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Abstract: Self-powered ultraviolet (UV) photodetectors have attracted considerable attention in recent
years because of their vast applications in the military and civil fields. Among them, self-powered
UV photodetectors based on p-n heterojunction low-dimensional nanostructures are a very attractive
research field due to combining the advantages of low-dimensional semiconductor nanostructures
(such as large specific surface area, excellent carrier transmission channel, and larger photoconductive
gain) with the feature of working independently without an external power source. In this review,
a selection of recent developments focused on improving the performance of self-powered UV
photodetectors based on p-n heterojunction low-dimensional nanostructures from different aspects
are summarized. It is expected that more novel, dexterous, and intelligent photodetectors will be
developed as soon as possible on the basis of these works.

Keywords: self-powered; ultraviolet photodetectors; p-n heterojunction; dimensional nanostructures

1. Introduction

An ultraviolet (UV) photodetector is a kind of photo-electronic device that converts a
light signal to an electrical signal by using the photoelectric effect of semiconductors. As
an important device for both military and civil use, ultraviolet (UV) photodetectors have
attracted much attention in recent years because of their vast applications in military early
warning, communication sensing, environmental monitoring, disease diagnosis, and so
on [1–10]. Because UV radiation is generally divided into three bands (UVA: 320–400 nm,
UVB: 280–320 nm, and UVC: 10–280 nm) according to the standards of the International
Commission on Illumination [11], over the past two decades, wide-bandgap inorganic
semiconductors (such as ZnO, TiO2, SnO2, ZnS, GaN, Ga2O3, etc.) have been widely used to
manufacture UV photodetectors as the main components [12–19]. These UV photodetectors
are mainly divided into the following two categories according to the working principle:
one type uses the photoconductive effect of semiconductors; the other type works by
the photovoltaic effect of heterojunction. Most of these conventional UV photodetectors
need an external bias voltage to provide a driving force, which means that an external
power source is required. These external power sources not only increase the circuit design
complexity and processing cost of UV photodetection devices, but also limit their use
in special environments and conditions. Therefore, the construction of self-powered UV
photodetectors without an external power source has become a particularly important and
attractive research direction in the field of photoelectric detection.

In fact, the function of the power source is to provide a potential difference for the UV
photodetection system as a driving force to inhibit the recombination of photogenerated
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electrons and holes so as to control the moving direction of photogenerated electrons
and holes [1,2,20–22]. If an internal potential difference can be automatically formed in
the UV photodetection system, the device can work independently without an external
power source. Therefore, the key problem to be solved is how to automatically form an
internal potential difference in the UV detection system. Using the built-in p-n junction is
an effective way to realize the independent operation of the UV photodetector without an
external power source. When p-type and n-type semiconductors contact each other, a thin
depletion layer will be formed at the interface of the p-n junction, which forms a built-in
electric field from the n region to the p region (Figure 1) [23–30].
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Figure 1. Schematic diagram of p-n junction.

In recent years, a large number of self-powered UV photodetectors based on the p-n
heterojunction have been reported. It is obvious that gratifying progress has been made in
material synthesis, device construction, and detector performance. However, compared
with the current commercial UV photodetectors, the main performance of the self-powered
UV photodetectors (such as responsivity, response time, quantum efficiency, etc.) needs to
be further improved [31–35]. In this paper, some frontier research progress in the material
design and device testing of the different aspects of the p-n heterojunction low-dimensional
nanostructures to improve the self-powered UV photodetector performance in recent years
are summarized and analyzed. Finally, the possible opportunities and challenges in this
field are prospected.

2. Improving the Performance of Self-Powered UV Photodetectors Based on p-n
Heterojunction Low-Dimensional Nanostructures from Different Aspects
2.1. Construct Low-Dimensional Semiconductor Nanostructures

In the field of photoelectric detection, semiconductor materials are mainly composed of
large bulk states, film states, and nano states in scientific research and practical applications.
Generally speaking, their excellent properties are determined by their crystal structure, size
and dimension, surface structure, and band structure [36]. Self-powered UV photodetectors
based on low-dimensional semiconductor nanostructures usually show high responsivity
and response speed, which is closely related to the advantages of low-dimensional semi-
conductor nanostructures, such as large specific surface area, excellent carrier transmission
channel, and photoconductive gain much larger than that of bulk materials [37–39].

