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a b s t r a c t

Constructing accurate microbial genome assemblies is necessary to understand genetic diversity in mi-
crobial genomes and its functional consequences. However, it still remains as a challenging task especially 
when only short-read sequencing technologies are used. Here, we present a new read-clustering algorithm, 
called RBRC, for improving de novo microbial genome assembly, by accurately estimating read proximity 
using multiple reference genomes. The performance of RBRC was confirmed by simulation-based evaluation 
in terms of assembly contiguity and the number of misassemblies, and was successfully applied to existing 
fungal and bacterial genomes by improving the quality of the assemblies without using additional se-
quencing data. RBRC is a very useful read-clustering algorithm that can be used (i) for generating high- 
quality genome assemblies of microbial strains when genome assemblies of related strains are available, 
and (ii) for upgrading existing microbial genome assemblies when the generation of additional sequencing 
data, such as long reads, is difficult.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Using de novo genome assembly to concatenate next-generation 
sequencing (NGS) reads and recover chromosome-level sequences is 
a difficult task [1]. Although short-read sequence data have been 
widely used for de novo genome assembly, their short length makes 
the task more difficult [2]. To alleviate this problem, long-read se-
quencing and assembly technologies have recently been developed 
[3,4]. However, many microbial genomes have still been sequenced 
and assembled based on short-read sequences because of their low 
sequencing error and cost [5–10]. Therefore, numerous studies have 
researched the effective use of short-read sequences for microbial 
genome assembly [11–13]. One such method involves clustering read 
sequences sharing similar features and utilizing the information 
extracted from the read groups for genome assembly.

Sequence clustering has been extensively used for various types 
of sequencing data to (i) remove redundant sequences in predicted 

gene sequences [14–16], (ii) group transcriptome and RNA sequen-
cing [17,18], (iii) detect groups of functionally related protein se-
quences [19–21], and (iv) group motif sequences [22,23]. These 
sequence-clustering methods commonly rely on the similarity of 
sequences, which can be easily found using sequence alignment 
[24]. This makes the existing clustering methods unsuitable for de 
novo genome assembly, in which the read proximity in a chromo-
some can play a critical role in the reconstruction of genomes. If read 
sequences are clustered based on sequence similarity, read se-
quences that are not physically close can be placed in the same 
cluster. This is because of the existence of repetitive sequences in 
many different genome positions, which is especially problematic in 
short-read sequences. On the other hand, when the sequence simi-
larity-based clustering method is used, read sequences that are 
physically close in a chromosome cannot be grouped in the same 
cluster if the level of sequence similarity among them is low. In 
metagenome studies, sequence clustering is also used to obtain 
meaningful groups of NGS read sequences from the same species or 
taxonomic unit using marker genes, tetranucleotide frequencies, and 
contig or scaffold coverage [25–29]. However, since these ap-
proaches utilize various sequence features from different species in 

Computational and Structural Biotechnology Journal 21 (2023) 444–451

https://doi.org/10.1016/j.csbj.2022.12.032 
2001-0370/© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

]]]] 
]]]]]]

⁎ Corresponding author.
E-mail address: jbkim@konkuk.ac.kr (J. Kim).

1 These authors contributed equally to this work.

http://www.sciencedirect.com/science/journal/20010370
www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2022.12.032
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.12.032
https://doi.org/10.1016/j.csbj.2022.12.032
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.12.032&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.12.032&domain=pdf
mailto:jbkim@konkuk.ac.kr


metagenome samples, it is difficult to directly apply these ap-
proaches to the de novo assembly of a single genome.

