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Tumour angiogenesis is a crucial factor 
associated with tumour growth, pro-
gression, and metastasis. The whole 
process is the result of an interaction 
between a wide range of different mol-
ecules, influencing each other. Herein 
we summarize novel discoveries related 
to the less known angiogenic molecules 
such as galectins, pentraxin-3, Ral-inter-
acting protein of 76 kDa (RLIP76), long 
non-coding RNAs (lncRNAs), B7-H3, and 
delta-like ligand-4 (DLL-4) and their role 
in the process of tumour angiogenesis. 
These molecules influence the most 
important molecular pathways involved 
in the formation of blood vessels in can-
cer, including the vascular endothelial 
growth factor (VEGF)-vascular endothe-
lial growth factor receptor interaction 
(VEGFR), HIF1-α activation, or PI3K/Akt/
mTOR and JAK-STAT signalling path-
ways. Increased expression of galectins, 
RLIP76, and B7H3 has been proven 
in several malignancies. Pentraxin-3, 
which appears to inhibit tumour angio-
genesis, shows reduced expression in 
tumour tissues. Anti-angiogenic treat-
ment based mainly on VEGF inhibition 
has proved to be of limited effective-
ness, leading to the development of drug  
resistance. The newly discovered mole-
cules are of great interest as a potential 
source of new anti-cancer therapies. 
Their role as targets for new drugs and 
as prognostic markers in neoplasms is 
discussed in this review.
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Introduction 

Angiogenesis is recognized to play a crucial role in tumour growth, pro-
gression, and metastasis [1]. It is widely described that tumours cannot 
grow beyond 2 mm3 without an adequate supply of nutrients and oxygen via 
a proper vascular system [2]. Many molecular pathways are directly related 
to angiogenesis, but only some of them have been extensively studied and 
described so far [3]. The main role in this process is attributed to angiogen-
ic molecules such as vascular endothelial growth factor (VEGF), fibroblast 
growth factor-2 (FGF-2), or the platelet-derived growth factor family, but also 
phenomena such as hypoxia, immune cell activity, or changes in the tumour 
microenvironment [3]. Progressive knowledge about the extensive role of 
angiogenesis in cancer has inspired scientists to seek therapies based on in-
hibiting the growth of the new vessels [4]. However, therapies based mainly 
on the inhibition of key molecules such as VEGF have proven to be of limited 
effectiveness, leading to the development of drug resistance [5–7]. This em-
phasizes the need for further research, to improve anti-angiogenic therapies 
in the future.  Recently, many new molecules that influence the formation of 
new vessels have been discovered, proving the complexity of this process. 
In this review, we summarize the latest reports about less known molecules 
involved in angiogenesis.

Galectins

Galectins, a family of lectins that bind β-galactosides, are generally well-
known due to their role in cell-to-extracellular matrix interactions [8]. They 
contain one or more evolutionarily conserved carbohydrate-recognition 
domains (CRDs) – sequences that are responsible for binding to carbohy-
drates [9]. Recently, a lot of attention has been paid to galectins due to their 
freshly described multidirectional activity in facilitating the development of 
malignant tumours [10]. Extracellularly localized galectins interact with the 
cell-surface and extracellular matrix, while these localized intracellularly in-
fluence cytoplasmic and nuclear signalling pathways [8]. Moreover, some of 
them – such as galectin-3 – are present both at the cell surface and inside 
the cytoplasm, and may be secreted into biological fluids like serum and 
urine [11]. The galectin-glycan interaction plays an important role in phys-
iological and pathological processes including angiogenesis, regulation of 
immune response, metastasis, and apoptosis [12–15]. Many of the functions 
related to angiogenesis such as endothelial cells (EC) activation, prolifera-
tion, adhesion, migration, tube formation, and sprouting may be assigned 
to galectins highly expressed in endothelial cells, such as galectin –1, –3, –8, 
and –9 [16].
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Galectin-1 (gal-1) is the first described human galectin, 
and one of the best-studied members of this family. Among 
many other functions, gal-1 plays a key role in stimulating 
tumour angiogenesis by inducing endothelial cell prolifera-
tion and migration, mirroring the effects of VEGF [17]. Gal-1 
has the ability to bind N-glycans complex on vascular en-
dothelial growth factor receptor 2 (VEGFR2), which results 
in increased phosphorylation and activation of kinases Akt 
and Erk1/2, mimicking the phosphorylation pattern follow-
ing VEGF-VEGFR interaction [17]. Moreover, gal-1 can act 
as an independent pro-angiogenic growth factor, indirectly 
inducing pro-angiogenic signalling by stimulating VEGFR2 
clustering or increasing receptor membrane retention. In 
addition, in murine models, Gal-1 was found to be increas-
ingly secreted by tumours resistant to anti-VEGF agents 
[16, 17]. A study by van Beijnum et al. [18] revealed that 
inhibition of gal-1 by specific antibodies inhibits sprouting 
angiogenesis both in vitro and in vivo.

