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Breast cancer (BC) is the most diagnosed cancer in women. Cuproptosis is

new regulated cell death, distinct from known death mechanisms and

dependent on copper and mitochondrial respiration. However, the

comprehensive relationship between cuproptosis and BC is still blank until

now. In the present study, we acquired 13 cuproptosis-related regulators

(CRRs) from the previous research and downloaded the RNA sequencing data

of TCGA-BRCA from the UCSC XENA database. The 13 CRRs were all

differently expressed between BC and normal samples. Using consensus

clustering based on the five prognostic CRRs, BC patients were classified

into two cuproptosis-clusters (C1 and C2). C2 had a significant survival

advantage and higher immune infiltration levels than C1. According to the

Cox and LASSO regression analyses, a novel cuproptosis-related prognostic

signature was developed to predict the prognosis of BC effectively. The high-

and low-risk groups were divided based on the risk scores. Kaplan-Meier

survival analysis indicated that the high-risk group had shorter overall survival

(OS) than the low-risk group in the training, test and entire cohorts. GSEA

indicated that the immune-related pathways were significantly enriched in the

low-risk group. According to the CIBERSORT and ESTIMATE analyses, patients

in the high-risk group had higher infiltrating levels of antitumor lymphocyte

cell subpopulations and higher immune score than the low-risk group. The

typical immune checkpoints were all elevated in the high-risk

group. Furthermore, the high-risk group showed a better immunotherapy

response than the low-risk group based on the Tumor Immune Dysfunction

and Exclusion (TIDE) and Immunophenoscore (IPS). In conclusion, we

identified two cuproptosis-clusters with different prognoses using

consensus clustering in BC. We also developed a cuproptosis-related

prognostic signature and nomogram, which could indicate the outcome,

the tumor immune microenvironment, as well as the response to

immunotherapy.
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Introduction

Breast cancer (BC) accounts for nearly one-third of all cancer

cases in women, and its incidence rate increases by 0.5% each

year (Siegel et al., 2022). According to the latest estimates, the

new female BC cases will be 287,750, and deaths will be 43,250 in

2022 in the United States (Siegel et al., 2022). Histologically, BC

includes three subtypes, including HER2-positive, endocrine-

dependent, and triple-negative breast cancers (Maughan et al.,

2010). Many therapeutic options have been developed, including

surgery, chemotherapy, endocrine therapy, and anti-HER2

targeting. However, with standard diagnosis and treatment, it

is estimated that 20–30% of patients with BC develop distant

metastases, accounting for approximately 90% of the death of BC

patients (Britt et al., 2020; Jabbarzadeh Kaboli et al., 2020).

Furthermore, the considerable heterogeneity of tumors limits

the broad applicability of typing and standard treatment to a

certain extent (Waks and Winer, 2019). Thus, exploring the

characteristics and potential therapeutic targets of BC patients is

of great significance.

Cuproptosis is new regulated cell death (RCD), distinct

from known death mechanisms and dependent on copper and

mitochondrial respiration (Tsvetkov et al., 2022). Copper

could bind to lipoylated components of the tricarboxylic

acid (TCA) cycle, leading to lipoylated protein aggregation

and subsequent iron-sulfur cluster protein loss, resulting in

proteotoxic stress and ultimately cell death. The typical

copper ionophores disulfiram (DSF) and elesclomol could

induce copper delivery to intracellular compartments by

ionophore to induce cuproptosis and are being used as

anticancer and chemosensitizing effects in cancer

therapeutics (Gehrmann, 2006; Liu et al., 2013; Viola-

Rhenals et al., 2018; Yang et al., 2021). Previous studies on

copper have focused on the disturbances of copper

homeostasis, which is related to a series of diseases, such as

Menkes disease (Horn and Wittung-Stafshede, 2021) and

Wilson disease (Członkowska et al., 2018). Moreover,

elevated copper concentrations have been reported in many

cancers, such as breast (Adeoti et al., 2015), lung (Oyama

et al., 1994), prostate (Saleh et al., 2020), thyroid (Baltaci et al.,

2017), gastrointestinal (Stepien et al., 2017) and gall bladder

(Basu et al., 2013) cancers. The role of copper in cancers might

partly be promoting blood vessel formation, tumorigenesis,

and metastasis (Shanbhag et al., 2019). Many drugs have been

developed to regulate copper metabolism in the body for those

copper imbalance diseases. Copper chelators could act as an

antiangiogenic treatment in many cancers (Brewer et al., 2000;

Sen et al., 2002; Chan et al., 2017), regulate autophagy

(Krishnan et al., 2018; Bryant et al., 2019), modify the

tumor microenvironment (Chan et al., 2017), and enhance

the antitumor immunity (Voli et al., 2020).

