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The cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein
present at the cell surface. PrPC N-terminal moiety is intrinsically disordered and
is able to interact with a variety of ligands. Physiological ligands have neurotrophic
activity, whilst others, including protein toxic oligomers, have neurotoxic functions.
These two opposite activities involve different interacting partners and result from
different PrPC-activated signaling pathways. Remarkably, PrPC may be inactivated either
by physiological endoproteolysis and release of the N-terminal domain, or by ectodomain
shedding. Ligand-induced PrPC dimerization or enforced dimerization of PrPC indicate that
PrPC dimerization represents an important molecular switch for both intracellular signaling
and inactivation by the release of PrPC N-terminal domain or shedding. In this review,
we summarize evidence that cell surface receptor activity of PrPC is finely regulated by
dimerization.
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INTRODUCTION
PrPC is a cell surface protein with a bipartite structure: the
N-terminal domain is disordered and the C-terminal domain is
structured and contains three α-helices and two short β-strands
(Wuthrich and Riek, 2001). The physiological function of PrPC

is unclear, but a large body of evidence indicates that PrPC is a
neuroprotective and neurotrophic protein (Linden et al., 2008).
The neuroprotective function of PrPC against different insults
was demonstrated in vitro in primary neurons and in cell lines,
and in vivo (Roucou and LeBlanc, 2005; Lo et al., 2007). In these
studies, PrPC expression was able to slow or halt cell death whilst
PrPC absence did not prevent cell death. In a pioneer investiga-
tion, PrPC expression prevented cell death triggered by serum
deprivation of immortalized hippocampal neurons (Kuwahara
et al., 1999). Subsequent studies provided significant evidence
for the implication of PrPC in cell survival. In addition to these
neuroprotective effects, PrPC regulates cell proliferation, differ-
enciation, growth, and PrPC is also important for the expansion
of stem cells in culture (Martins et al., 2010; Miranda et al.,
2013). Some of these trophic mechanisms have been addressed
and involve the assembly of protein complexes at the cell surface.

Most of neuroprotective and neurotrophic activities result
from PrPC-mediated signaling (Martins et al., 2010; Schneider
et al., 2011). Thus, a large body of data indicate that GPI-
anchored PrPC is a cell surface receptor or co-receptor and
that its engagement with one of its numerous ligands or with
antibodies activates different intracellular pathways. Cell surface
receptors are generally activated by dimerization (Heldin, 1995),
and this may also be valid for PrPC which forms dimers in native
conditions and can be experimentally engaged with cross-linking
antibodies (Mouillet-Richard et al., 2000; Rambold et al., 2008).

In prion diseases, PrPC changes conformation into a patholog-
ical conformer termed PrPSc (Prusiner, 1998). The exact mecha-
nism of this conformational change or prion conversion is unclear
but may involve the initial formation of dimers. During the
process of prion conversion, PrPSc oligomerizes and form toxic
oligomers that interact with PrPC and switch its neuroprotec-
tive/neurotrophic signaling to a neurotoxic signaling (Rambold
et al., 2008; Resenberger et al., 2011).

In this review, I will summarize some of the most impor-
tant studies on the role of dimerization on the physiological and
pathological function of PrPC and PrPSc, respectively.

PrPC DIMERIZATION AND CELL SIGNALING (FIGURE 1)
DETECTION OF PrPC DIMERS IN NATIVE CONDITIONS AND
CYTOPROTECTION
PrPC dimers were detected in solution in a partially purified
fraction from normal bovine brain thalamus (Meyer et al.,
2000), and in murine neuroblastoma N2a cells expressing Syrian
hamster PrPC (Priola et al., 1995). Syrian hamster, human
and bovine PrPC expressed in baculovirus and purified under
native conditions spontaneously form dimers (Hundt et al.,
2003). Dimerization of human PrPC was confirmed in BHK
cells overexpressing PrPC and in yeast two-hybrid assays (Hundt
et al., 2003). More recently, endogenous PrPC dimers were also
detected by blue native PAGE in N2a cells and the dimeriza-
tion domain mapped to a hydrophobic domain of the pro-
tein (amino acids 112-MAGAAAAGAVVGGLGGYMLGSA-133)
(Rambold et al., 2008). Finally, PrPC dimers were detected after
chemical crosslinking in crude membranes from human neu-
roblastoma SH-SY5Y cells and mouse brains (Rambold et al.,
2008). These results convincingly demonstrate that PrPC has an
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intrinsic tendency to dimerize in native conditions and suggest
that dimerization is important for the physiological function
of PrPC.

