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Abstract: In the growing polymer industry, the interest of researchers is captivated by bioplastics
production with biodegradable and biocompatible properties. This study examines the polyhydrox-
yalkanoates (PHA) production performance of individual Lysinibacillus sp. RGS and Ralstonia eutropha
ATCC 17699 and their co-culture by utilizing sugarcane bagasse (SCB) hydrolysates. Initially, acidic
(H2SO4) and acidified sodium chlorite pretreatment was employed for the hydrolysis of SCB. The
effects of chemical pretreatment on the SCB biomass assembly and its chemical constituents were
studied by employing numerous analytical methods. Acidic pretreatment under optimal conditions
showed effective delignification (60%) of the SCB biomass, leading to a maximum hydrolysis yield of
74.9 ± 1.65% and a saccharification yield of 569.0 ± 5.65 mg/g of SCB after enzymatic hydrolysis. The
resulting SCB enzymatic hydrolysates were harnessed for PHA synthesis using individual microbial
culture and their defined co-culture. Co-culture strategy was found to be effective in sugar assimilation,
bacterial growth, and PHA production kinetic parameters relative to the individual strains. Further-
more, the effects of increasing acid pretreated SCB hydrolysates (20, 30, and 40 g/L) on cell density and
PHA synthesis were studied. The effects of different cost-effective nutrient supplements and volatile
fatty acids (VFAs) with acid pretreated SCB hydrolysates on cell growth and PHA production were
studied. By employing optimal conditions and supplementation of corn steep liquor (CSL) and spent
coffee waste extracted oil (SCGO), the co-culture produced maximum cell growth (DCW: 11.68 and
11.0 g/L), PHA accumulation (76% and 76%), and PHA titer (8.87 and 8.36 g/L), respectively. The
findings collectively suggest that the development of a microbial co-culture strategy is a promising
route for the efficient production of high-value bioplastics using different agricultural waste biomass.

Keywords: Lysinibacillus sp. RGS; Ralstonia eutropha ATCC 17699; co-culture strategy; sugarcane
bagasse; acid pretreatment; polyhydroxyalkanoates production
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1. Introduction

Synthetic plastics have multiple applications in the modern world such as in food
packaging, automotive industry, sports materials, agricultural, biomedical apparatus, and
electronic materials. Global plastic production extended to 359 million metric tons in 2018,
equated to 200 in 2002 and 50 in 1976 [1]. However, being resistant to degradation, large
amounts of plastic waste discarded primarily in open landfills and dumpsites inflict severe
impacts on the natural ecosystem, human health, and the environment [2,3]. Furthermore,
conventional thermal recycling of used plastic products also has limitation of releasing toxic
residues, such as dioxins, hydrogen chloride, and sulfur oxides, during their degradation [4].
These critical issues have sparked an immediate response from the global community for
producing alternatives with functionally similar material that are readily biodegradable
without compromising workability and convenience [5,6]. Polyhydroxyalkanoates (PHA)
are microbial polyesters and have great potential for developing sustainable and eco-
friendly materials such as bioplastics [7]. PHA is biosynthesized by the polymerization of
hydroxyalkanoates (HAs), wherein the hydroxyl (–OH) groups are usually present at the
β-carbon of the polymer [8]. A wide range of bacteria can accumulate PHAs as granules in
the cytoplasm with a size of approximately 0.2–0.5 µm under an inadequate quantity of
nutrients and the availability of rich carbon sources [9]. Their excellent physicochemical
properties, such as toughness, strength, flexibility, and thermo-mechanical characteristics,
make PHA a promising and sustainable alternative to synthetic plastics [7,9,10]. PHA is
widely utilized in various industries, such as pharmaceuticals, health, and agriculture, for
many applications (Figure 1).
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Although microbes capable of producing PHA are naturally present in various envi-
ronments, only a few are efficient enough to produce these polyesters with high production
rates and efficiency [11]. Some of the most common and industrially essential microbes
studied for PHA production include Ralstonia eutropha, Bacillus megaterium, Lysinibcaillus
sp., Cupriavidus nector, Pseudomonas aeruginosa, and Pseudomonas fluorescens [5,6,10]. There
are many techno-economic challenges for commercial-scale PHA production, primarily
high production cost and limited productivity. The carbon source is one of the foremost
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issues distressing PHA production at an industrial scale, since it directly affects cell growth,
production efficiency, molecular mass, superiority, and configuration [11,12]. To overcome
these issues, various waste feedstock materials, for example, waste fluxes generated from
food, milk, and sugar processing industries and agricultural residues, were attempted for
PHA synthesis [5,11]. In addition to this, to enhance PHA production, various strategies,
including isolation of new robust production strains, improvement of the strains employing
genetic engineering, feedstock selection, fermentation technology, and bioreactor design,
have been well studied [6,12].