Cuproptosis could be regulated by specific genes:

cuproptosis-related regulators (CRRs), including DLD, PDHB,

ATP7B, ATP7A, DLAT, DLST, SLC31A1, DBT, FDX1, LIPIT1,

LIAS, GCSH, and PDHA1 (Tsvetkov et al., 2022). Further

research into these CRRs could help us understand

cuproptosis in disease. Mounting evidence has revealed that

signatures based on cell death patterns showed substantial

predictive values in prognostic, tumor immune

microenvironment (TIME), and immunotherapy response

prediction for BC patients, such as ferroptosis (Zhu et al.,

2021a), pyroptosis (Xu et al., 2022), and necroptosis (Hu

et al., 2022), but studies on the role of cuproptosis in BC lack

to some extent. An in-depth study about the association between

the genetic changes and expression dysregulations of the CRRs

and tumor will be beneficial for the identification of the role of

cuproptosis in BC and new therapeutic targets.

Our research comprehensively explored the expression

variations, genetic changes, and functions of CRRs in BC. We

used consensus clustering analysis to identify two cuproptosis-

clusters with different overall survival (OS) and TIME

characteristics. We also developed a cuproptosis-related

prognostic signature and nomogram, which could indicate the

outcome, the tumor immune microenvironment, as well as the

response to immunotherapy.

Material and methods

Data acquisition

The RNA sequencing data of BC and normal samples in The

Cancer Genome Atlas (TCGA) (113 normal breast samples and

1,109 BC samples and Genotype-Tissue Expression (GTEx)

database were downloaded from the UCSC XENA (https://

xenabrowser.net/datapages/). The Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC)

database (Pereira et al., 2016) was downloaded from

cBioportal (http://www.cbioportal.org/) (Cerami et al., 2012),

and 1,758 of 1,904 BC patients with OS > 30 days were used

for analysis. The microarray dataset GSE9893 (N = 155) and

GSE96058 (N = 3,069) were downloaded fromGEO (http://www.

ncbi.nlm.nih.gov/geo/). We used log2 (TPM) data to evaluate the

expression of CRRs between BC and normal samples. We

excluded male patients and the patients with OS < 30 days

and finally remained 916 female patients for further study. The

“caret” R package randomly divided our sample into two cohorts

at a 1:1 ratio (training and test). The “tableone” R package
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analyzed the clinical features of the training, test, and entire

cohorts (Supplementary Table S1). In the subsequent

clinicopathological correlation analysis, we excluded patients

with incomplete information. We acquired 13 cuproptosis-

related regulators (CRRs) from the previous investigation

(Supplementary Table S2) (Tsvetkov et al., 2022). Figure 1

showed the workflow of the current study.

Consensus clustering for cuproptosis-
clusters

Univariate Cox regression analysis was used to evaluate the

CRRs with prognostic values. We used the R package

“ConsensusCluster Plus” to perform consensus clustering

analysis and identify cuproptosis-clusters in BC patients. We

set cluster count (k) between 2 and 9 and selected the optimal k

value based on the inflection point of the sum of squared error

(SSE). The stability of cuproptosis-clusters was verified by the

t-distributed stochastic neighbor embedding (tSNE) algorithm.

Furthermore, the Kaplan-Meier survival analysis evaluated the

OS of the different cuproptosis-clusters. We further validated the

cuproptosis-clusters with the same consensus clustering analysis

in the METABRIC data.

Identification of differentially expressed
genes and functions of the cuproptosis-
clusters

We performed “edgeR” R package to analyze the DEGs

between the two cuproptosis-clusters (p < 0.05, |logFC| = 1).

We used Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) to annotate the

functions of DEGs with the R package “ClusterProfiler” (Yu

et al., 2012).