Recent advances in sequencing technologies and assembly algo-
rithms have enabled the accumulation of high-quality genome as-
semblies for many species, including microbes [30–37]. One of the 
important features of a microbial genome is that there are multiple 
strains in the same species [38]. In this case, the high-quality 
genome assemblies of some strains can be used as valuable re-
sources for assembling the genomes of other strains in the same 
species. For example, it is possible to ensure that read clusters are 
especially useful for genome assembly by estimating the proximity 
of reads in a target strain based on their relative positions in the 
genome assemblies of other strains of the same microbial species. 
Then, the read clusters can be used as additional information to 
produce better genome assemblies. This idea was used to generate 
the de novo genome assembly of a newly sequenced Arabidopsis 
thaliana strain using a single reference strain of the same species 
[39,40]. The main drawback of these approaches is the use of a single 
reference genome. Genome rearrangements can occur among mi-
crobial strains, even in those of the same species [41]. Therefore, the 
use of a single reference genome has a limited potential for the ac-
curate assembly of the target strain genome.

Here, we present a new NGS read-clustering algorithm (RBRC) for 
the de novo genome assembly of microbes that utilizes the genome 
assemblies of multiple closely related microbial strains, called re-
ferences. Given the NGS paired-end (PE) reads of a target strain and 
the genome sequences of the references, RBRC constructs syntenic 
regions among multiple reference genomes and groups the reads 
that are mapped to the same syntenic regions as members of the 
same cluster. For unclustered reads, the distance between a pair of 
reads in the target strain is estimated based on their distance in the 
reference genome, and this distance is then used to cluster them. 
Then, the generated clusters are further merged by using the cluster 
membership of the two end-reads of the PE reads. The performance 
of our clustering algorithm was evaluated using the simulated NGS 
reads of a yeast genome. RBRC was also successfully employed to 
improve the existing fungal and bacterial genome assemblies using 
the same sequencing data used to generate the original genome 
assemblies. This clearly shows that this method could also con-
tribute to increasing the quality of the existing genome assemblies of 
many microbes without requiring additional expensive and time- 
consuming sequencing data. This clustering algorithm could be very 
useful for the de novo genome assembly of microbes, and further-
more, it will become more useful as more high-quality genome as-
semblies of various species are accumulated. RBRC and de novo 
assembly programs based on RBRC are available at https://gi-
thub.com/jkimlab/RBRC.

2. Materials and methods

2.1. Reference-based read-clustering algorithm

This study presents a reference-based read-clustering (RBRC) 
algorithm for NGS PE reads that utilizes a set of reference genome 
sequences (Fig. 1). Once whole-genome sequence alignments among 
reference genomes are generated, syntenic regions among the re-
ference genomes are constructed using the alignments. The reads 
mapped to the same syntenic regions are then grouped and form a 
single cluster. These clusters are called synteny-based clusters. For 
unclustered reads, the distance between two reads in the target 
strain is estimated by using a weighted sum of their distances in the 
reference genome sequences. The unclustered reads are then 
grouped based on those estimated distances, which leads to the 
generation of distance-based clusters. Finally, the two sets of clusters 
(synteny-based and distance-based clusters) are merged using the 

pair information of the PE reads. The details of each step are pre-
sented below.

2.2. Pre-processing

For the given NGS PE read sequences of a target strain, low- 
quality sequences, adapter sequences, and unpaired reads are fil-
tered out using Trimmomatic (version 0.39) [42]. The remaining PE 
reads are mapped to each given reference genome sequence using 
BWA-MEM (version 0.7.17) [43], and alignment filtering is performed 
using SAMtools view (version 1.9) [44] with -f 0x03 -F 0xF00 op-
tions. Based on the mapping results, the weight of the reference 
genomes, defined as the percentage of properly mapped PE reads, is 
calculated and used to filter out some of the reference genomes (if 
any) with a low weight (default: 80%). The reference with the 
highest weight is considered as a leading reference and used as the 
center in the synteny-based clustering step described in the fol-
lowing subsection.