In tumour vessels, Gal-1 expression was found to be 
increased in comparison to vessels in healthy tissue. El-
evated gal-1 expression has been described in neoplastic 
cells of lung [19], prostate [20], oral cancer [21], and gli-
omas [22]. Recently, it was also described to be overex-
pressed in the tumour tissue of renal cell carcinoma [23]. 
High expression of gal-1 is associated with poor overall 
survival (OS) in hepatocellular carcinoma (HCC), colorec-
tal, gastric, and pancreatic cancer. In these malignancies, 
gal-1 is up-regulated in both tumour-associated stromal 
cells and epithelial cells [24]. Moreover, gal-1 overexpres-
sion is associated with resistance to sorafenib (a tyrosine 
kinase inhibitor of, among others, VEGFR-2 and VEGFR-3), 
poor tumour control, and low response rate in HCC [25]. In 
gastric cancer, gal-1 is highly expressed by cancer-associ-
ated fibroblasts (CAFs), and it was shown to facilitate the 
interaction between CAFs and human umbilical vein endo-
thelial cells, stimulating their proliferation, migration, and 
tube formation in vitro [26]. Similarly, in human multiple 
myeloma, gal-1 expression was shown to be regulated by 
hypoxia-inducible factor 1α (HIF-1α), and its suppression 
resulted in reduced angiogenesis and bone lesion forma-
tions in vivo in 2 different murine models [27]. Gal-1 se-
creted by human omental microvascular endothelial cells 
(HOMECs) in metastasized high-grade serous carcinoma 
(HGSC) of the ovary was proven to increase the number 
of microvessels in omental metastases, potentially via the 
MEK/ERK1/2 signalling pathway [28]. Moreover, in pan-
creatic ductal adenocarcinoma (PDA), gal-1 mediates the 
action of human pancreatic stellate cells (HPSCs), which 
encompass the stimulation of cancer proliferation, migra-
tion, and invasion. In PDA murine models, gal-1 knock-out 
diminished metastasis rates and prolonged survival [29].

These discoveries prompted research assessing the po-
tential use of gal-1 inhibitors, targeting gal-1 contribution 
to angiogenesis, as a possible anti-cancer treatment op-
tion. One of the gal-1 inhibitors is an artificial, non-specific 
peptide, Anginex, which, among other properties, binds to 
gal-1, inhibits its function, and stops gal-1 uptake by EC 
[30]. Many clinical studies revealed the synergistic effect 
of Anginex treatment in combination with radiothera-
py [31, 32] or chemotherapy [33]. Koonce et al. [34] used 

a non-peptidic galectin-1 inhibitor OTX008 in human head 
and neck squamous cell carcinoma (HNSCC) models, and 
its administration resulted in tumour vessel normaliza-
tion and tumour reoxygenation, which may improve HN-
SCC susceptibility to radio- and chemotherapy. Another 
molecule that is promising for designing specific galectin 
antagonists is lactulose. Its derivatives showed the ability 
to bind galectin-1 and galectin-3 carbohydrate recogni-
tion domains [35]. Gal-1 can also be a target for specific, 
designed antibodies, used as therapeutic and diagnos-
tic agents [18]. Finally, as was mentioned in the case of 
sorafenib resistance in HCC, gal-1 may be responsible for 
limited benefits of anti-VEGF treatment, and therefore, 
targeting gal-1 may improve the effectiveness of anti-VEGF 
therapies [17].

Galectin-3 (gal-3) is a unique member of the family of 
galectins. Structurally, gal-3 contains a proline- and gly-
cine-rich N-terminal domain, enabling it to form oligo-
mers. In addition, gal-3 may be localized in the cytoplasm, 
on the cell surface, or as a free form in biological fluids 
like serum [36]. Galectin-3 was also identified as a receptor 
for advanced glycosylation end products (AGE). However, 
gal-3 plays a receptor role not independently but rather in 
association with other AGE receptors [37]. Moreover, in the 
tumour microenvironment, it takes part in neo-vascular-
ization by several molecular mechanisms, which include 
VEGFR2 retention and activation, integrin αVβ3 activation 
and promotion of angiogenesis by the basic fibroblast 
growth factor (bFGF), VEGF, and neuron-glial antigen 2 (NG2)  
signalling pathways [38, 39]. In addition, under hypoxic 
conditions, gal-3 is released by neoplastic cells and in-
creasingly binds to ECs, which activates the JAG1/Notch 
signalling pathway and triggers angiogenic sprouting [39]. 
The biological function of Gal-3 is highly dependent on its 
ability to multimerize and to bind to many glycoproteins. 
Gal-3 is involved in the process of formation of signalling 
platforms on the cellular membrane, that contain recep-
tors of other molecules, including those that induce angio-
genesis [40]. In this sense, Gal-3 is responsible for the am-
plification of the signal and acts as an important cofactor 
[41]. Gal-3 can promote vessel formation not only by direct 
interaction with EC but also indirectly, by stimulating mac-
rophages and platelets to release VEGF [41]. 

The increased endothelial gal-3 expression has been 
reported in hepatic, pancreatic, oral, thyroid, bladder, and 
gastric carcinoma [42]. Recently, it was also found to be 
upregulated in clear cell, chromophobe, and papillary re-
nal cell carcinomas [43]. However, increased expression 
of gal-3 is not universally observed in malignancies, as 
other studies described down-regulation of gal-3 in the 
tumour tissue of the breast, prostate, cervical, and endo-
metrial carcinoma [42, 44]. Serum levels of gal-3 from pa-
tients with lung, thyroid, hepatocellular, prostate, bladder, 
breast, renal, gastrointestinal, and head and neck carcino-
mas were significantly elevated when compared to those 
in healthy individuals [11, 42]. Circulating galectin-3 plays 
an important role in metastasis and angiogenesis by medi-
ating cancer cell-endothelial adhesion via interacting with 
mucins: MUC1 and MUC4. Gal-3 inhibitors were shown to 
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inhibit the development of lung metastases of melanoma 
and colon cancer in murine models [45].