Moreover, mixed bacterial cultures are extensively considered for PHA production
using different waste biomass resources. This process, which does not require sterile condi-
tions, can utilize waste substrates effectively and further converts into PHA, making the
process cost-effective [13]. However, in this PHA production process, sustaining microbial
concentrations and governing the optimum constancy of the microorganisms in the fer-
mentation media are complex [14]. During the extraction of juice from sugarcane, a fibrous
residue of sugarcane bagasse (SCB) equivalent to 540 million metric tons per year globally
is generated [15]. To make the process more economical, eco-friendly, and sustainable
in this study, abundant SCB has been selected as a potential carbon substrate for PHA
production. However, direct consumption of SCB by microorganisms is problematic due to
the fact of their compact structure and the presence of lignin. Therefore, various physical,
chemical, and physicochemical pretreatment methods have been studied in hydrolysis of
lignocellulosic biomass [16]. Recently, some investigators showed the potential of innova-
tive green solvents, mainly ionic liquids and deep eutectic solvents for the pretreatment
of lignocellulosic biomass. The results are satisfactory but some challenges still remain
including their cost, recyclability, effects of water, and limits their applications at the large
scale [17,18]. Acid pretreatment was found to be efficient for hydrolysis and delignifica-
tion of biomass, but it produces various inhibitors during this process which adversely
affects the enzymatic hydrolysis and microbial fermentation processes. Because of this, the
effective assimilation of biomass and PHA production using pure microbial culture are
difficult. Considering this, we developed a defined co-culture of Ralstonia eutropha ATCC
17699 and isolated Lysinibacillus sp. RGS, which are well-recognized PHA producers [10,19].
This study assessed the capability of defined co-culture using chemically pretreated SCB
hydrolysates as a probable carbon substrate for PHA production. Co-culture studies also
assessed the effects of increasing SCB hydrolysates and supplementation of cost-effective
nutrients and VFAs to enrich cell growth and PHA synthesis. The development of a co-
culture strategy could be helpful for the effective utilization of SCB and significant PHA
production by which the process becomes sustainable, cost-effective, and eco-friendly.

2. Materials and Methods
2.1. Biomass and Chemicals

Sugarcane bagasse was collected from the local sugar industry, GS-Caltex, South Korea.
The substrate was dried to eradicate moisture and a constant weight was attained. The
dried biomass was further sheared into small pieces, sieved to obtain a particle size of
approximately 0.5 mm, and stored at room temperature. The other required chemicals used
in the experimentations were of high purity analytical grade (AR).

