve the description of clinical data, but this would normally not be feasible during drug

optimization. Therefore, no pulmonary PK parameters were estimated in this work.

In conclusion, a PDE-based fully mechanistic pulmonary PK model was developed to per-

form model-based predictions of the pulmonary and systemic pharmacokinetics of orally

inhaled drugs based on in vitro formulation-specific, drug-specific, as well as physiological

data. To our knowledge, this model is the first fully mechanistic and systematically evaluated

pulmonary PK model. We also have shown that due to a large inter-study variability, model

evaluation based on single (clinical) studies should be considered cautiously. This evaluated

PK framework was applied to provide unique insights into optimization criteria for orally

inhaled drugs by applying a model-based sensitivity analysis. It also provided insights which

uncertainties of the modeling framework can still be improved. Overall, our analysis demon-

strated that the model-based framework offers the potential to increase the quantitative under-

standing about inhaled drugs and ultimately, the model-based approach is applicable for

optimizing drugs and formulations for inhalation therapy.
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