2.3. Synteny-based clustering

To find conserved genomic regions among all given reference 
genomes, pairwise whole-genome sequence alignments between 
the leading reference and each of the other references are generated 
using lastz (version 1.04.00) [45]; these are then used to create 
syntenic regions among the reference genomes based on a given 
resolution by the inferCars program [46]. The constructed syntenic 
regions are further refined based on the physical read coverage to 
reduce false positives in the clusters. The physical read coverage is 
calculated from the mapped reads to the leading reference genome 
sequence. Specifically, to extract the primary alignment of the 
properly mapped read pairs, SAMtools (version 1.9) [44] is used to 
filter alignments with -f 0x03 -F 0xF00 options, and BEDtools (ver-
sion v2.17.0) [47] is used to calculate the physical read coverage. 
Syntenic regions are broken at regions with small physical read 
coverage, and then the regions shorter than the resolution are fil-
tered out. Finally, based on the mapping information of the leading 
reference, all single reads mapped to the same syntenic regions are 
grouped into the same cluster.

2.4. Distance-based clustering

All unclustered reads in the previous step are further clustered 
based on the distances between read pairs in non-syntenic regions 
in the genomes of multiple reference strains. This clustering step 
consists of four sub-steps: (i) extracting mapping information of the 
unclustered reads to all references, (ii) calculating the distance be-
tween two reads in each reference genome, (iii) estimating the 
distance between two reads in a target genome by using their dis-
tances in reference genomes, and (iv) clustering the reads based on 
the estimated distances.

First, for all reference genome sequences, the mapping positions 
of all unclustered reads are extracted by SAMtools (version 1.9) with 
the -F 0xF00 option from the read-mapping data generated in the 
pre-processing step. Next, for a pair of reads mapped to all refer-
ences as well as the same chromosome in each of the references, the 
distances between the read pairs in each of the references are cal-
culated. Here, any two reads can make a pair for the distance cal-
culation, regardless of whether they are the two end reads in a PE 
read or not. For each pair of reads, their distance in the target strain 
is estimated by using the weighted sum of distances from all refer-
ences and recorded in a final distance matrix if it is smaller than the 
cutoff. Here, the weight calculated in the pre-processing step is used 
as the weight of a reference. Finally, based on estimated distance 
between unclustered reads, they are clustered using an in-house Perl 
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script implementing DBSCAN [48], which is a density-based spatial 
clustering algorithm.

2.5. Post-processing

The read clusters generated in the previous two steps are further 
merged using the PE read information. First, the number of links 
between two different clusters is calculated. A link between two 
different clusters is defined when each end-read of a PE read is as-
signed to a different cluster. When a pair of clusters has more links 
than the cutoff, they are merged into a single cluster. Next, if one end 
of a PE read is not clustered but its pair is in a certain cluster, the 
unclustered end is assigned to the same cluster as its pair. Finally, if 

two end-reads of the same PE read are assigned to different clusters, 
they are discarded from the assigned clusters.

2.6. Simulation of read sequences for a fungal and bacterial genome

To assess the performance of the clustering algorithm, the read 
sequences of the genomes of one of fungal species (yeast, S. cerevi-
siae) and one of bacterial species (E. coli) were simulated. 
Specifically, complete genome assemblies of five yeast strains 
(S288C, BY4742, ySR128, ySR127, and KSD-Yc) were downloaded 
from the NCBI website (Table S1). Using chromosome sequences of 
the yeast strain S288C, NGS PE reads were simulated using ART [49]
with the options of Illumina HiSeq 2500 platform, 101 bp read 

Fig. 1. Overview of reference-based read-clustering (RBRC) algorithm. The reference-based read-clustering algorithm consists of four steps divided by dashed rectangles. (i) In the 
pre-processing step, low-quality reads are trimmed, and the remaining reads are mapped to reference genomes. The mapping information is used to calculate the weight of 
references and to choose a leading reference. (ii) In the synteny-based clustering step, syntenies among references are created, and reads that are mapped to the same synteny are 
assigned to the same cluster. (iii) In the distance-based clustering step, the distance between two unclustered reads in a target strain is estimated based on their distance in the 
references and used to create additional read clusters. (iv) Finally, using the paired information of reads, the existing clusters are merged in the post-processing step.
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length, 500 bp mean fragment length, and four different sequencing 
coverages (5x, 10x, 30x, and 50x). The other four yeast strains were 
used as references for clustering.