Construction and validation of the
cuproptosis-related prognosis signature

We retained 336 DEGs expressed in more than half of the

patients for further study for the accuracy of the results. These

DEGs were submitted to univariate Cox regression analysis to

identify the prognostic DEGs in TCGA-training and

GSE9893 cohorts. The least absolute shrinkage and

selection operator (LASSO) was used to avoid overfitting in

the TCGA-training cohort (Friedman et al., 2010). Then, the

cuproptosis-related prognostic signature (CRPS) was built

with the multivariate Cox regression analysis and stepwise

Akaike information criterion (stepAIC) value. Subsequently,

each sample could get the risk score according to the formula:

Risk score = Σ(Expp Coef). The Coef and Exp were the

coefficients and the expression level of each gene,

respectively. Based on the median risk score of the

training cohort, we divided patients into high- and low-risk

groups. For the training, test, entire, GSE9893 and GSE

96058 cohorts, Kaplan-Meier survival analysis and time-

dependent receiver operating characteristic (ROC) curves

were used to assess the predictive accuracy of the CRPS.

We further performed the stratified analyses to assess the

prognostic value of the CRPS in different subgroups stratified

by age, pathologic stage, T stage, N stage, M stage, ER, PR, and

HER2 statuses.

FIGURE 1
Workflow of the current study.
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Clinical analysis and construction of the
nomogram

We compared the risk score in different clinical characters,

including stage, PAM50 subtypes, ER, PR and HER2 status.

Multivariate COX regression analysis was performed to assess

the independent prognostic factors. The nomogram was

constructed with the independent prognostic factors. The

calibration curves assessed the accuracy of the nomogram.

The different tumor immune
microenvironment patterns between the
two risk groups

The variations of pathway activity of the two risk groups were

revealed with Gene Set Enrichment Analysis (GSEA) (p <
0.05 and FDR< 0.25) (Subramanian et al., 2007). The

annotated gene set “c2. cp.kegg.v7.5.1. symbols.gmt” was

acquired from the MSigDB (https://www.gsea-msigdb.org/

gsea/msigdb/). The CIBERSORT algorithm calculated the

proportion of tumor-infiltrating immune cells (Newman et al.,

2015). Immune, stromal, and tumor purity scores were evaluated

with the ESTIMATE algorithm (Yoshihara et al., 2013). In

assessing immune response, well-known predictors of immune

checkpoints (ICPs) have been used extensively. Therefore, we

compared the tumor-infiltrating immune cells, immune and

stromal scores, and 27 ICPs in the two risk groups.

Prediction of the response to immune
checkpoint inhibitors treatment

The immunophenoscore (IPS) represents a comprehensive

measure of immunogenicity and could predict the patient’s

response to ICIs treatment (Charoentong et al., 2017). We

acquired the IPS score of 916 BC patients from The Cancer

Immunome Atlas (https://tcia.at/) and compared the potential

immunotherapy in the two risk groups. TIDE provided an easy

way to predict the response to ICIs based on evaluating the tumor

microenvironment (http://tide.dfci.harvard.edu/) (Jiang et al.,

2018; Fu et al., 2020). After submitting the transcriptome

profiles of 916 TCGA-BRCA patients to the website, we

acquired the information on whether the patients could

respond to the ICIs.

Statistical analysis

We applied R software (version 4.0.5, https://www.r-project.

org/) for all statistical analyses. Comparative analysis between

groups was performed using Student’s t-test, Wilcoxon test, or

one-way variance analysis. p-value < 0.05 was set as statistically

significant, and the significance levels were set as *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001, ns: nonsignificant.

Results

Overview of expression variations, genetic
changes and function analyses of CRRs
in BC

We found that all of the 13 CRRs were DEGs between BC and

normal samples, among which seven regulators (DLD, PDHB,

ATP7B, DLAT, SLC31A1, ATP7A, DBT) were upregulated and

six regulators (FDX1, LIPT1, LIAS, GCSH, DLST, PDHA1) were

downregulated in BC samples (Figure 2A). Figure 2B shows the

location of 13 CRRs on the chromosome. The genetic analysis

revealed that 36 of the 986 samples (about 3.5%) carried

mutations in the regulator of cuproptosis, ATP7A exhibited

the highest frequency of mutations, and the majority of

mutations were missense mutations. There were no FDX1,

DBT, or GCSH mutations in the BC samples (Figure 2C). To

better understand the mode of interaction between these CRRs,

the protein-protein interaction (PPI) network retained all

13 CRRs with complex regulatory relationships at a high

confidence score (0.7) (Figure 2D). We investigated the

biologic function and behavior of the 13 CRRs using

Metascape and GENEMINIA enrichment analysis. The results

of the Metascape database indicated that the 13 CRRs were

significantly enriched in the following terms: Glyoxylate

metabolism and glycine degradation, copper ion import,

protein lipoylation, and cellular amino acid metabolic process

(Figure 2E). Furthermore, they were associated with

oxidoreductase complex, tricarboxylic acid cycle enzyme

complex, acetyl-CoA biosynthetic process, ancl-CoA metabolic

process, thioester metabolic process, acetyl-CoA metabolic

process, ribonucleoside bisphosphate metabolic process based

on the GENEMIAIA database (Figure 2F). According to our

analysis, the CRRs were related to cuproptosis, and the

expression levels of CRRs were correlated with BC, suggesting

that cuproptosis might reflect different traits in patients.