The assembly of natural PrPC dimers at the plasma mem-
brane is associated with protective activity against the excito-
toxin kainate and altering dimer formation results in cell death
(Rambold et al., 2008). Based on their own data and previous
data showing PrPC-mediated signaling using anti-PrPC antibod-
ies (see below), the authors proposed that cell surface PrPC dimers
induce protective signaling through an unknown transmembrane
receptor. This study did not elucidate whether the formation of
dimers is constitutive or depends on an unknown ligand. Also,
the proportion of PrPC dimers is unknown.

ANTIBODY-INDUCED PrPC DIMERIZATION REVEALS THE SIGNALING
PATHWAY CONTROLLED BY PrPC

Antibody-induced dimerization (also termed antibody-induced
ligation or -cross-linking) is used to mimic an extracellular signal
on cell surface receptors and trigger signal transduction. Although
it is unclear if such strategy mimics the interaction with a partner
or dimerization of the receptor, antibody-induced dimerization
is largely used to engage a receptor in the absence of its ligand
and relays intracellular signals. GPI-anchored proteins associate
with raft domains in the plasma membrane and activate sig-
nal transduction pathways upon engagement with ligands or via
antibody-induced dimerization (Robinson, 1991; Suzuki et al.,
2012). For GPI-anchored proteins, signal transduction occurs
through activation of intracellular tyrosine kinases including the
Src-family kinases (Stefanova et al., 1991; Chen et al., 2006).
Mouillet-Richard et al were the first to show that engagement
of PrPC using an antibody-induced dimerization approach acti-
vates a Fyn-dependent signaling pathway in serotonergic and
noradrenergic mouse cells differenciated from the murine neu-
roectodermal progenitor 1C11 clone (Mouillet-Richard et al.,
2000). Similar results were obtained with two different antibodies,
1A8 and SAF61 targeting C-terminal epitopes. Using 4 differ-
ent antibodies to induce PrPC dimerization, SAF61, Bar221, and
1A8 that target C-terminal epitopes, and SAF32 which targets
epitope 79-92, NADPH oxidase was subsequently identified as
the main primary target of PrPC-mediated signaling. NADPH
oxidase-dependent reactive oxygen species production stimu-
lated the phosphorylation of extracellular regulated kinases 1/2
(Erk1/2) in the 1C11 neuroectodermal precursor and its neu-
ronal differentiated progenies, the hypothalamic GT1-7 cells, and
the T lymphoid BW5147 cells (Schneider et al., 2003). PrPC sig-
naling was dependent on Fyn in neuronal cells only, indicating
specificity in the control of PrPC function. PrPC-mediated phos-
phorylation of Erk1/2 was independently confirmed in GT1-7
neuronal cells (Monnet et al., 2004) and in human neuroblas-
toma SH-SY5Y cells (Rambold et al., 2008). PrPC-induced ROS
production and Erk1/2 phosphorylation was confirmed using an
inducible dimerization strategy (Beland et al., 2012).

These studies lend support for a role of PrPC in signal trans-
duction and further investigations provided more insight into the
physiological consequence of PrPC signaling in neuronal 1C11
cells. In 1C11 serotonergic cells expressing 5-HT2B, 5-HT1B/D,
and 5-HT2A receptor subtypes. PrPC dimerization interfered with

the signaling activity of these three serotonergic receptors belong-
ing to the GPCR family likely by modulating the recruitment
of G-proteins (Mouillet-Richard et al., 2005). PrPC dimerization
promoted the recruitment of the cAMP responsive element bind-
ing protein (CREB) transcription factor and the transcription
of several genes with important function in cellular protection
and neuronal plasticity (Pradines et al., 2008). In addition, PrPC

dimerization inactivated the Glycogen Synthase Kinase 3β and
activated serotonergic signaling through inhibition of the sero-
tonin 1B receptor (Hernandez-Rapp et al., 2014). CREB recruit-
ment and GSK3β are generally associated with cytoprotection,
suggesting an important function of PrPC in cell survival and
homeostasis.