For simulating the read sequences of the E. coli genome, complete 
genome assemblies of five E. coli strains (ST540, ST2747, YD786, 
MG1655, and O157) were downloaded from the NCBI website (Table 
S1). The chromosome sequence of the strain ST540 was used to si-
mulate read sequences using ART with the same options including 
the simulation coverage as in the yeast genome. The other four E. coli 
strains were used as references for clustering.

2.7. Performance assessment of read clustering

The quality of generated clusters was assessed based on entropy 
[50], which can measure the purity of clustered reads in each cluster. 
The primary goal of the read clustering is to group reads originated 
from the same genomic region into the same cluster. Therefore, the 
quality of a specific read cluster can be measured by examining the 
number of reads originated from the same genomic region corre-
sponding to the cluster but classified into other clusters. By using the 
origin of all reads generated during simulation, the corresponding 
genomic region of a cluster was determined, which was defined as a 
region from the left-most (the smallest coordinate) read to the right- 
most (the largest coordinate) read in the cluster. Once the genomic 
region of a cluster was defined, the cluster membership information 
of all reads in the genomic region was used to calculate the entropy 
of the cluster using an in-house Perl script. Entropy for a cluster C 
was defined as:

=
=

H C
n
N

n
N

( ) log
i

N
i

r

i

r1
2

c

(1) 

where Nr is the total number of reads in the corresponding genomic 
region of the cluster C, ni is the number of reads classified into the ith 
cluster, and Nc is the number of different clusters to which the reads 
in the genomic region belong. If all reads in the genomic region of 
the cluster C are classified into the cluster C, then the entropy is 0 
because =N 1c and =N nr i.

In this assessment, the USEARCH program [14], a clustering 
program based only on sequence similarity, was additionally used, 
and its clustering results were compared with the read clusters 
generated by RBRC. Values of 0.7, 0.8, and 0.9 were used for the si-
milarity parameter of the USEARCH program. In the case of RBRC, 
used parameter values are shown in Table S2.

2.8. De novo genome assembly using read clusters

To investigate the usability of read clusters generated by RBRC, a 
de novo genome assembly approach was developed using the read 
clusters constructed by the algorithm with the same parameter va-
lues used in the simulation-based assessment. An overview of this 
approach is illustrated in Fig. S1. For input PE reads and reference 
genome sequences, read clusters were constructed by RBRC, and 
contigs were generated for each cluster by the assembly program 
SPAdes (version 3.15.4) with –careful option [51]. Finally, contig se-
quences from all clusters were further assembled using SPAdes 
(version 3.15.4) with the –careful and –nanopore option using all of 
the qualified input PE reads that passed the filtering step in the 
clustering algorithm. In this step, SPAdes performed a hybrid as-
sembly by treating the contig sequences as long-read sequences.

The simulated PE datasets described in the previous subsection 
2.2 were used to evaluate our assembly approach. The assemblies 
generated by our approach were compared with those created by the 
SPAdes program (version 3.15.4) with the –careful option using only 
the PE reads (not using the read cluster information). For calculating 
evaluation statistics, QUAST (version 5.0.2) [52] was used with 

default options and the genome assemblies of the yeast strain S288C 
and E. coli strain ST540 were used as the true assemblies for yeast 
and E. coli respectively.

2.9. Applications of de novo genome assembly

The de novo genome assembly approach was employed for the 
yeast strain Hm-1 (accession number: GCA_003569725.1) [53]
which has both NGS PE reads and a scaffold genome assembly. In 
this application, our assembly approach was used to construct a de 
novo genome assembly of the strain Hm-1 using the NGS PE reads 
and the reference genomes of the strains ySR128 and ySR127, and 
the result was compared with the downloaded assembly. The used 
parameter values for read clustering are described in Table S2.

Additionally, the contig assemblies and corresponding PE reads 
of two bacteria (Pseudomonas syringae pv. syringae strain 2340 and 
the Lactobacillus plantarum strain IYO1511) were downloaded (ac-
cession number: GCA_001535725.1 and GCA_011170185.1 respec-
tively) [36,54] and used similarly for the above yeast Hm-1 strain. 
The strains B728a and CFBP4215 were used as references for strain 
2340 and the strains TMW 1.1478 and LB1–2 were used as references 
for the strain IYO1511. All genome assemblies were obtained from 
NCBI (accession numbers are listed in Table S1).