2.2. Chemical Pretreatment of SCB and Enzymatic Hydrolysis

Acid pretreatment was conducted by combining SCB with H2SO4 with 1% (w/v)
concentration at 121 ◦C for 15 min, whereas acidified sodium chlorite pretreatment was
performed adopting 0.4 g sodium chlorite and 0.2 mL acetic acid per gram of SCB with
periodic mixing at 80 ◦C in a fume hood [20]. In each pretreatment, the ratio of SCB
biomass to the liquid phase was retained at 1:10. The resulting pretreated SCB biomass
was washed thoroughly with water as long as the pH of the reaction solution was neutral.
Each pretreated biomass was separated using vacuum filters and dried at 60 ◦C till a
persistent weight was attained. The untreated (autoclaved at 121 ◦C for 15 min without
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any chemical agent) and chemically pretreated SCB biomass was assessed immediately for
its chemical composition by employing previously described standard methods [21]. The
structural configuration changes of untreated and each chemically treated SCB biomass
were observed. Images were taken by SEM JEOL JSM-6360A microscope (JEOL, Tokyo,
Japan) using the standard protocol. Fourier transform infrared (FTIR) spectra of SCB
biomass were performed using FTIR spectroscopy (Cary 630; Agilent, Santa Clara, CA,
USA). The spectra were documented from 4000 to 400 cm−1 through the typical scan of
16 scans at a resolution of 4 cm−1. X-ray diffraction (XRD) examination of SCB biomass
was performed with a scanning rate (2◦/min) in the range of 10◦–50◦ by using D2 Phaser
tabletop model at 30 kV (Bruker, Billerica, MA, USA). The crystallinity changes during
chemical pretreatment were determined by quantifying the crystallinity index (CrI) using
the standard protocol [22].

2.3. Enzymatic Hydrolysis of Pretreated SCB

Enzymatic saccharification of untreated and each chemically pretreated SCB biomass
was conducted in 100 mL Erlenmeyer conical flask containing 2.0% (w/v) biomass in 20 mL
of 50 mM citrate buffer (pH 5.0) with 0.005% (w/v) sodium azide and the enzyme loading of
cellulase from Trichoderma reesei ATCC 26921 of 20 FPU/g of SCB. The reaction solution was
further placed at 50 ◦C for 24 h under shaking conditions (150 rpm). The sample aliquots
were withdrawn at the function of time and measured saccharification yield in terms of
reducing sugar production after enzymatic hydrolysis by standard dinitrosalicylic acid
technique [23]. In addition, the overall hydrolysis and glucose yields were assessed by
following the standard methodology reported earlier [10]. The resulting SCB enzymatic
hydrolysates were concentrated by heating the solution at 80 ◦C, followed by centrifugation
and PHA production.

2.4. Development of Microbial Co-Culture of Lysinibacillus sp. and Ralstonia eutropha

The strain Ralstonia eutropha ATCC 17699 was obtained from ATCC (Manassas, VA,
USA) whereas Lysinibacillus sp. RGS was isolated from the soil [19]. Pure culture of R.
eutropha and Lysinibacillus sp. was preserved on nutrient agar slants. Later, R. eutropha and
Lysinibacillus sp. were grown in a 250 mL Erlenmeyer flask containing 100 mL tryptic soy
bbroth without dextrose (TSB; Becton Dickinson) and nutrient broth ((g/L): beef extract,
3; peptone, 10; NaCl), respectively. Both cultures were cultivated at 37 ◦C for 36 h, un-
der shaking environments (100 rpm). Afterwards, cells were collected by centrifugation
(5400× g; Hanil, Seoul, Korea) followed by washing two times with phosphate-buffered
saline (PBS) solution. The microbial co-culture of R. eutropha and Lysinibacillus sp. was
developed by aseptically transferring the 1.0 mL suspension of each preculture transferred
to the PHA fermentation media. While for individual culture, 2.0 mL suspension was
transferred to the PHA production medium to maintain the same cell count in the monocul-
ture and defined co-culture. The PHA production medium had the following composition
(g/L) with addition of SCB biomass hydrolysate with designated quantities underneath:
NaH2PO4, 3.6; Na2HPO4, 2.84; K2SO4, 3.486; NaOH, 0.4; yeast extract, 0.2; MgSO4·7H2O,
0.39; CaCl2, 0.062; (NH4)2SO4, 0.1; CuSO4·5H2O, 0.005; ZnSO4·7H2O, 0.024; MnSO4·H2O,
0.024; FeSO4·7H2O, 0.15; pH 7.0.