Gal-3 is a putative therapeutic target for anti-cancer 
therapies; thus, many molecules were synthesized to bind 
to gal-3 and inhibit its pleiotropic actions. Because of the 
fact that galectins have a high affinity for carbohydrates [8], 
inhibitors, based on carbohydrate scaffolds, such as galac-
tose, lactose, or talose [46], and gal-3-binding neo-glyco-
proteins [47] were designed. Polysaccharides such as mod-
ified citrus pectin (MCP) [48], corn pectic polysaccharide 
(COPP) [49], arabinogalactan HH1-1 derived from safflower 
[50] and RN1, purified from the flower of Panax [51], gen-
erate high affinity to gal-3 and demonstrate promising re-
sults as anti-cancer agents. In a study by Nangia-Makker et 
al. [52], MCP inhibited capillary tube formation in vitro and 
tumour growth, angiogenesis, and spontaneous metastasis 
in vivo in mice. MCP activity was also evaluated in patients 
with various solid tumours, showing a positive impact on 
some of them [53]. COPP in the study conducted by Ja-
yaram et al. [49] decreased the level of VEGF, matrix metal-
lopeptidase 2 (MMP-2), and matrix metallopeptidase 9  
(MMP-9) in the tumour tissue and inhibited metastasis 
in vivo. HH1-1 presented anti-cancer activity in PDA in vi-
tro and in vivo, as it binds to gal-3, impairs the interac-
tion between gal-3 and epidermal growth factor recep-
tor (EGFR), and inhibits the galectin-3/EGFR/AKT/FOXO3 
signalling pathway [50]. RN-1 activity, similarly to HH1-1, 
was also evaluated in PDA, showing inhibition of tumour 
cells growth both in vitro and in vivo, affecting multiple 
gal-3-associated signalling pathways [51]. Heparin deri-
vates also pose as promising gal-3 binding agents – chem-
ically modified heparin molecule does not show anticoag-
ulant activity, but it destabilizes the structure of galectin-3 
and, as a result, stops tumour progression in vitro and re-
duces metastasis in a murine model [45, 54]. Another mol-
ecule, galectin-3C, a truncated, dominant-negative form of 
galectin-3, is a competitive inhibitor of endogenous gal-3, 
which was shown to decrease endothelial cells tubule for-
mation in vitro [55], and to be a putative treatment option 
for multiple myeloma and ovarian cancer [56, 57]. Finally, 
bergenin, a substance isolated from plants used in South 
Asian traditional medicine, was computationally proven to 
have an affinity for gal-3, and it could potentially be used 
to develop new anti-cancer therapies in the future [58].

Galectin-8 (gal-8), as a result of alternative splicing, 
occurs in 7 isoforms [59] and is expressed in several hu-
man carcinomas, including ovarian [60], prostate [61], and 
breast cancer [62]. It was found to induce angiogenesis, at 
least partially, via cross-linking of activated leukocyte cell 
adhesion molecule (ALCAM, CD166) [57, 59, 63]. The se-
rum level of gal-8 is higher in patients with colorectal and 
breast cancer, especially with metastatic disease, when 
compared to healthy individuals [59]. In contrast to gal-1, 
galectin-8 expression was not reported to be up-regulated 
in tumour EC in response to anti-VEGF therapy [59]. Circu-
lating gal-8 was reported to be responsible for increased 
secretion of other pro-angiogenic factors such as granulo-
cyte colony-stimulating factor (G-CSF), interleukin 6 (IL-6),  
and monocyte chemoattractant protein-1 (MCP-1) [64]. 
Moreover, gal-8 has recently been proven to induce epithe-

lial-mesenchymal transition by activating the FAK/EGFR/
proteasome pathway in Madin-Darby canine kidney cells 
[65]. Gal-8 can also increase endothelial hyperpermeabil-
ity through the destabilization of adherens junctions via 
S-nitrosylation mediated by nitric oxide synthase (eNOS), 
which was confirmed both in vitro and in vivo [66].

Galectin-9 up-regulation, and therefore increased ex-
pression, was described in kidney, lung, and liver tumour 
vessels [16]. Gal-9 may be expressed by EC in 5 different 
splice variants [16]. The effects of gal-9 actions depend on 
the different variables including splice variant, concentra-
tion, environment, and cellular context [67]. The best de-
scribed, dominant form is galectin-9Δ5, and it can either 
promote or suppress angiogenesis, depending on the cir-
cumstances [67, 68]. In the study conducted by Aanhane 
et al. [69], all gal-9 isoforms inhibited angiogenesis in vivo 
in contrast to the previously described galectins. However, 
Enninga et al. [70] showed that gal-9 binds to CD206 on 
M2 macrophages, and they suggested that this interaction 
may increase the secretion of pro-angiogenic factors and 
chemokines from myeloid cells. This divergent information 
underlines the necessity of further investigation to assess 
the effect of galectin-9 on both angiogenesis and carcino-
genesis.

Pentraxin-3

Pentraxin-3 (PTX3/TSG14) is a member of the family 
of pentraxins, which is divided into short and long pen-
traxins [71]. The short pentraxin subfamily includes pro-
teins such as C-reactive protein (CRP) and serum amyloid 
P component (SAP), well known for their important role 
in innate immunity [71]. PTX3, which belongs to the long 
pentraxin subfamily, is produced by innate immunity cells 
in response to inflammatory signals and acts as a multi-
functional soluble pattern recognition receptor [72]. Its 
essential role in immunity, pathogen recognition, comple-
ment activation, and inflammation is well established [73, 
74], but recent studies have revealed that it may also play 
an important inhibitory role in angiogenesis [75].