Identification of the cuproptosis-clusters
with CRRs in BC

The prognostic values of the 13 CRRs were analyzed with

univariate Cox regression analysis, and five (SLC31A1, ATP7A,

DLD, DLAT, and DBT) were significantly associated with BC

patient prognosis (Figure 3A). The consensus clustering analysis

based on these five CRRs explored the relationship between

cuproptosis and BC subtypes. Among the clustering variables,

k = 2 showed excellent clustering stability with the highest

intragroup correlations and the lowest intergroup correlations.
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Therefore, we acquired two cuproptosis-clusters (C1 and C2)

(Figures 3B–D). Figure 3E revealed that C1 was significantly

different from C2 (tSNE). Moreover, C2 had a more favorable OS

than those C1 (Figure 3F). As shown in Figure 3G, the two

cuproptosis-clusters exhibited different gene expression profiles

and clinical features. Surprisingly, all five CRRs elevated in C1.

FIGURE 2
Expression variations, Genetic changes, and functional analyses of CRRs in BC. (A) The expression of CRRs between BC and normal samples. (B)
The location of CRRs on chromosomes. (C) The schematic overview of mutation frequency and type in CRRs. (D) PPI network of the CRRs-encoded
proteins. (E) The GO analysis of CRRs in the METASCAPE database. (F) The network and function of CRRs in the GENEMANIA database.
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To validate the cuproptosis-clusters in BC, we further performed

the same consensus clustering analysis in the METABRIC

database, and the results indicated that 1758 BC patients were

clustered into two clusters (Supplementary Figures S1A–D).

Cluster 1 significantly differed from cluster 2 (tSNE) and had

a worse OS than cluster 2 (Supplementary Figures S1E,F). These

results indicated that we successfully identified two cuproptosis-

clusters of breast cancer.

The cuproptosis-clusters characterized
with different immune profiles

We performed the “edgeR” R package and identified

4891 DEGs between the two curproptosis-clusters

(Supplementary Figures S2A). The GO and KEGG analyses of

the DEGs showed that immune activation pathways were

enriched in C2, such as regulation of humoral immune

response, cytokine–cytokine receptor interaction, and IL-17

signaling pathway (Supplementary Figures S1B,C). We further

performed a series of immune-related analyses. We found that

some transcripts of immune activation, such as IFNG, GZMB,

CD8A, PRF1, and GZMA expressed higher in C2 than in C1

(Figure 4A). According to the CIBERSORT algorithm, many

antitumor lymphocyte cells subpopulations were significantly

elevated in C2, such as activated CD4+/CD8+ T cells, NK cells,

and plasma. In contrast, M2macrophages were elevated in the C1

(Figure 4B). The ESTIMATE analysis further revealed that

C2 had higher immune and ESTIMATE scores while C1 had

higher tumor purity (Figure 4C). The results of TIDE indicated

that C2 had a higher proportion of responders to

immunotherapy (Figure 4D). These results indicated that the

two cuproptosis-clusters characterized with different immune

landscapes.

Construction and validation of the
cuproptosis-related prognostic signature

To assist clinicians in predicting the prognosis of BC patients,

we constructed the CRPS. Using univariate Cox regression

analysis, we identified 16 cuproptosis-related DEGs associated

with prognosis for BC in the TCGA-training and

GSE9893 cohorts (Supplementary Table S3). The LASSO

regression algorithm determined six OS-related genes based

on the optimum λ value and the minimum partial likelihood

of deviance (Figure 5A,B). The six genes were submitted to the

multivariate Cox regression analysis. CRPS was formed by

incorporating four genes based on AIC values, and its formula

is listed below: Risk score = (-0.3005824 * TNFRSF18) +

(-0.3676786* SLC1A1) + (0.1479489 * CEACAM6) +

(-0.6081390 * GZMM) (Figure 5C). Patients with BC were

FIGURE 3
Characterization of two cuproptosis-clusters based on CRRs in BC. (A)Univariate Cox regression analysis of CRRs. (B)Consensusmatrix when k
= 2. (C) Consensus CDF, (D) Delta area, (E) tracking plot, and tSNE plots (F) for validation of the clustering results. (G) Kaplan-Meier OS curves for BC
patients between C1 and C2. (H) Unsupervised clustering of CRRs in the TCGA-BRCA cohort. The cuproptosis-clusters, stage, age, TNM stage,
PAM50 subtypes, and survival status were used as patient annotations.
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categorized into low- and high-risk groups using the median risk