2.5. PHA Production Using Chemically Pretreated SCB Hydrolysates by Individual and
Co-Culture Microbial System

Initially, the isolated Lysinibacillus sp. and R. eutropha and their defined co-culture
were inoculated in a PHA production medium containing each chemically pretreated SCB
hydrolysates with a concentration of 20 g/L. The inoculated flasks were incubated at 37 ◦C
under shaking conditions (100 rpm) for 48 h. In addition, the PHA production performance
of microbial co-culture was investigated by taking an elevated concentration of 1% H2SO4
pretreated SCB hydrolysates (20, 30, and 40 g/L). Lastly, the effects of nutrient and volatile
fatty acid supplementation with 1% H2SO4 pretreated SCB hydrolysates (20 g/L) to accel-
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erate bacterial growth and PHA accumulation using microbial co-culture were thoroughly
examined. The bacterial cell progress and PHA production kinetics parameters were stud-
ied using the earlier detailed procedure. The dry cell weight of pure and co-culture during
fermentation was performed by collecting the cells by centrifugation. The obtained cell
pellets were washed with hexane and distilled water. The resulting cell pellets were later
lyophilized, and then the dry cell weight (DCW) was measured. After 48 h of fermentation,
the bacterial cells were separated. PHA was extracted from lyophilized bacterial cell pow-
der by dispersion of chloroform in a sodium hypochlorite solution followed by its retrieval
using 80% methanol precipitation and filtration method [19].

The cell growth and PHA production parameters were calculated by employing the
following formulas:

Residual biomass (g/L) = Dry cell weight (DCW) − Extracted quantity of PHA (g/L) (1)

PHA accumulation (%) =
Extracted quantity of PHA (g/L)

Dry cell weight (g/L)
× 100 (2)

PHA productivity (Q p) =
PHA final quantity (g/L)

Fermentation period (48 h)
(3)

PHA yield coefficient owing to cell biomass (Y p/b) =
PHA final quantity (g/L)

Dry cell weight (g/L)
(4)

PHA yield coefficient owing to substrate consumption (Y p/s) =
PHA final quantity (g/L)

SCB hydrolysates utilized (g/L)
(5)

2.6. Statistical Analysis

The obtained results were determined using one-way analysis of variance (ANOVA)
followed by Tukey’s HSD test in the GraphPad InStat version 3.06 software GraphPad
Software Inc., San Diego, CA, USA). A threshold of p = 0.05 was deliberated significantly to
evaluate differences between means.

3. Results and Discussion
3.1. Preparation of Sugarcane Bagasse Feedstock for PHA Production

Lignocellulosic biomass (LC) was reflected as an abundant, sustainable, and cost-
effective carbon substrate for PHA production. It was estimated that accessible LC biomass
is approximately 150 billion tons per year globally [24]. However, the presence of lignin
and the structural complexity of LC biomass are limiting factors for its efficient utilization.
Thus, for the effective exploitation of LC biomass and its enzymatic saccharification, it
is obligatory to develop chemical pretreatment methods to disrupt the structure of LC
biomass. Moreover, PHA production economies using LC biomass relies on a substrate,
choice of pretreatment, hydrolysis method, and fermentation conditions. Acid pretreatment
was found to be an effective chemical pretreatment method that leads to solubilization of
hemicellulose content and removal of lignin from the biomass. Additionally, acid chlorite
pretreatment, a mixture of sodium chlorite and acetic acid (ASC), was found to be competent
for removing lignin with a lower loss of polysaccharide components of biomass [25].

Sugarcane bagasse is one of the abundant byproducts of sugar industries, having
30–50% cellulose content and, thus, can be deliberated as a suitable substrate for PHA
production [26]. Initially, SCB was exposed to acid (1% H2SO4) and ASC pretreatment,
wherein acid pretreatment was found effective in lignin removal (60%) compared to ASC
pretreatment (36.5%). There was a sharp upsurge in cellulose content from 38.8% to 58.9%
and 50.5% in acid and ASC pretreatment, respectively (Figure 2a).
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Figure 2. Effects of acidic (1% H2SO4) and acidified sodium chlorite pretreatment on the (a) chemical
composition and (b) saccharification yield of sugarcane bagasse.