The quality of assemblies was assessed by assembly contiguity 
using N10 to N90 values, and completeness through the scores cal-
culated using BUSCO (version 5.3.2) [55]. In this comparison, short 
sequences less than 500 bp were ignored, and QUAST was not used 
because of the absence of a true assembly.

3. Results

3.1. Simulated read-based evaluation of the RBRC clusters

Based on the genome sequences of the yeast strain S288C, a total 
of 597554, 1195090, 3585270, and 5975450, PE reads were simulated 
using four different sequencing depths, 5x, 10x, 30x, and 50x, re-
spectively. The simulated reads were then clustered by RBRC using 
the genome assemblies of four additional yeast strains, BY4742, 
ySR128, ySR127, and KSD-Yc. In this clustering, a different number of 
references (from two to four) was used by weighting them based on 
the rate of properly mapped reads (Materials and methods, Table 
S3). RBRC produced clusters including more than 99% of the simu-
lated reads in all different settings, and the number of clusters 
numbers ranged from 135 to 1622 depending on the sequencing 
depth and the number of used references (Table 1). The sequencing 
depth was not clearly correlated with the number of clusters, 
whereas the number of clusters increased as the number of refer-
ences increased. The simulated read datasets were also clustered by 

Table 1 
Statistics of clusters generated by RBRC using simulated read datasets of the yeast 
strain S288C. 

Sequencing 
depth

No. of 
references

No. of 
clustered 
reads

% of 
clustered 
reads

No. of final 
clusters

5x 2 596,576 99.84 508
3 596,550 99.83 647
4 594,124 99.43 1,622

10x 2 1,193,862 99.90 135
3 1,193,460 99.86 148
4 1,189,390 99.52 357

30x 2 3,582,470 99.92 155
3 3,581,808 99.90 193
4 3,573,336 99.67 739

50x 2 5,970,964 99.92 149
3 5,970,182 99.91 224
4 5,957,698 99.70 1,033
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USEARCH, which only considers the similarity of read sequences 
(Materials and methods). In this case, a very larger number of 
clusters (from 160044 to 594187) was created, and a varying number 
of reads (around from 70% to 100%) were included in those clusters 
in different settings (Table S4). In addition, a greater number of reads 
was clustered as the sequencing depth increased.

The primary goal of our clustering is to group reads from the 
same genomic regions in order to make the clustered reads for local 
de novo genome assembly. Therefore, the quality of generated clus-
ters was assessed by calculating and comparing entropy (Materials 
and methods). Entropy is a natural measure for assessing the purity 
of reads, in terms of cluster membership. Good cluster is one that 
contain all reads from a specific genomic region. One limitation of 
entropy is the tendency that a smaller cluster is advantageous to 
have lower entropy. In an extreme case, if there is only one read in a 
cluster, its entropy is zero. Therefore, for fair comparison, an average 
entropy of clusters with similar size was calculated and compared. 
As shown in Fig. 2, the entropy scores of the RBRC clusters were 
clearly lower than those of USEARCH clusters in all sequencing 
depths except for clusters with a very small number of reads. In 
addition, the size of a cluster did not play a critical role in reducing 
the purity of RBRC clusters, which was improved as a larger number 
of reads are included in a cluster in all sequencing depths. These 
results indicate that reference-based read clustering is highly ef-
fective in grouping reads generated from similar genomic regions, 
which cannot be obtained with read sequence similarity alone.

A similar evaluation was also conducted with simulated read 
sequences from the bacterial genome sequence of the E. coli strain 
ST540 (Materials and methods). The statistics of read clusters by 
RBRC and USEARCH are available in Tables S5-S7, and the result of 
quality assessment of clusters, which has a similar pattern as the one 
of the yeast datasets, are shown in Fig. S2.