PTX3 binds with high affinity to FGF-2, one of the most 
important angiogenic factors [76], sequestering it and 
preventing it from activating its receptors on endothe-
lial cells [77]. This interaction results in the inhibition of 
FGF2-dependent proliferation of endothelial cells in vitro 
and in vivo [76]. PTX3 activity was assessed in prostate 
cancer, highly dependent on FGF2 stimulation, revealing 
PTX3 anti-angiogenic and anti-neoplastic activity in vitro 
and in vivo [78]. Moreover, PTX3 expression was proven 
to be present in cells in healthy prostate but completely 
absent in high-grade prostate cancer, suggesting that the 
loss of its function may play an important role in tumour 
progression [78]. PTX-3 was found to inhibit the growth of 
fibrosarcoma in vitro and in vivo, by decreasing cell pro-
liferation and tumour vascularization [79]. Its overexpres-
sion causes significant changes in the tumour microen-
vironment, reducing inflammatory infiltrate and vascular 
density in a murine model of fibrosarcoma [80]. In 2015, 
Ronca et al. found that overexpression of PTX3 inhibits an-
giogenesis, metastasis, and tumour growth in a transgenic 
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mouse model, and identified NSC12 – a small PTX3 deriva-
tive that acts as an FGF2 trap, that performs similar activity 
[81]. NSC12 was proven to be a promising therapeutic mol-
ecule because it inhibited cell proliferation and reduced 
fibroblast growth factor receptor 1 (FGFR1) and fibroblast 
growth factor receptor 3 (FGFR3) activation in fibrosarco-
ma models in vitro and in vivo [79]. It also impaired tumour 
growth and vascularization in a murine model of prostate 
cancer [82] and tumour growth of murine and human lung 
cancer cells in vitro and in vivo [83]. FGF trapping by PTX3 
and NSC12 was also evaluated as a therapeutic strategy 
in murine melanoma model and human uveal melanoma 
cell lines, revealing inhibition of proliferation, survival, and 
migration of melanoma cells [84]. PTX3 may also bind to 
fibroblast growth factor-8b (FGF8b) and inhibit the acti-
vation of its receptor. Consequently, PTX3 inhibits the FG-
F8b-induced neovascularization and growth of hormonal 
tumours [85].

Even though most studies suggest an anti-angiogen-
ic role of PTX3 in cancer, in 2016, Hida et al. [86] found 
that PTX3 is overexpressed in mouse and human tumour 
endothelial cells (TECs) in comparison to normal endo-
thelial cells. Moreover, in the same study, knockdown of 
PTX3 inhibited TECs proliferation. PTX3 was also proven 
to have some pro-tumour effects in multiple tumours [75]. 
PTX3 promotes tumour cell migration in the pancreatic 
carcinoma cell lines, and its elevated level correlates with 
advanced clinical stage and poor prognosis in pancreatic 
carcinoma [87]. In cervical cancer, high expression of PTX3 
is positively correlated with higher tumour grade and cell 
proliferation, invasion, and migration in human cervical 
HeLa cells [88]. Moreover, PTX3 knockdown inhibited tu-
mour growth in vitro and tumourigenesis and metastasis 
in vivo [88]. PTX3 is expressed by tumour cells in glioma, 
and its level corresponds with the high-grade and severity 
of the tumour [89, 90]. Elevated levels of PTX3 were found 
in the serum of patients with prostate cancer [91] and lung 
carcinoma [92] and in tumour tissue of human soft tissue 
liposarcoma [93]. EGF-induced PTX3 promotes metasta-
sis in HNSCC by regulating the expression of fibronectin, 
E-cadherin, and MMP-9 [94]. In gastric cancer [95] and 
breast cancer [96] PTX3 contributes to osteolysis and bone 
metastasis. That is why it remains unclear whether PTX3 
plays a negative or positive role in the development of the 
tumour. These findings suggest that its action might de-
pend on the tumour type and microenvironment [75].

RLIP76

The ral-interacting protein of 76 kDa (RLIP76), known 
also as Ral-binding protein 1 (RalBP1), occurs in different 
compartments of the cell, including the cell membrane, 
intracellular fluid, and the nucleus [97, 98]. The primary 
structure of RLIP76 might be divided into four main re-
gions: the N-terminal region, the Rho-Gap region, the Ral 
binding region, and the C-terminal region [97]. Originally, 
RLIP76 was identified as a Ral GTPase effector protein, 
which links Ral to the Rho pathways [99]. Expression of 
RLIP76 was reported in a variety of human tissues, e.g. liv-
er, heart, lung, kidney, ovary, and muscles [97, 99]. RLIP76 

is a stress-responsive multifunctional protein, involved in 
processes such as apoptosis, cell proliferation, differenti-
ation, migration, and metabolite transport [97, 98, 100].  
It consists of 2 ATP binding sites (in the N-terminal re-
gion and C-terminal regions) and is able to catalyse the 
transport and conjugation of glutathione and xenobi-
otics across the biological membranes, contributing to 
anti-apoptosis and multidrug resistance mechanisms in 
cancer cells [97–99]. RLIP76 overexpression was observed 
in numerous malignancies such as non-small cell lung car-
cinoma, colon carcinoma, prostate cancer, melanomas, gli-
omas, meningiomas, breast cancer, and pancreatic cancer 
[97–99, 101–103].

RLIP76 is an essential mediator of angiogenesis and 
tumour growth associated with another basic angiogen-
esis mediator – VEGF. In the study by Wang et al. RLIP76 
suppression in an unexplored mechanism decreased the 
VEGF secretion and VEGF-induced tube formation in vi-
tro [100]. The angiogenic roles of RLIP76 are presumed 
to involve a combination of effects on VEGF expression 
through HIF-1 activation, and on VEGF secretion, possibly 
through regulation of phosphoinositide 3-kinase (PI3K) 
[99]. In neoplastic cells, VEGF transcription is induced by 
HIF-1 [104]. RLIP76 stimulates PI3 kinase – the element of 
the PI3K/Akt/mTOR signalling pathway that promotes the 
activation of HIF-1. In the nucleus, HIF-1 binds its cofactor 
and then the whole complex stimulates the expression of 
target genes, including VEGF [97, 99].

Moreover, RLIP76 was found to regulate the angiogen-
ic response of epithelial cells. Studies implemented on 
RLIP76 knock-out mice, based on a 3D reconstruction of 
tumour vasculature, determined that in RLIP76-knockout 
mice the central tumour vessels and their branches were 
shorter and narrower compared to wild type mice [98]. In 
the implanted tumours in RLIP76-knockout mice, angio-
genesis was inhibited. The potential mechanism was as-
sociated with the role of RLIP76 in efficient migration, pro-
liferation, and cord formation of endothelial cells. Defects 
in endothelial cell function, due to the absence of RLIP76, 
lead to ineffective angiogenesis [98, 99].