The results confirmed that acid (1% H2SO4) pretreatment was effective for the deligni-
fication of SCB by which cellulose and hemicellulose components became more accessible
for enzymatic hydrolysis. The details of the biochemical constituents of SCB before and
after each chemical pretreatment are presented in Figure 2a and Table 1. Enzymatic hy-
drolysis of pretreated biomass and effective saccharification are vital factors for lucrative
PHA production. Acid (1% H2SO4) pretreated biomass gave a significant saccharification
yield (569.0 ± 5.65 mg/g of SCB) with substantial hydrolysis yield (74.9 ± 1.65%) and
glucose yield (87.8 ± 1.14%) (Figure 2b, Table 1). The attained saccharification yield of SCB
(74.9 ± 1.65%) appeared to be greater relative to sulphuric acid pretreated SCB (30.7%) [27].

3.2. Analytical Characterization of Chemically Pretreated SCB Biomass

The modifications in crystallinity, chemical functional groups, and exterior structure
of SCB after each chemical pretreatment were studied using standard XRD, FTIR, and
SEM analytical tools. XRD is a vital analytical tool to determine changes in the crystalline
index (CrI) suited to dictate the efficiency of selected pretreatment for the hydrolysis of
SCB. After acid pretreatment, a sharp escalation in CrI was observed; conversely, a modest
improvement in CrI was recorded in ASC pretreatment (Figure 3a). The results suggest that
acid pretreatment is significant for lignin removal and exposes the cellulose content for the
enzymatic hydrolysis. Similar observations were observed in lime pretreated SCB and acid
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pretreated corn stover [28,29]. FTIR spectrum of untreated and each pretreated SCB was
recorded. An increase in width and symmetry in the region of 3200 and 3400 cm−1 indicates
the dissociation of the cellulosic structure of SCB biomass (Figure 3b), whereas changes in
the peak intensity at 2915 cm−1 indicate –CH2 stretching and rupture of cellulose [30].

Table 1. Effect of acidic (1% H2SO4) and acidified sodium chlorite (ASC) pretreatment on chemical
components and saccharification of sugarcane bagasse.

Pretreatment Biochemical Components (%) On Enzymatic Hydrolysis

Cellulose Hemicellulose Lignin Enzymatic
Hydrolysis Yield (%) Total Reducing Sugar

No pretreatment 38.80 ± 0.85 28.82 ± 0.68 24.70 ± 0.68 7.44 ± 0.32 50.0 ± 1.38

Acid (1% H2SO4) 58.91 ± 1.28 17.22 ± 0.42 9.82 ± 0.32 74.90 ± 1.65 569.0 ± 5.65

ASC 50.50 ± 0.88 17.54 ± 0.41 16.02 ± 0.44 62.10 ± 1.58 422.2 ± 4.98

Values are the mean of three experiments ± SEM. One-way ANOVA determined statistics with Tukey–Kramer
multiple comparisons test.
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Figure 3. (a) X-ray diffraction pattern; (b) FTIR spectra; (c) SEM micrographs of sugarcane bagasse
before and after ASC and acid (1% H2SO4) chemical pretreatment.

Similarly, a sharp decrease in intensity at approximately 1652 cm−1 demonstrated
lignin removal, since this peak was attributed to the stretching vibration of aromatic
rings and phenyl ester side-chain C=O bonds of lignin (Figure 3b). The other peak at
1056 cm−1 changed, referring to the removal of amorphous cellulose [16]. The surface
morphological changes were studied using SEM. In the SEM images of untreated SCB, the
surface was smooth and precise, whereas in acid pretreated SCB, the surface was rougher
and became more permeable than ASC pretreatment (Figure 3c). The surface developed
porous attributable to higher dissociation of SCB biomass. The analytical results suggest
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that in acid pretreatment, there was significant elimination of lignin and hemicellulose by
which cellulose content is highly available for enzymatic hydrolysis resulting in superior
saccharification yield.