scores from the training cohort. Based on the survival analyses,

the high-risk group experienced earlier death and a poorer

outcome than the low-risk group (Figure 5D). Across the

training, test and entire cohorts, the AUCs for the 10-year

ROC were 0.794, 0.736, and 0.768, respectively (Figure 5E).

Figure 5F showed the distribution plot of the risk score and

the different expression levels of the model genes in the two risk

groups. We further performed the same analyses in the

GSE9893 and GSE96058 databases. The low-risk group had a

worse OS than the high-risk group (Supplementary Figures

S1A,B). We further selected the appropriate time according to

the follow-up characteristics of different cohorts to draw the

ROC curves for verification. In GSE9893 database, the AUCs of

the 4-, 5-, and 10-year ROC curves were 0.608, 0.695 and 0.593

(Supplementary Figures S3C). In GSE96058 database, the AUCs

of the 3-, 5-, and 6-year ROC curves were 0.6065, 0.6215 and

0.6216 (Supplementary Figures S3D). The expression levels of the

model genes in the two risk groups were highly similar to the

TCGA cohorts (Supplementary Figures S3E,F). Considering the

heterogeneity of BC, stratified analyses were further used to

assess the prognostic value of CRPS in different clinical

subgroups. The results revealed that patients in the low-risk

group exhibited a prominent survival benefit compared with the

high-risk group in most clinical subgroups, except for luminal B

subtypes (Supplementary Figures S4). The above results

indicated the prognostic signature was accurate, independent

and widely applicable.

Evaluation of the clinical significance of
CRPS and development of the
cuproptosis-based prognostic nomogram

The potential clinical utility of the risk score of CRPS was

further analyzed. The alluvial diagram showed the

relationship between cuproptosis-cluster, risk groups and

outcomes (Figure 6A). C1 was linked to the high-risk

FIGURE 4
The different immune profiles between the two cuproptosis-clusters. (A) Comparisons of the immune-activation related gene expression
between the two cuproptosis-clusters. (B)Comparisons of tumor purity, stromal, immune and estimate scores between the two clusters. (C) The box
plots of the tumor-infiltrating cells in the two clusters. (D) Comparisons of the proportions of non-responders and responders to immunotherapy
between the two risk clusters.
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FIGURE 5
Construction and Validation of the CRPS. (A) LASSO regression analysis of 108 prognostic DEGs. (B) Cross validation method to select optimal
genes. (C) The forest plot of multivariate Cox regression analysis. (D) Kaplan–Meier analyses of the OS between the two risk groups in the training,
test, and entire cohort. (D)The 3-, 5- and 10-year ROC curves of the CRPS in the training, test, and entire cohort. (F) Ranked dot, scatter plots and heat
map of the model gene expressions in the training, test, and entire cohort.
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group and death, while C2 was related to the low-risk group

and living. Moreover, C1 exhibited a higher risk score than C2

(Figure 6B). HER2-and PR+ were related to the low-risk score,

and basal subtype was correlated with the high-risk score

(Figures 6C–G). Furthermore, multivariate COX regression

analysis revealed that age and the risk score were the

independent prognostic factors for BC patients (Figure 6H).

We further established the prognostic nomogram to

quantitatively predict the 3-, 5- and 10-year survival

probability of BC patients (Figure 6I). The calibration

curve of the nomogram demonstrated that it could predict

the survival probability relatively well (Figure 6J).