3.2. De novo genome assembly-based evaluation of the RBRC clusters

A de novo assembly of the yeast strain S288C was constructed 
(Materials and methods, Fig. S1) with the read clusters generated by 
RBRC based on two references. The quality of our genome assembly 
was then compared with another genome assembly generated 
without the read cluster information (Materials and methods).

For all cases of various sequencing depths, the use of read clus-
ters showed a decrease in the number of contigs (Fig. 3a) with a 
slight increase in the total contig length (Table S8). The decrease 
became more apparent when greater sequencing depth was used. 
For example, in the case of the 50x dataset, the number of contigs 
was reduced by more than 17% (from 193 to 160). Moreover, it shows 
that the read cluster information is critical to produce longer contigs 
(Fig. S3). For example, N50 increased from 177 Kbp to 254 Kbp in the 
case of the 50x dataset when the read cluster information is in-
corporated in the assembly step. This gap became more apparent as 
longer contigs in each assembly were compared (toward N10 values 
in Figs. 3b and S3).

In addition, assembly contiguity increased remarkably with in-
creasing sequencing depth when the read cluster information was 
used (Fig. 3b). The improved assembly contiguity affected negatively 
on the number of misassemblies when 5x read dataset was used 
(Fig. 3c). However, the effect became almost negligible when a 
deeper sequencing dataset was used. There was a dramatic increase 
in the overall assembly quality (NA50) that accounts for both as-
sembly contiguity and the number of misassemblies when the read 
cluster information was used, especially with the use of a deeper 
sequencing dataset (Fig. 3d). Similar patterns were also observed for 
E. coli read dataset (Table S9). Overall, these results show that the 
RBRC read clusters are very useful to improve the quality of the de 

Fig. 2. Evaluation of read clusters generated from the simulated reads of the yeast strain S288C. The entropy of each cluster was calculated, and the average entropy (y-axis) of 
clusters with a similar size (x-axis) was plotted for four datasets with different sequencing depth, 5x (a), 10x (b), 30x (c), and 50x (d). In the case of RBRC, the number after “REF” 
represents the number of references used for read clustering in the legend. In the case of USEARCH, the similarity parameter cutoff is displayed as the number after the “-” symbol 
in the legend.
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novo genome assembly for newly sequenced microbial strain gen-
omes even with low sequencing depth.

3.3. De novo genome assembly of additional microbial strains using the 
RBRC clusters

The RBRC algorithm was applied to de novo genome assembly for 
additional one fungal strain and two bacterial strains with real PE 
sequencing data (Materials and methods). For the Saccharomyces 
cerevisiae strain Hm-1, the strains ySR128 and ySR127 were used as 
references (Table S10). Among the total of 4100970 qualified PE 
reads, 98.47% of reads were grouped into 489 clusters (Table 2). The 
read clusters were then used to generate the genome assembly of 
the Hm-1 strain, and its quality was compared with the existing 
genome assembly of the same strain downloaded from NCBI (Ma-
terials and methods). When the RBRC clusters are used, the con-
tiguity and completeness of the assembly were increased compared 
with the NCBI assembly (Table S11). Although the number of scaf-
folds increased from 225 to 258, the overall contig lengths including 
the largest one increased, and total gap size was decreased from 
6344 to 2161. In terms of assembly contiguity, the RBRC clusters 
were very effective to increase the length of assembled sequences in 

all different length range compared with the NCBI assembly, and the 
improvement became larger especially when longer sequences were 
compared (Fig. 4a). Furthermore, such improvement of assembly 
contiguity was achieved without scarifying the assembly com-
pleteness (Fig. 4b). These patterns were also observed when the 
assembly approach using the RBRC clusters was applied for the 
bacterial strains, Pseudomonas syringae pv. syringae strain 2340 and 
Lactobacillus plantarum strain IYO1511 (Tables S12 and S13).