3.3. PHA Production Studies

The global bioplastics market demonstrates incredible growth in manufacturing sus-
tainable products for various applications. The production of PHA using various lignocel-
lulosic biomass is especially advantageous in achieving simultaneous resource recovery
and pollution prevention, and it makes the process fruitful and eco-friendly. However,
during acid and ASC pretreatment of SCB, some toxic compounds, for instance, furfural
and hydroxymethylfurfural, formic, acetic acid, and various lignin degraded aromatics,
are generated, which directly influences the microbial growth during fermentation and
consequently PHA production [31,32]. To overcome the effects of fermentation inhibitors
in the SCB hydrolysates, many investigators have proposed some solutions, mainly, adap-
tation of potential microbial strains to the inhibitors [31,33]; detoxification of hydrolysates
before PHA production [34]; addition of a higher quantity of inoculum size for effective
PHA production [27]. Ralstonia eutropha showed less capability to utilize 5C sugars and
oligosaccharides in LC biomass hydrolysates. However, this strain exhibited the potential
to grow on the fermentation inhibitors generated during pretreatment and to produce
PHA [27]. Furthermore, some Bacillus species showed the ability for higher assimilation of
xylose relative to glucose for their growth and PHA production [35,36]. A co-culture system
is widely utilized for bioremediation of contaminants, wastewater treatment, bioenergy,
and value-added chemicals production [37,38]. For the efficient utilization of chemically
pretreated LC biomass hydrolysates and PHA production, using individual culture has
limitations. It was observed that the buildout of microbial co-culture of different species
with diverse metabolic activities would be a viable solution for effective LC biomass to
PHA conversion accompanied by desired co-polymers production [39–41].

Considering this perspective, this study demonstrated the viability of producing PHA
polymers using monoculture of R. eutropha, Lysinibacillus sp., and their defined co-culture
using chemically pretreated SCB enzymatic hydrolysates. During this study, SCB enzymatic
hydrolysates of each chemical pretreatment were utilized without applying a detoxification
procedure for PHA production. By keeping the acid and ASC pretreated SCB hydrolysate
concentration constant (20 g/L), individual Ralstonia eutropha and Lysinibacillus sp. showed
less sugar consumption and cell growth and PHA accumulation compared to the co-
culture. Figure 4 portrays the cell growth and PHA production kinetics parameters using
monoculture and co-culture using ASC and acid pretreated SCB hydrolysates. Maximum
sugar consumption was observed in ASC pretreated (80%) relative to acid pretreated (78%)
SCB enzymatic hydrolysates, although PHA accumulation is higher in acid pretreated
hydrolysates (Figure 4a,c). The maximum DCW (8.45 and 9.12 g/L), PHA accumulation
(68 and 70 %), and PHA titer (8.45 and 9.12 g/L) were observed in ASC and acid pretreated
hydrolysates by applying a co-culture system (Figure 4b,d). The synergistic metabolic
activities between microbial co-culture counteract internal and external distresses, leading
to superior substrate utilization and PHA production [42,43]. The PHA synthesis and
bacterial cell growth were found to be greater in acid pretreated SCB hydrolysates, so
further investigation was carried out using the acid pretreated SCB hydrolysates. The
initial results confirm that the developed co-culture systems were found to be efficacious
for higher assimilation of SCB hydrolysates and PHA production; nonetheless, more
research is still required to understand the exact mechanism.
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Figure 4. Assimilation of sugar, growth, and PHA productions kinetics parameters by using mono-
culture (LB: Lysinibacillus sp. RGS; RE: Ralstonia eutropha) and their co-culture using (a,b) ASC and
(c,d) acid (1% H2SO4) pretreated SCB enzymatic hydrolysates (each 20 g/L concentration).