FIGURE 6
Evaluation of the clinical significance of CRPS and development of the cuproptosis-related prognostic nomogram. (A) Alluvial diagram of
cuproptosis-clusters, risk groups and outcome. (B) Comparisons of the risk score in the two cuproptosis-clusters. (C–G) The different phenotype
Relationships of the risk score and Stage, ER, PR, HER2, PAM50 phenotypes, respectively. (H) Multivariate Cox regression analysis of clinical
characteristics and risk score. (I) The nomogram for predicting BC patients’ 3-, 5-, and 10-year OS probability. (J) The 3-, 5-, and 10-year
calibration curves of the nomogram.
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Comparison with other prognostic
signatures

The robustness of our CRPS was assessed by comparing it

with 13 existing OS-related prognostic signatures, such as

ferroptosis, apoptosis, pyroptosis, necroptosis, immunity, and

zinc finger proteins. In order to eliminate the effect of

heterogeneity, we included only signatures generated using the

TCGA database. AUC was used to assess the predictive power of

signatures, and a larger AUC indicates better classification ability

(Fawcett, 2006), and it could be used to compare the performance

of the signatures (Zhang et al., 2021; Lv et al., 2022). We

integrated all the important information of the thirteen

signatures, including author, year, gene signature and the

AUCs of the signatures (Table 1). Our signature had many

advantages in predicting OS in BC patients, especially for the

10-year OS. In our study, the AUCs of the signatures at 3-, 5-, and

10-year were 0.683, 0.640, and 0.794, respectively, significantly

higher than most hallmark predictive models. Table 1 showed

that the 3-, 5-, and 10-year AUCs of the other four prognostic

signatures, namely, the 9 ferroptosis-related gene signature (3-,

5-, and 10-year AUCs: 0.713, 0.713, and 0.684) (Lu et al., 2022a),

4 immune-related gene signature (3-, 5-, and 10-year AUCs:

0.692, 0.691, and 0.715) (Ding et al., 2021), 7 pyroptosis-related

gene signature (3-, 5-, and 10-year AUCs: 0.785, 0.769, and

0.711) (Chu et al., 2022), and 6 autophagy-related gene signature

(3-, 5-, and 10-year AUCs: 0.640, 0.600, and 0.610) (Zhong et al.,

2020) were comparable to the predictive capabilities of our

predictive model, and our signature stand out with a clear

advantage in predicting the long-term survival of BC patients,

with a 10-year AUC of 0.819. We also listed the other signatures

that focus more on short-term survival, such as 1-year, 2-year, 3-

year, and 5-year survival. We found our signature have similar

short-term survival (3-year) prognostic value compared with

them, such as the ferroptosis-related gene signature (Wang

et al., 2021a; Wu et al., 2021a; Zhu et al., 2021b), pyroptosis-

related gene signature (Chen et al., 2022), necroptosis-related

gene signature (Yu et al., 2022), apoptosis-related gene signature

(Zou et al., 2022), zinc finger protein-related gene signature (Ye

et al., 2021), autophagy-related gene signature (Lin et al., 2020),

and metabolic-related gene signatures (Lu et al., 2022b). In

addition, our model only involves four genes, while other

models (11/13) tend to have more, which is more convenient

to use to a certain extent. These results indicated that our gene

signature outperformed most other signatures in predicting BC

prognosis.

Different immune landscapes in the two
risk groups

To explore the potential biological processes of the two risk

groups, we performed GSEA. Interestingly, a series of immune-

related pathways were enriched in the low-risk group, while cell

cycle and tumor-related pathways were enriched in the high-risk

group (Figures 7A,B). We subsequently used CIBERSORT and

ESTIMATE analyses to analyze the TIME of the two risk groups.

The ESTIMATE results revealed that the high-risk group had

lower stromal, immune, and estimate scores but had higher

tumor purity (Figure 7C). The CIBERSORT analysis further

indicated that the macrophages M2, M0 and NK cells resting

were themain components of the high-risk group; however, most

of the antitumor lymphocyte cells, such as macrophages M1,

CD8 T cells, dendritic cells resting, and activated NK cells were

TABLE 1 The area under the ROC curve (AUC) showed the sensitivity and specificity of the known gene signatures in predicting the prognosis of BC
patients.