Cell migration and spreading are necessary during 
angiogenesis. RLIP76 participates in these processes by 
regulating the Ras-related C3 botulinum toxin substrate  
1 (Rac1) and ADP ribosylation factor 6 (Arf6) signalling 
pathways. On the molecular level, after pro-angiogenic 
stimulation, RLIP76 binds R-Ras in a GTP-dependent man-
ner. This leads to the formation of R-Ras-dependent tris-
phosphate (PIP3), which contributes to the recruitment of 
a guanine nucleotide exchange factor for Arf6 (ARNO). The 
interaction between RLIP76 and ARNO enhances the ac-
tivation of Arf6. Consequently, the activated Arf6 GTPase 
leads to the promotion of Rac1 GTPase activation. Given 
all the connections, RLIP76 plays a crucial role as a link in 
a small GTPase downstream effect in Rac1 and Arf6 path-
way, being essential for tumour angiogenesis [98, 105, 
106].

RLIP76 overexpression was indicated in samples de-
rived from patients suffering from breast cancer and was 
positively correlated with the malignant status of these 
patients and associated with poor prognosis. Therefore, 
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some studies indicate that RLIP76 overexpression should 
be considered as a biomarker of poor prognosis in breast 
cancer [107]. The newest studies concerning breast cancer 
indicate a promising role of 2’-hydroxyflavanone (2HF), as-
sociated with RLIP76, in oncological therapies. Flavonoids 
are compounds ubiquitously present in many foods and 
beverages of plant origin. 2HF is a novel natural small 
phytochemical with no declared toxicity towards normal 
tissues [102, 108]. Administration of 2HF was shown to in-
hibit the development of triple-negative breast tumours in 
the mice xenograft model, which was correlated, among 
other effects, with RLIP76 suppression [102]. In the study 
by Singhal et al., it was confirmed that 2HF may suppress 
breast cancer by targeting RLIP76 both in vivo and in vitro. 
Because 2HF decreases RLIP76 and VEGF expression and 
regulates critical proliferative and differentiation proteins, 
2HF may be proposed as an improvement of breast cancer 
treatment schemes [109, 110].

The expression of RLIP76 is positively correlated with 
the pathological stages of meningiomas – the highest 
level was observed in anaplastic meningiomas classified 
as grade III according to the WHO [103]. Moreover, some 
studies suggest that discussed overexpression might lead 
to a highly proliferating phenotype due to its significant 
correlation with the proliferation marker Ki-67. Given all 
the information, patients suffering from meningiomas 
with high expression of RLIP76 are in the group of shorter 
recurrence-free survival (RFS), which was confirmed in the 
study by Fan et al. [103]. Apart from the angiogenic role of 
RLIP76, the possible mechanism associating RLIP76 with 
poor prognosis relates to apoptosis inhibition through 
interactions with a spectrum of functionally distinct pro-
teins, encompassing Caspase 3 and Bcl-2 [103, 111].

LncRNA

Long non-coding RNAs (LncRNAs) are a group of ribonu-
cleic acids consisting of more than 200 base pairs, which 
might be transcribed by RNA polymerase II and then un-
dergo co-transcriptional modifications (i.e. polyadenyla-
tion or pre-RNA splicing), but they mostly cannot be trans-
lated into proteins [112–114]. They might possess their 
promoters and be localized between protein-coding genes 
(intergenic) [112]. It has been discovered that lncRNAs are 
involved in various conditions, e.g. hypoxia and hypergly-
caemia [112]. LncRNA presents 3 main mechanisms of ac-
tion. 

1. LncRNA may fold into a tertiary structure and supply 
a scaffold for the formation of a quaternary structure for 
proteins and regulatory RNA [112]. LncRNAs can serve as 
adaptors to bring 2 or more proteins into discrete com-
plexes. The primary example of scaffolds is HOX transcript 
antisense intergenic RNA (HOTAIR) simultaneously binding 
both polycomb repressive complex 2 (PRC2) and a complex 
of lysine-specific demethylase 1 (LSD1) and corepressor 
protein – CoREST. Consequently, this combination ensures 
gene silencing through histone H3 lysine 27 (H3K27) meth-
ylation and histone H3 lysine 4 (H3K4) demethylation [115].

2. LncRNA regulates the gene expression at the post-
transcriptional level [112]. LncRNAs control processes such 

as RNA maturation and transport or protein synthesis. 
They affect the stability of mRNAs and might compete for 
miRNA-mediated inhibitor or function as a miRNA precur-
sor. These attributes of lncRNAs lead to increased mRNA 
expression [116].

3. LncRNA may directly bind DNA sequences and form 
RNA-DNA triplex complex [112]. Forming these complexes 
may represent a type of epigenetic regulation in which ln-
cRNA serves as a molecular guide, described as “decoys” 
[115, 116].

Nevertheless, it must be underlined that there are prob-
ably many other mechanisms of lncRNA action to be dis-
covered. In most tissues, the expression level of lncRNA 
is lower than that of mRNA [112], apart from the brain, in 
which the expression level of lncRNA is higher than that 
of mRNA [112]. LncRNAs may be located in the nucleus 
(lncRNA Heih, Hotair, 18 Malat1, 19 Evf-2,20 Lethe21, and 
Xist22), in the cytoplasm (lncRNA Ptenp1 Ror, HULC, linc-
MD1, 1/2-sbs RNAs, and Gadd, LncRNA Tincr), or in both 
the nucleus and the cytoplasm [112, 114]. It is suspected 
that the specific function of lncRNAs is related to their 
subcellular localization [117]. 