3.3.1. Effects of Substrate Concentration

Substrate concentration is an important parameter that directly influences microbial
metabolic activities, microorganisms’ substrate consumption, and their growth coupled
with PHA production. Thus, optimization of substrate concentration is essential to attain
maximum cell growth and PHA synthesis. For that reason, different concentrations of
acid pretreated SCB hydrolysates (20, 30, and 40 g/L) were systematically investigated on
co-culture growth and PHA synthesis. The results have been presented in Table 2. The
outcomes proposed that co-culture can efficiently assimilate sugars with higher growth
and PHA production up to 30 g/L of acid pretreated hydrolysates. However, with a further
increase in hydrolysate concentration, no considerable growth and PHA production was
recorded. These inhibitory effects are conceivably due to the osmotic pressure from the
higher concentration of sugar and fermentation inhibitors in SCB hydrolysates. Similar
observations were observed in other PHA production studies specifically; using sugarcane
molasses by Bacillus megaterium strain [44]; using horticultural waste hemicellulosic hy-
drolysate by isolated Candida athensensis SB18 [45] and using corn stover by Paracoccus sp.
LL1 [46].

3.3.2. Effects of Cost-Effective Nutrients Supplementation in PHA Production Media

To make the LC biomass to PHA production process economical and sustainable,
higher assimilation of LC hydrolysates with greater cell densities and volumetric produc-
tivities is needed. Considering this viewpoint, acid pretreated hydrolysates (20 g/L) with
cost-effective nutrient supplements (1%) such as cottonseed cake (CSC) and groundnut
cake (GNC), corn steep liquor (CSL), and spent coffee ground extracted oil (SCGO) were
evaluated to improve cell density and PHA production. Among the nutrient supplements,
CSL and SCGO were found to be beneficial in increasing cell growth (28% and 20%), PHA
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synthesis (8.5% and 8.5%), and PHA yield (39% and 31%) relative to control without any
nutrient supplementation (Figure 5). At the same time, other nutrient supplements in-
cluding GNC and CSC were found not to be productive for both parameters. Worldwide
millions of tons of spent coffee grounds (SCG) waste product are generated from coffee
consumption [47]. It was supposed that the bioactive compounds of the CSL and SCGO
could be advantageous for microbial growth and PHA production. Obruca et al. [48]
explored the potential of Cupriavidus necator H16 for the successful production of PHA
using spent coffee oil as a substrate. The initial results recommend that supplementation of
CSL and SCGO is favorable to attain maximum cell density and for large-scale LC biomass
PHA production.

Table 2. Assimilation of sugar, growth, and PHA productions kinetics parameters utilizing different
concentrations of acid pretreated SCB enzymatic hydrolysates (20, 30, and 40 g/L) by co-culture of
Lysinibacillus sp. RGS and Ralstonia eutropha.

Parameters
Acid Pretreated SCB Enzymatic Hydrolysates

Concentration (g/L)

20 30 40

Fermentation period (h) 48 48 48

Total Sugar assimilation (%) 78.0 ± 1.54 84.0 ± 1.65 80.0 ± 1.72

Dry cell weight (DCW, g/L) 9.12 ± 0.38 14.24 ± 0.65 16.32 ± 0.71

Residual biomass (g/L) 2.74 ± 0.28 3.99 ± 0.32 5.23 ± 0.26

PHA accumulation (%) 70.0 ± 2.50 72.1 ± 2.15 68.2 ± 1.98

PHA titer (g/L) 6.38 ± 0.25 10.25 ± 0.42 11.09 ± 0.52

Qp g PHA/L/h 0.132 ± 0.001 0.213 ± 0.001 0.231 ± 0.001

PHA yield (g/g) 0.409 ± 0.001 0.406 ± 0.001 0.346 ± 0.001
Values are the mean of three experiments; (±) standard error; (SE) by one-way ANOVA with Tukey–Kramer
multiple comparisons test.
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Figure 5. Effects of supplementation of inexpensive nutrient supplements with acid pretreated
SCB enzymatic hydrolysates (20 g/L) on sugar assimilation, growth, and PHA productions kinetics
parameters by defined microbial co-culture of Lysinibacillus sp. RGS and Ralstonia eutropha.
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3.3.3. Effects of Individual Volatile Fatty Acid Supplementation in PHA Production Media