For several years, these data were in contradiction with previ-
ous results indicating that antibody-induced PrPC dimerization is
neurotoxic in vivo (Solforosi et al., 2004). However, these results
were later invalidated with similar and other antibodies (Klohn
et al., 2012). This debate is still ongoing since a recent study
demonstrated that anti-PrPC antibodies induce rapid neurotoxic-
ity in mice and cerebellar organotypic cultured slices (Sonati et al.,
2012). Importantly, PrPC dimerization is unlikely to be involved
in neuronal toxicity since single-chain antibodies were also toxic.

PrPC SIGNALING ACTIVATED BY DIFFERENT LIGANDS
At the cell surface, PrPC interacts directly or indirectly with a
variety of ligands as diverse as metals, lipids, nucleic acids, gly-
cosaminoglycans, and other proteins (Linden et al., 2008; Beland
and Roucou, 2012). In physiological conditions, it was proposed
that PrPC is a scaffolding protein providing essential molecular
interactions and signaling neurotrophic activities (Martins et al.,
2010). PrPC ligands promoting neurotrophic activity include
laminin, the 37-kDa/67-kDa laminin receptor precursor/laminin
receptor, vitronectin, the neural cell adhesion molecule, and the
Stress Inducible Protein 1 (Martins et al., 2010).

In pathological conditions, binding of PrPSc to cell surface
PrPC corrupts PrPC signaling and results in cellular toxicity
(Rambold et al., 2008; Resenberger et al., 2011). This finding is
particularly important as it provides a simple explanation for the
observation that PrPC on the cell surface is critical for the neuro-
toxicity of PrPSc in prion diseases (Brandner et al., 1996; Chesebro
et al., 2005). PrPC dimerization is essential for the toxicity of PrPSc

(Rambold et al., 2008). PrPC is also a receptor for other toxic
β-sheet oligomers, including Aβ in Alzheimer’s disease (Lauren
et al., 2009; Gunther and Strittmatter, 2010; Resenberger et al.,
2011).

PrPC INTEGRITY AT THE CELL SURFACE IS REGULATED BY
PROTEOLYSIS AND DIMERIZATION: PrPC METABOLITES
AND NEUROPROTECTION (FIGURE 1)
PrPC IS A TARGET FOR SEVERAL POSTTRANSLATIONAL
ENDOPROTEOLYTIC EVENTS
Following translocation into the endoplasmic reticulum, signal
peptidase removes a N-terminal signal peptide, and a C-terminal
peptide is removed prior to the attachment of the GPI anchor.
Thus, human PrPC is translated as an immature 253 amino acids
protein and mature PrPC is a 208 residues protein. After traf-
ficking through the secretory pathway, a fraction of PrPC may
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undergo three proteolytic cleavages (Altmeppen et al., 2012). An
α-cleavage between residues 110–111 and 112 in a late com-
partment of the secretory pathway produces PrPC1, a 17 kDa
GPI-anchored C-terminal polypeptide, and a 11 kDa N-terminal
polypeptide released in the extracellular space. The identity of
the protease responsible for α-cleavage, termed the α-PrPase
(Oliveira-Martins et al., 2010), is still unclear. A β-cleavage at
amino acids 89/90 generates PrPC2, a 20 kDa GPI-anchored
polypeptide, and the corresponding 8 kDa PrPN2 fragment. β-
cleavage occurs at the cell surface mainly in pathological condi-
tions; calpains execute β-cleavage in prion diseases whilst reactive
oxygen species perform β-cleavage under conditions of oxidative
stress. In addition, a fraction of PrPC is constitutively shed from
the cell surface after proteolytic cleavage close to the GPI anchor.
In vivo, the main protease responsible for PrPC shedding is the
zinc metalloproteinase ADAM10 (Altmeppen et al., 2012).

NEUROPROTECTIVE PRPC-DERIVED PRPN1 AND PRPC1 METABOLITES
In recent years, α-cleavage attracted a lot of attention because
it results in the production of PrPN1, a natural PrPC metabo-
lite with a clear neuroprotective activity against different insults
in vivo, in primary neuronal cultures and in cell lines (Guillot-
Sestier et al., 2009, 2012; Resenberger et al., 2011; Beland et al.,
2012; Fluharty et al., 2013; Beland and Roucou, 2013a). In par-
ticular, the neuroprotection against soluble Aβ oligomers that
may be the culprit species in Alzheimer’s disease may pave the
way for the discovery of a new class of therapeutic molecules
(Beland et al., 2012; Fluharty et al., 2013). There is also some
evidence that α-cleavage is increased in post-mortem brain tis-
sues of Alzheimer’s disease patients, and that PrPN1 traps Aβ into
amorphous aggregates unable to transform into soluble and toxic
Aβ oligomers, and that α-cleavage decrease promotes neurotoxic-
ity in prion and Alzheimer’s diseases (Pietri et al., 2013; Beland
et al., 2014). PrPN1 also binds to and antagonizes the toxicity
of other β-sheet rich oligomers, including PrPSc oligomers, and
PrPN1-derived therapeutic molecules may help treat different
neurodegenerative disorders (Resenberger et al., 2011).