LncRNA can promote and inhibit angiogenesis, drug re-
sistance, and proliferation. Importantly, their role in drug 
resistance affects the main treatment strategies in oncol-
ogy: chemotherapy, hormone therapy, targeted therapy, 
and immunotherapy [118]. Moreover, lncRNAs and miRNAs 
(e.g. miR-345-5p) participate in epithelial-mesenchymal 
transition (EMT), cell growth, and angiogenesis in multiple 
cancers: gastric, thyroid, breast, bladder, and non-small cell 
lung cancer [119]. LncRNAs also regulate synapse formation, 
reprogramming of human-induced pluripotent stem cells, 
nuclear organization, nuclear-cytoplasmic trafficking, and 
promote pluripotency and neuronal differentiation [112, 
117]. LncRNAs such as HOTAIR, Tie-1AS, and lncRNA, asso-
ciated with microvascular invasion in HCC (lncRNA MVIH), 
metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1), F630028O10Rik (F63), highly up-regulated in liver 
cancer (HULC), and maternally expressed gene 3 (MEG3), 
play an important role in angiogenesis [112, 117, 120, 121].

In the studies conducted both in vivo and in vitro on 
nasopharyngeal carcinoma cells, the HOTAIR directly acti-
vates the transcription of VEGF-A and indirectly through 
immunoglobulin protein (BiP) mediates up-regulation 
of VEGF-A and angiopoietin-2 (Ang2) expression, which 
leads to the promotion of angiogenesis [121]. Furthermore,  
HOTAIR can promote cancer progression through negative 
regulation of chromosomal transcription or recombina-
tion of the chromatin [117]. Significant overexpression of 
HOTAIR in HCC tissues is correlated with the poor prog-
nosis of the patients, and it predicts tumour recurrence. 
In HCC cell lines, HOTAIR can downregulate RNA binding 
motif protein-38 and promote cell invasion and migration. 
Moreover, it is suggested that HOTAIR ucRNA takes part in 
an intercellular signalling mediator of growth because its 
presence was observed in extracellular vesicles released 
from HCC cells [113].

In endothelial cells, hyperglycaemia and hypoxia in-
crease the level of MALAT1. It was reported that the ge-
netic deletion of the MALAT1 gene leads to reduced retinal 
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vascular growth and endothelial growth in experiments in 
vivo [122, 123]. Moreover, during pharmacological inhibi-
tion of MALAT1, blood-flow recovery and capillary densi-
ty after hind-limb ischaemia are reduced due to impaired 
expression of cell cycle regulators [124]. MALAT1, through 
interacting with miR20416, modulates proliferation, mi-
gration, and invasion of cholangiocarcinoma cells [119].

The tie-1AS causes specific defects in endothelial cell 
contact junctions and tube formations through selective 
binding to tie-1 mRNA and regulation of its transcription 
[125]. MVIH inhibits the secretion of phosphoglycerate ki-
nase 1 (PKG1). It is correlated with reduced serum PKG1 
levels and leads to increased microvessel density in HCC 
patients and promotes angiogenesis [126]. HULC knock-
down suppresses angiogenesis via the PI3K/Akt/mTOR/
ESM-1 signaling pathway [127].

Differentiation Antagonizing Non-Protein Coding RNA 
(DANCR) participates in cell progression in various can-
cers, and thus DANCR is predicted as an emerging ther-
apeutic target in human malignancies [119, 128, 129]. In 
the study by Zhu et al. [119], it was proven that inhibition 
of the mentioned lncRNA could inhibit cholangiocarcino-
ma cell proliferation, migration, and invasion and induce 
apoptosis. Angiogenesis was inhibited after the silencing 
of DANCR in the studied samples. The possible mecha-
nism of this phenomenon was related to the association 
between DANCR and the expression of VEGF-A. The crucial 
role of VEGF-A during DANCR inhibition of the tumour an-
giogenesis was also proven in studies conducted on ovar-
ian cancer cells [130].

Plasmacytoma variant translocation 1 (PVT1), a lncRNA 
encoded by the human PVT1 gene, is in the well-known 
cancer-connected region. The role of PVT1 as a cancer bio-
marker is gradually becoming established [131]. The upreg-

ulation of PVT1 has been confirmed in studies conducted 
on tissues derived from patients suffering from gastric 
cancer [132]. In the study by Zhao et al. [120] it was prov-
en that PVT1 can promote angiogenesis in gastric cancer, 
for the first time. The results of the mentioned research 
indicated that PVT1 activates the STAT3 signalling path-
way, and consequently elevates the expression of VEGF-A. 
The mechanism of action of PVT1 is quite complex. PVT1 
can directly bind activated p-STAT3 protein and enhance 
its stability by disrupting its poly-ubiquitination and se-
quential proteasomal proteolysis. Nuclear p-STAT binds 
with the VEGF-A promoter and leads to the expression of 
VEGF-A protein, inducing angiogenesis [120].

The existence of lncRNA inhibiting angiogenesis was 
proved in the latest studies. Qin et al. [117] discovered 
a new lncRNA called F630028O10Rik (abbreviated as F63), 
which inhibits VEGF-A secretion, endothelial cell clone for-
mation, migration, invasion, and tube formation.

LncRNAs take part not only in cancer angiogenesis but 
also in the other aspects of vascularization, encompassing 
heart development, which was shown in various studies 
[133–135].

LncRNA might also interact with microRNA (miRNA). It was  
established that lncRNA may serve as an endogenous 
sponge to regulate the function and expression of miRNA. 
On the other hand, miRNA binds to lncRNA, regulating their 
stability. LncRNA might also compete with other RNA tran-
scripts for the same miRNA and, as a result, perform the 
function of a competing endogenous RNA (ceRNA), which 
leads to interactions and subsequent regulation. Further-
more, the existence of many lncRNA/miRNA pathways, 
playing an important role in angiogenesis (e.g. SNHG1/miR-
199a, SNHG12/miR-199a), has been discovered recently 

Table 1. Functions of lncRNAs

LncRNA Function

HOTAIR Binds simultaneously with PRC2, LSD1, and CoREST and ensures gene silencing through H3K27 methylation and H3K4 
demethylation [115]
Promotes angiogenesis via direct and indirect up-regulation of VEGF-A expression and indirect up-regulation of Ang2 
expression [121]
Promotes cancer progression through negative regulation of chromosomal transcription or recombination of the 
chromatin [117]
Significant overexpression of HOTAIR in HCC tissues correlates with poor prognosis and predicts tumour recurrence [113]