4. Discussion

We present a novel read-clustering algorithm for microbial 
strains called RBRC, by integrating the read proximity information 
from the genome sequences of the strains of the same species. RBRC 
does not directly use the physical sequence overlap information 
between two reads. Instead, it estimates and uses the proximity 
information of two reads based on (i) the organization of the reads in 
conserved genomic regions among strains of the same species and 
(ii) their predicted distance, obtained by considering their distance 
in the genomes of other strains. Proximate reads sequenced from 
close genomic regions could be grouped using RBRC, even though 
the reads in the same cluster did not have physical sequence overlap.

Fig. 3. Evaluation of assemblies constructed from simulated read datasets of the yeast strain S288C with two references. Two sets of contigs were generated (i) using the RBRC 
algorithm (“RBRC” in legend) and (ii) without using the read cluster information (“NC” in legend); they were then assessed according to the number of contigs (a), assembly 
contiguity (b), the number of misassemblies (c), and NA50 (d).

Table 2 
Clustering statistics for sequencing reads of microbial species. 

Statistics Saccharomyces cerevisiae strain Hm-1 Pseudomonas syringae pv.syringae strain 2340 Lactobacillus plantarum strain IYO1511

No. of total reads 4,100,970 5,664,928 2,668,446
No. of clustered reads 4,038,368 5,076,964 2,510,548
% of clustered reads 98.47 89.62 94.08
No. of clusters 489 991 235
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The quality of predicted read clusters was measured using en-
tropy. Since the entropy has a bias towards small-sized clusters, the 
predicted read clusters were partitioned into multiple bins based on 
their size (the number of reads in a cluster), and the entropy of 
clusters with similar size was compared. As expected, clustering 
using only sequence similarity failed to produce clusters with large 
number of reads, which can be localized together into the same 
genomic region. For example, more than 98% of read clusters gen-
erated by USEARCH with similarity parameter 0.7 for 50x yeast da-
taset consisted of less than 20 reads, and there was no cluster 
contained more than 500 reads (Fig. 2d). Moreover, their entropy 
was about three-fold larger than RBRC clusters in most of cluster 
sizes. Therefore, read clusters generated by the similarity-based 
clustering method can only provide limited information for genome 
assembly. On the other hand, the read clusters generated by RBRC 
show the overall low entropy despite their large size, and they can be 
more effectively used to construct a more complete and contiguous 
genome assembly (Figs. 3 and 4).

To maximize the usability of the read clusters generated by RBRC, 
a genome assembly approach based on RBRC read clusters was de-
veloped. This approach is similar with a hybrid genome assembler in 
the sense that longer read sequences are generated from the given 
short read sequences and they are used together to construct a 
genome assembly. However, our approach does not require long read 
sequences as input because they are generated internally. This is a 
cost-effective difference of our approach compared with general 
hybrid genome assemblers. When the assembly approach was ap-
plied to the simulated read datasets, it was able to improve the 
quality of genome assembly. For example, when the 50x yeast da-
taset was used, longer scaffold sequences were produced without 
containing misassembled regions compared with genome assem-
blies generated without using the RBRC read clusters (Fig. 3). The 
improvement gap in terms of assembly contiguity and misassembly 
became larger when the sequencing depth of the used datasets be-
came greater. The assembly approach with RBRC read clusters was 

also successfully applied to de novo assembly for fungal and bacterial 
sequencing reads (Fig. 4, Tables S11-S13). For all sequencing datasets, 
RBRC showed increased assembly contiguity with high assembly 
quality scores measured by BUSCO. Our results indicate that RBRC 
can be used to upgrade many previously sequenced and assembled 
microbial genomes without additional sequencing data.

5. Conclusions

RBRC is a very useful read-clustering algorithm that can be easily 
used to generate high-quality genome assemblies of microbial 
strains when genome assemblies of related strains are available. It 
can be used not only to create high-quality de novo genome as-
semblies of microbial strains using only short-read sequencing data, 
but also to upgrade existing genome assemblies constructed based 
on short reads due to the absence of long reads. The potential con-
tribution of this clustering algorithm will continue to increase as 
more high-quality genome assemblies of various microbial strains 
are accumulated.
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