Author Year Gene signature Gene
number in signature

AUC for OS

Our study 2022 Cuproptosis 4 0.683 (3-year), 0.640 (5-year), 0.794 (10-year)

Lu, et al. (2022a) Ferroptosis 9 0.713 (3-year), 0.713 (5-year), 0.684 (10-year)

Ding et al. (2021) Immune 4 0.692 (3-year), 0.691 (5-year), 0.715 (10-year)

Ling et al. (2022) Pyroptosis 7 0.785 (3-year), 0.769 (5-year), 0.711 (10-year)

Zhong et al. (2020) Autophagy 6 0.640 (3-year), 0.600 (5-year), 0.610 (10-year)

Zhu et al. (2021) Ferroptosis 11 0.700 (1-year), 0.749 (2-year), 0.720 (3-year)

Ding et al. (2021) Ferroptosis 9 0.618 (1-year), 0.653 (2-year), 0.663 (3-year)

Wu et al. (2021a) Ferroptosis 15 0.740 (1-year), 0.710 (3-year), 0.750 (5-year)

Chen et al. (2022) Pyroptosis 16 0.756 (1-year), 0.752 (3-year), 0.723 (5-year)

Yu et al. (2022) Necroptosis 6 0.701 (1-year), 0.716 (2-year), 0.708 (3-year)

Zou et al. (2022) Apoptosis 6 0.708 (1-year), 0.628 (3-year), 0.687 (5-year)

Min et al. (2021) Zinc finger protein 14 0.732 (1-year), 0.768 (2-year), 0.737 (3-year)

Lin et al. (2020) Autophagy 12 0.739 (1-year), 0.717 (2-year), 0.742 (3-year)

Lu et al. (2022b) Metabolic 2 0.764 (1-year), 0.689 (3-year), 0.612 (5-year)
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the main components of the low-risk group (Figure 7D).

Furthermore, the expression levels of the 27 common ICPs

were significantly elevated in the low-risk group, such as PD-

1, PD-L1 and CTLA4 (Figure 7E). These results indirectly

indicated the different immune landscapes in the two risk groups.

Different immunotherapy responses in the
two risk groups

We evaluated the immunotherapy response by the IPS and

TIDE. Patients in the low-risk group presented significant

therapeutic benefits from ICIs treatment according to the IPS

(CTLA4-/PD-1-, CTLA4+/PD-1-, CTLA4-/PD-1+ and

CTLA4+/PD-1+) (Figures 7F–I). Based on the TIDE analysis,

the responders to immunotherapy in the low-risk group were

more than in the high-risk group (77.9 versus 49.7%) (Figure 7J).

Furthermore, the risk score was significantly elevated in non-

responders to immunotherapy than in responders (Figure 7K).

These results revealed that the essential role of CRPS in

predicting the response to immunotherapies.

Discussion

Recently, cuproptosis has been identified as a novel RCD

(Tsvetkov et al., 2022). It depends on copper and mitochondrial

respiration. Previous studies indicated that cuproptosis could be

FIGURE 7
The TIME and immunotherapy response between the two risk groups. Significantly enriched pathways in low-risk (A) and high-risk (B) groups
according to the GSEA. (C) Comparisons of tumor purity, stromal, immune and estimated scores between the two risk groups. (D) The box plots of
the tumor-infiltrating cells in the two risk groups. (E) The expression levels of 27 ICPs in the two risk groups. (F–I) Relative distribution of
immunotherapeutic efficacy in the two groups. (J) Comparisons of the proportions of non-responders and responders to immunotherapy
between the two risk groups. (K) Boxplot showed a significantly higher risk score in the responders.
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induced by copper ionophores drugs DSF and elesclomol and

had anticancer and chemosensitizing effects (Gehrmann, 2006;

Liu et al., 2013; Viola-Rhenals et al., 2018; Yang et al., 2021). The

importance of other RCDs had been revealed in BC, but the role

of cuproptosis in BC is still unknown (Zhu et al., 2021a; Hu et al.,

2022; Xu et al., 2022). Our research was aimed at exploring the

importance of cuproptosis in predicting the prognosis, TIME,

and immunotherapy response for BC patients, which might lay

the foundation for precise cuproptosis-related treatment of BC.

In our study, we firstly revealed the expression patterns,

genetic alterations and biological functions of CRRs in BC. We

found that all 13 CRRs were DEGs between BC and normal

samples. The low mutation rates indicated the maintenance of

genome stability. The functional analysis of these 13 CRRs

revealed that they were enriched in the biological process of

cuproptosis, including copper ion import, tricarboxylic acid cycle

enzyme complex, and thioester metabolic process. However, only

five CRRs (SLC31A1, ATP7A, DLD, DLAT, and DBT) had the

prognostic value and were used for consensus clustering analysis.