Tie-1AS Plays an important role in angiogenesis via causing a specific defect in endothelial cell contact junctions and tube 
formations through selective binding to the tie-1 mRNA and regulation of its translation [125]

MVIH Increases microvessel density in HCC patients and promotes angiogenesis via inhibition of the secretion of PKG1 [126]

MALAT1 Plays an important role in angiogenesis [112]
Through interaction with miR20416 modulates proliferation, migration, and invasion of cholangiocarcinoma cells [119]

F63 Inhibits angiogenesis via supressing VEGF-A secretion and endothelial cells clone formation, migration, invasion, and 
tube formation [117]

MEG3 Plays an important role in angiogenesis [112]

HULC Its knockdown suppresses angiogenesis via the PI3K/Akt/mTOR/ESM-1 signalling pathway [127]

DANCR Its inhibition supresses proliferation, migration, and invasion of cholangiocarcinoma cell and induces apoptosis [119]
Its silencing inhibits angiogenesis (an important role may be played here by the association between DANCR and 
expression of VEGF-A) [119, 130]

PVT1 Promotes angiogenesis in gastric cancer via activation of the STAT3 signalling pathway and consequently elevates the 
VEGF-A expression [120]
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[136]. The aforementioned functions of lncRNAs are sum-
marized in Table 1.

B7-H3

B7-H3, also known as CD276, belongs to the B7-CD28 
immune checkpoint family, well-known examples of 
which include programmed death-ligand 1, CD80, and 
CD86 [137]. It was first described in 2001 by Chapoval 
et al. [138]. This transmembrane glycoprotein is mainly 
expressed by lymphocytes and activated dendritic cells; 
however, its role in modulating immune response remains 
unclear because different studies have shown both its in-
hibitory and co-stimulatory effects on lymphocytes [138]. 
B7-H3 in humans has 2 isoforms: 2IgB7-H3 and 4IgB7-H3, 
which is preferentially expressed on immunocytes [139]. 
It consists of an exon duplication of the extracellular IgV-
IgC domain, a transmembrane domain, and a short cyto-
plasmic carboxyl tail without a distinctive signalling motif 
[140]. High levels of B7-H3 mRNA were found in a wide 
range of human tissues, while B7-H3 protein is expressed 
at low levels. It suggests tight post-transcriptional regula-
tion [141], including methylation of B7-H3 promoter and 
interference with the miRNA-29 family [142]. Expression 
of B7-H3 was also reported in neoplasms such as lung, 
prostate, breast, or colorectal cancer [137].

As well as its immunomodulating effects, B7-H3 was 
recently found to play an important role in angiogenesis, 
with many potential mechanisms for its involvement de-
scribed [143, 144]. High levels of B7-H3 mRNA were ob-
served in late epithelial progenitor cells (LEPCs), a subpop-
ulation of circulating endothelial progenitor cells involved 
in new vessel formation [143], Son et al. found that B7-H3 
facilitates LEPC proliferation and migration in vitro, how-
ever, is associated with a decreased rate of angiogene-
sis and endothelial cell differentiation [143]. Wang et al. 
showed a correlation of B7-H3 expression and angiogen-
esis based on analyses of the Chinese Glioma Genome 
Atlas and the Cancer Genome Atlas datasets [142]. This 
correlation was further confirmed by in vitro research. 
In the colorectal cancer model, Wang et al. showed that 
B7-H3-associated angiogenesis is promoted through  
NF-kB pathway activation, causing induction of VEGF-A ex-
pression [144]. In the cancer angiogenesis context, the  
NF-kB pathway is known for its role in inflammatory regu-
lation by activation of lymphocytes and macrophages, cell 
proliferation, and differentiation. A wide range of factors 

play important roles in signal transduction, especially cy-
tokines – TNFα, IL-1, IL-2 [145]. In light of those, the role of 
NF-kB in cancer development is very complex [146]. Han  
et al. found that higher expression of B7-H3 was correlated 
with an increase of transforming growth factor β (TGF-β) 
and interleukin 10 (IL-10) levels in the studied group of 
mice injected with cervical cancer cells [147]. This may 
lead to activation of the JAK-STAT pathway and induce 
the expression of VEGF and promote angiogenesis [148]. 
Moreover, B7-H3 was shown to directly activate the JAK2/
STAT3 pathway, followed by activation of MMP-9 and Slug 
transcription factor [149, 150]. Furthermore, other metas-
tasis-promoting agents such as tissue inhibitors of metal-
loproteinases 1 and 2 (TIMP1 and TIMP2) and MMP-2 were 
found to be connected to B7-H3 expression [151]. Lim  
et al. [152] showed that B7-H3 can inhibit the transcription 
factor nuclear factor erythroid 2-like 2 (NRF2) [145]. NRF2 
is a transcriptional master regulator element that recog-
nizes cellular oxidative stress. Down-regulation of this fac-
tor leads to increased reactive oxygen species generation, 
HIF1-α activation, and VEGF up-regulation [152, 153].

B7-H3 expression in tumour tissue was described in 
different neoplasms, i.e. renal [154], bladder [155], pancre-
atic [156], cervical [147], and breast cancers [157], sarco-
mas [158], and gliomas [142]. Higher expression of B7-H3 
relates to larger tumour size, infiltrative growth pattern, 
and poor differentiation of neoplastic cells. In pancreatic 
cancer, Inamura et al. showed that B7-H3 positive patients 
had significantly shorter 2- and 5-year-survival: 57% and 
23% for B7-H3(-) patients vs. 34% and 12% for B7-H3(+) 
cases, respectively [156]. In invasive bladder cancer, the 
presence of B7-H3 expression was associated with even 
more striking differences in long-term survival – the 
5-year-survival rate was 58.1% for B7-H3-negative pa-
tients, while in the B7-H3-positive group it was only 4.5% 
[155]. Inamura et al. found that worse prognosis of renal 
cell carcinoma patients relates to both B7-H3 level and 
FOXP3+ regulatory T cell density [154].