The GPI-anchored PrPC1 fragment after α-cleavage of PrPC

protects against prion infection of neuronal and non-neuronal
cell lines and acts as a dominant-negative inhibitor of prion con-
version in vivo (Lewis et al., 2009; Westergard et al., 2011). The
mechanism of action of PrPC1 is unclear, but since PrPC1 is
resistant to prion conversion, the authors proposed that PrPC1
competes with PrPC for binding to infectious PrPSc (Westergard
et al., 2011). Thus, PrPC1-derived peptides may have therapeutic
benefits in prion diseases.

PRPC DIMERIZATION STIMULATES ITS TRAFFICKING TO THE PLASMA
MEMBRANE AND THE PRODUCTION OF PRPN1 AND PRPC1
As many experimental data converge to support the proposition
that PrPN1 and PrPC1 are neuroprotective metabolites, two ther-
apeutic avenues could be proposed in prion diseases: to provide
exogenous PrPN1- or PrPC1-derived molecules, or to increase
the natural production of PrPN1 and PrPC1 by stimulating the
α-cleavage. The α-cleavage mechanism is nebulous and only two
elements are known: it occurs in the late secretory pathway but
the enzyme is still unknown, and the hydrophobic domain is

essential for this cleavage (Bremer et al., 2010; Oliveira-Martins
et al., 2010). This domain is also essential for the physiologi-
cal dimerization of PrPC (Rambold et al., 2008), supporting the
hypothesis of a possible connection between dimerization and
α-cleavage. Using an inducible dimerization strategy with a per-
meable dimerizer, we were able to show that PrPC dimerization
in cell lines and primary neurons increase PrPC trafficking to the
plasma membrane and largely increase the production of PrPN1,
PrPC1, and shed PrPC (Beland et al., 2012). After dimerization,
conditioned medium containing these three metabolites strongly
protected cells against toxic Aβ oligomers.

Since levels of the products of both α-cleavage and shed-
ding rose after dimerization, we concluded that the large increase
of PrPC trafficking to the plasma membrane was sufficient to
explain the high levels of its metabolites. This effect was fast
and occurred 4 h post-dimerization. Deletion of the hydrophobic
domain, the natural dimerization domain, does not prevent PrPC

trafficking to the plasma membrane (Winklhofer et al., 2003).
Thus, dimerization is not essential for PrPC trafficking. We pro-
posed a model with a constitutive and dimerization-independent
pathway for PrPC secretion, and a pathway regulated by dimer-
ization. This regulated pathway would allow the cells to quickly
respond to toxic insults by increasing the levels of protective PrPC

metabolites (Beland and Roucou, 2013a,b).

THE DARK SIDE OF PrPC DIMERIZATION REVEALED FROM
IN VITRO PRION CONVERSION ASSAYS
PrPC→PrPSc conversion or prion conversion is central to prion
diseases; this process is neurotoxic and PrPSc molecules assem-
ble into infectious particles responsible for the transmission of
the disease (Prusiner, 1998; Mallucci et al., 2003). Not surpris-
ingly, numerous mechanistic studies have addressed this process
using recombinant PrP (recPrP) and several experimental data
have indicated an intrinsic tendency of the protein to form dimers
during the initial steps of prion conversion. A fraction of Syrian
hamster recPrP(90-231) forms alpha-helical dimers in solution in
the presence of submicellar concentrations of SDS (Jansen et al.,
2001). These dimers believed to be intermediates in prion conver-
sion were observed by size exclusion chromatography, chemical
crosslinking and analytical ultracentrifugation (Kaimann et al.,
2008; Stöhr et al., 2008; Jansen et al., 2001). In these stud-
ies, non-denaturing concentrations of SDS were used to mimic
membrane-like features. Using a reduction-oxidation protocol to
induce the fibrillar assembly of Syrian hamster PrP(90–231), Lee
and Eisenberg also observed the presence of dimeric intermedi-
ates in polyacrylamide native gels (Lee and Eisenberg, 2003). A
similar conclusion was obtained with murine recPrP(23–231).
During the conversion of murine PrP(23–231), an intermedi-
ate water-soluble β-sheet isoform termed PrPβ was identified
(Luhrs et al., 2006). The kinetics of PrPC→PrPβ conversion sug-
gest that dimerization is the rate-limiting step for the transition.
The dimerization of murine recPrP(23–231) as a key molecular
step during the conversion was confirmed in a subsequent study
(Hafner-Bratkovic et al., 2011). Additionally, 3D reconstruction
of murine recPrP(91–230) amyloid fibrils led to the proposition
that dimers represent building units of such fibrils (Tattum et al.,
2006).