Among these five CRRs, SLC31A1 was associated with

chemoresistance to platinum in osteosarcoma (Cheng et al.,

2020), lung cancer (Wang et al., 2021b), and ovarian cancer

(Wu et al., 2021b). The copper efflux transporter ATP7A was

related to the chemoresistance in esophageal and ovarian cancers

(Lukanović et al., 2020; Li et al., 2021). These results showed the

significance of CRRs in regulating the occurrence, development

and treatment of tumors.

Consensus Clustering is a common method of classifying

cancer subtypes (Zhang et al., 2020; Wu et al., 2021c; Han et al.,

2021). We performed consensus clustering with the five

prognostic CRRs in TCGA-BRCA data and two distinct

cuproptosis-clusters were identified. The OS of BC patients

were strongly different between the two cuproptosis-clusters.

The stability of the cuproptosis-clusters was validated with the

METABRIC data. The GO/KEGG analyses revealed that

immune-related pathways were differentially enriched in the

two cuproptosis-clusters, such as humoral immune response,

cytokine–cytokine receptor interaction, and IL-17 signaling

pathway. Further ESTIMATE and CIBERSORT analyses

identified C1 as immune-excluded, with weakened immune

cell infiltration, and C2 as immune-inflamed, with abundant

infiltrating immune cells. The TIDE analysis indicated that

patients in C2 could respond to immunotherapy better than

patients in C1. A recent study identified copper as a factor that

upregulates the expression of PD-L1 in tumor cells and

modulates signaling pathways involved in PD-L1-mediated

death (Voli et al., 2020), which might explain that C1 with

higher expression levels of CRRs but be identified as immune-

excluded to some extent.

We further developed and validated a CRPS for predicting

the prognosis of BC. The low-risk group always had a better

prognosis than the high-risk group. The ROC curves certified the

reliability of the CRPS. The applicability of the CRPS was

confirmed with the stratified analysis. We also found a close

relationship between C2, the low-risk group, and the live event.

To further explore the predictive ability of our signature, a

comparison was performed among several significant

molecular signatures employed for predicting OS in patients

with BC. Compared with the other signature, such as ferroptosis,

necroptosis, pyroptosis, and immune-related (Lin et al., 2020;

Zhong et al., 2020; Wang et al., 2021a; Wu et al., 2021a; Zhu et al.,

2021b; Ding et al., 2021; Ye et al., 2021; Lu et al., 2022a; Lu et al.,

2022b; Chen et al., 2022; Chu et al., 2022; Yu et al., 2022; Zou

et al., 2022), our signature indicated much higher AUCs, which

indicated a better predictive ability, especially in predicting the

long-term survival status. Furthermore, we constructed a

prognostic nomogram that could simplify treatment decision-

making for patients with BC.

Different tumor immune microenvironments characterized

the two risk groups. The TIME was reported to play an essential

role in BC, related to the therapeutic response and different

clinical outcomes (Tower et al., 2019). The previous study

indicated that TIME features were related to the OS in

TNBC(Bareche et al., 2020). In the current study, the GSEA

results implicated that immune-related pathways were enriched

in the low-risk group.We further found that patients in the low-

risk group had a higher immune score, estimate score and

stromal score than the high-risk group. Furthermore, the low-

risk group had an abundance infiltration of dendritic cells

resting, activated NK cells, and CD8 T cells. Previous

research has reported that these immune cells could protect

against tumor growth and promote immune response and

immunotherapy (Emens, 2012; Charoentong et al., 2017;

Sato et al., 2018; Farhood et al., 2019). However,

macrophages M2 were the main components in the high-risk

group, which were the critical member in EMT and cancer

metastasis (Biswas and Mantovani, 2010; Qian and Pollard,

2010). Furthermore, a series of typical ICPs, such as PD-L1,

CTLA4 and HAVCR2, were significantly elevated in the low-

risk group. Finally, according to the IPS and TIDE analyses,

patients in the low-risk group tended to be the beneficiaries

from immunotherapy. These findings suggested that the CRPS

were associated with TIME and could guide targeted

immunotherapies.

Although the CRPS showed the ability to predict prognosis

potentially, there were several limitations to our study. Firstly, the

regulatory mechanism of how cuproptosis affects the TIME in

breast cancer was limited and deserved further research. In

addition, in vitro and in vivo experiments were needed to

confirm our findings.

Conclusion

In conclusion, we firstly identified two cuproptosis-

clusters in breast cancer with the different OS using
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consensus clustering. We further developed a cuproptosis-

related prognostic signature that had good performance in

predicting survival outcomes, tumor immune

microenvironment and immunotherapy response for BC

patients.
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