A novel therapeutic approach using anti-B7-H3 agents 
was proposed by Bao et al., who showed that combined 
treatment of murine breast cancer models with anti-PD-1/
PD-L1 agent and photodynamic therapy targeting B7-H3 
resulted in suppression of tumour growth, and prevent-
ed lung metastasis and recruitment of CD8(+) T cells in 
tumour mass in comparison with single anti-PD-1/PD-L1 
treatment [159]. Based on the results of pre-clinical stud-
ies, several phase I clinical trials involving anti-B7-H3 

Table 2. The most recent clinical trials involving anti-B7-H3 agents (data from ClinicalTrials.gov)

Identifier Agent/Drug Description Status

NCT02982941 Enoblituzumab Children with B7-H3-expressing solid tumours Completed

NCT04185038 B7-H3-Specific
chimeric antigen receptor 

T Cell (CAR-T)

Phase 1 study of B7-H3-specific CAR T cell locoregional immunotherapy 
for diffuse intrinsic pontine glioma/diffuse midline glioma and 

recurrent or refractory paediatric central nervous system tumours

Recruiting

NCT04432649 CAR-T Cell with 4th 
generation B7-H3-specific 
chimeric antigen receptor 

(4SCAR-276)

 T cells genetically modified with a 4th-generation lentiviral chimeric 
antigen receptor (4SCAR fused with an inducible apoptotic caspase 

9 domain) targeting CD276 (B7-H3). This study will evaluate the side 
effects and effective doses of 4SCAR-276 in treating refractory and/or 

recurrent tumours

Recruiting
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agents were carried out or are currently recruiting, as 
summarized in Table 2.

DLL4-NOTCH

The Notch family is a group of transmembrane recep-
tors with 4 different members: Notch 1 to 4, and 5 comple-
mentary ligands known in mammals – 3 delta-like ligands 
(DLL 1, 3, 4) and 2 Jagged [160]. Their interactions take part 
in highly conservative signalling pathways responsible for 
a wide range of growth and differentiation processes, in-
cluding angiogenesis [161, 162]. In this paragraph, we focus 
on the role of DLL4, because of its recently described po-
tential in cancer therapy.

DLL4 is an endothelial-specific Notch ligand with expres-
sion restricted to small arteries and capillaries [162–164].  
DLL4 is mainly expressed in arterial endothelial cells, 
where it is involved in growth, sprouting, and artery spec-
ification [165–167]. Muller et al. showed that the presence 
of DLL4 in tumour tissues has a positive correlation with 
microvessel density [168]. Interestingly, in a different study, 
inhibition of the DLL4 pathway was shown to cause an in-
crease of tumour vascular density, but at the same time, 
newly formed vessels were generally poorly perfused, 
leading to hypoxia in tumour tissue [169–171].

Complex system of connections between DLL4 and sig-
nalling pathways related to angiogenesis include the fol-
lowing: VEGF-A/VEGFR2 [165], Angiopoietin-1 [172], hypox-
ia-inducible factor 2α (HIF-2α) [173], Wnt/β-catenin [174], 
and DLL4 itself [165]. Expression of DLL-4 can mediate the 
up-regulation of VEGFR1 and down-regulation of VEGFR-2, 
which causes the ‘stalk’ phenotype of endothelial cells 
[175]. Moreover, in a study conducted by Mendoça et al., 
impairment of DLL4 signalling inhibited EMT by the de-
crease in Snail, Twist, and TGF-β expression [176]. DLL4 
may be a potential factor linking hypoxia with EMT, be-
cause DLL4 loss-of-function tumour cells did not undergo 
EMT in a hypoxemic environment [176]. In line with the 
aforementioned studies, Wang et al. showed that the non-
small cell lung cancer patients with expression of DLL4 
had impaired OS when compared to DLL4-negative pa-
tients: 29.4±16.4 months and 55.4±16.1, respectively [177].

In the last few years, several agents against DLL4 were 
designed. The short characteristic of preclinical and clini-
cal research assessing their utility is presented in Table 3. 
Surprisingly, Iwamoto et al. showed that the effectiveness 
of agents impairing the Notch/Dll4 pathway is dependent 
on placental growth factor (PlGF) [178].

Conclusions

The angiogenic factors described in this review have 
a broad influence on angiogenesis and overall tumour pro-
gression. The increased expression of galectins has been 
reported in several malignancies, and their interaction with 
VEGFR plays a key role in the formation of new vessels. Rec-
ognition of FGF-2 by pentraxin-3 inhibits angiogenesis, but 
the role of this molecule remains unclear, as some studies 
suggest its tumour-promoting effects. RLIP76 regulates VEGF 
expression and secretion in tumour cells through HIF-1 acti-
vation. The existence of many lncRNAs playing an important 
role in angiogenesis (HOTAIR, Tie-1AS, MALAT1, DANCR, PVT1) 
has been discovered recently. LncRNA both promotes and 
inhibits angiogenesis, drug resistance, and proliferation. B7-
H3 promotes angiogenesis by activating the NF-kB pathway 
to induce VEGFA expression. DLL4 interacts with important 
pro-angiogenic molecules such as VEGF-A/VEGFR2, angio-
poietin-1, HIF-2α, and Wnt/β-catenin. High cancer mortality 
is driving scientists to seek new treatments, and molecules 
related to angiogenesis have become promising material for 
the development of new – and improvement of existing – an-
ti-angiogenic therapies. They are not only promising targets 
for therapeutic agents but can also potentially serve as prog-
nostic markers in many malignancies.
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