www.frontiersin.org October 2014 | Volume 2 | Article 57 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cell_Death_and_Survival/archive


Roucou Dimerization and PrPC signaling and processing

These experiments were performed with non-
posttranslationally modified PrPC. Yet in vivo, PrPC carries
two N-glycosylations and a GPI anchor and these complex
posttranslational modifications may play an important role
in prion conversion. To address this issue, posttranslationally
modified PrPC was purified from Chinese hamster ovary cells
overexpressing Syrian hamster PrPC. This native PrPC sponta-
neously formed dimers stabilized by intermolecular β-sheets after
insertion into artificial membranes (Elfrink et al., 2008).

Altogether, these studies support the hypothesis that dimer-
ization is an important step for prion conversion but they
did not directly test this hypothesis. To address this issue, two
strategies have been used. First, two monomeric mouse PrP
(23–231) were covalently linked with a linker and recombi-
nantly purified. This tandem protein oligomerized after purifi-
cation, and thioflavine T staining indicated that such oligomers
were likely on the pathway of amyloid formation, although
this was not demonstrated (Simoneau et al., 2007). In a sec-
ond strategy, we used a conditional dimerization approach to
induce chemical dimerization of mouse recPrP(23–231) and
human recPrP (23-231). α-helical PrP dimers spontaneously con-
verted into β-sheet oligomers and amyloid fibrils were detected
by electron microscopy and thioflavinT staining (Roostaee
et al., 2009). Importantly, these experiments were performed in

physiological-like conditions in the absence of any detergent or
chaotropic agents.

Models of PrP dimers and the role of dimers in prion con-
version are available (Warwicker, 2000; Gauczynski et al., 2001;
Tompa et al., 2002). However, in all the above studies, prion
conversion was assessed by the formation of PrP amyloid fibrils
and/or partial resistance to proteinase K rather than by the forma-
tion of infectious PrPSc in animal bioassays. Hence, the biological
significance of PrPC dimerization for the formation of infectious
PrPSc remains speculative.

CONCLUSION
PrPC forms dimers in native conditions and cell surface dimeriza-
tion clearly regulates PrPC-mediated signaling and the resulting
physiological neuroprotective/neurotrophic activities (Rambold
et al., 2008). Intracellular dimerization also drastically increases
its trafficking to the plasma membrane and the production of
its natural metabolites PrPN1 and PrPC1 (Beland et al., 2012).
The combination of these two effects of PrPC dimerization likely
provides PrPC with a powerful neuroprotective/neurotrophic
function (Figure 1). However, the flip side of the coin is
that unwanted dimerization may initiate prion conversion and
result in neuronal toxicity (Tompa et al., 2002). Regulating
PrPC dimerization may help translate these findings into

FIGURE 1 | PrPC Dimerization activates a neuroprotective signaling

pathway and the production of neuroprotective PrPC-derived

metabolites. En route to the plasma membrane, a fraction of PrPC

undergoes a physiological cleavage termed α-cleavage. Intracellular PrPC

dimerization stimulates trafficking to the plasma membrane and the release

of PrPN1 and PrPC1 at the cell surface. PrPC dimerization at the cell surface
activates an intracellular signaling pathway with a neuroprotective outcome.
At the cell surface, a fraction of PrPC undergoes ADAM10-mediated
shedding. Double arrows indicate dimerization; dotted arrow indicates
shedding. See text for details.
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novel therapeutic interventions in neurodegenerative diseases
(Beland and Roucou, 2013b).
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