After anaerobic digestion of waste biomass, biogas, and acidogenic effluents (VFAs;
mainly acetate, butyrate, propionate, and valerate) are generated, leading to environmental
pollution. The utilization of VFA as a supplement in PHA production makes the process
more successful and alleviates environmental problems. In the case of supplementation of
individual VFA in the fermentation media, acetate and butyrate can induce bacterial growth
(8.0% and 5.8%) and PHA production (15.6% and 14.8%) as compared to the control without
any VFA (Figure 6). It was supposed that acetate and butyrate may act as intermediate
metabolites which induce the PHA production pathway, leading to an increase in bacterial
cell growth and PHA synthesis. However, lactate was found to be less productive, and
valerate showed inhibitory results in both parameters (Figure 6). To understand the exact
mechanism of VFA in cell growth and PHA production, more research is still required.
In other studies, the supplementation of organic and inorganic nitrogen sources, nutrient
supplements, and VFAs were found to be productive in PHA synthesis [47,49–51].
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Figure 6. Effects of supplementation of individual volatile fatty acid with acid pretreated SCB
enzymatic hydrolysates (20 g/L) on sugar assimilation, growth, and PHA productions kinetics
parameters by defined microbial co-culture of Lysinibacillus sp. RGS and Ralstonia eutropha.

Moreover, the obtained DCW, PHA accumulation, and PHA titer by defined co-culture
were higher than other PHA production studies utilizing sugarcane bagasse biomass as a
potential substrate. The details are provided in Table 3.

Table 3. Comparison of cell growth and PHA accumulation by different microbial strains using
sugarcane bagasse as a potential substrate.

Name of
Substrate Type of Pretreatment Microorganism Operation

Mode

PHA Accu-
mulation

(%)

PHA
Concentration

(g/L)
Reference

Sugarcane
bagasse

Ultrasound + alkaline
pretreatment

Lysinibacillus sp.
RGS Batch 61.5 5.31 [19]

Sugarcane
bagasse Acid pretreatment Ralstonia eutropha Batch

50:50 56.7 6.06 [27]
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Table 3. Cont.

Name of
Substrate Type of Pretreatment Microorganism Operation

Mode

PHA Accu-
mulation

(%)

PHA
Concentration

(g/L)
Reference

Sugarcane
bagasse Acid pretreatment Burkholderia glumae

MA13 Batch 14.95 0.09 [31]

Sugarcane
bagasse Acid pretreatment Burkholderia sp. F24 Fed-Batch 49.31 12.25 [33]

Sugarcane
bagasse

Acid pretreatment
Detoxified

Burkholderia cepacia
IPT 048 Fed-batch 53 2.3 [34]

Sugarcane
bagasse

Acid pretreatment +
Detoxified

Burkholderia sacchari
IPT 101 Fed batch 62 2.7 [34]

Sugarcane
bagasse Acid pretreatment

Halogeometricum
borinquense
strain E3

Batch 50.4 1.6 [47]

Sugarcane
bagasse

Biological
pre-treatment with

Pycnoporus coccineus
MScMS1

Bacillus
megaterium Ti3 Batch 65 0.58 [52]

Sugarcane
bagasse Acid pretreatment Bacillus

thuringiensis Batch 39.6 4.2 [53]

Sugarcane
bagasse Acid pretreatment

R. eutropha +
Lysinibacillus sp.

Co-culture
Batch 70.0 6.38 This study

4. Conclusions

In this work, an effective acid pretreatment was used for the preparation of SCB
feedstock and further utilized for PHA production. The strategic approach for the de-
velopment of co-culture stimulated biomass growth with a synchronized increase in the
polymer accumulation using SCB hydrolysates relative to individual microbial culture.
Moreover, supplementation of CSL and SCGO was found productive to achieve higher
cell density with significant PHA productivities. In conclusion, the results suggest that
applying co-culture of potential PHA producing strains with diverse metabolic activities
could be considered as a viable option to achieve higher PHA productivities. This approach
can open new possibilities in developing the performance of microbial PHA in sustainable
biorefinery concepts utilizing different lignocellulosic biomass and its further development.
Additionally, research should be directed towards understanding the molecular mechanism
of enhanced PHA production, cost-effective detoxification procedure and application of
the developed process at an industrial level by designing a suitable bioreactor.
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