Shan’s group compares and studies the self-powered UV photodetectors based on
p-n heterojunctions with different sizes and dimensions. The p-GaN film/n-ZnO film
heterojunction device shown in Figure 2a is a typical layered structure self-powered UV
photodetector [40]. Undoped n-ZnO films are deposited onto p-GaN with a thickness of
about 2 µm to form a p-n heterojunction using a plasma-assisted molecular beam epitaxy
(MBE) technique, and the current-voltage curve of the p-n heterojunction shows obvious
rectifying behaviors. A photodetector is fabricated from this p-n heterojunction. Under
back-illumination conditions, the GaN layer on one hand acts as a p-type counterpart to
the n-ZnO layer and, on the other hand, as a “filter” that is transparent to the illumination
light with a wavelength longer than 360 nm. It is noteworthy that this photodetector
shows a narrow band photoresponse spectrum centered at 374 nm with a full width at half-
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maximum of only 17 nm and a peak responsivity of about 1 µA/W under back-illumination
at 0 V bias due to the GaN “filter,” revealing that the responsivity of the photodetector is
highly selective.

Compared with self-powered UV photodetectors based on 2D films, those based on 0D
and 1D materials with large surface area to volume ratio usually show higher responsivity
and shorter response time because more light can be absorbed by light capture or anti-
reflection effect [41]. As shown in Figure 2b, a heterojunction UV photodiode consisting of
epitaxially grown p-GaN layers and polyvinyl alcohol (PVA) coated ZnO colloidal nanopar-
ticles exhibits a lowpass and bandpass alternative property depending on the illumination
direction [42]. Under the incident optical power of 120 nW, the peak responsivity at
350 nm is about 0.225 mA/W at zero bias, indicating two orders of improvement compared
to that of the previous p-GaN film/n-ZnO film heterojunction UV photodetector shown
in Figure 2a. It is closely related to the fact that negatively charged oxygen ions on the
surface of PVA-ZnO nanoparticles neutralize the photogenerated holes and leave more
conduction-band electrons, resulting in an increase in conduction electrons. In addition,
the time response of the p-GaN/PVA-ZnO NPs heterojunction shows the fastest response
with a 25 ms rising time and a 50 ms falling time at 0V bias under back illumination, which
demonstrates three orders of improvement compared to a photoconductor and one order
of improvement compared to the MSM photodetector based on the PVA-ZnO NPs. In com-
parison to a p-GaN, ZnO nanowire photodiode, about a 3 order of magnitude improvement
is demonstrated.

Nanomaterials 2022, 12, x FOR PEER REVIEW 3 of 15 
 

 

illumination conditions, the GaN layer on one hand acts as a p-type counterpart to the n-
ZnO layer and, on the other hand, as a “filter” that is transparent to the illumination light 
with a wavelength longer than 360 nm. It is noteworthy that this photodetector shows a 
narrow band photoresponse spectrum centered at 374 nm with a full width at half-maxi-
mum of only 17 nm and a peak responsivity of about 1 μA/W under back-illumination at 
0 V bias due to the GaN “filter,” revealing that the responsivity of the photodetector is 
highly selective. 

Compared with self-powered UV photodetectors based on 2D films, those based on 
0D and 1D materials with large surface area to volume ratio usually show higher respon-
sivity and shorter response time because more light can be absorbed by light capture or 
anti-reflection effect [41]. As shown in Figure 2b, a heterojunction UV photodiode consist-
ing of epitaxially grown p-GaN layers and polyvinyl alcohol (PVA) coated ZnO colloidal 
nanoparticles exhibits a lowpass and bandpass alternative property depending on the il-
lumination direction [42]. Under the incident optical power of 120 nW, the peak respon-
sivity at 350 nm is about 0.225 mA/W at zero bias, indicating two orders of improvement 
compared to that of the previous p-GaN film/n-ZnO film heterojunction UV photodetec-
tor shown in Figure 2a. It is closely related to the fact that negatively charged oxygen ions 
on the surface of PVA-ZnO nanoparticles neutralize the photogenerated holes and leave 
more conduction-band electrons, resulting in an increase in conduction electrons. In ad-
dition, the time response of the p-GaN/PVA-ZnO NPs heterojunction shows the fastest 
response with a 25 ms rising time and a 50 ms falling time at 0V bias under back illumi-
nation, which demonstrates three orders of improvement compared to a photoconductor 
and one order of improvement compared to the MSM photodetector based on the PVA-
ZnO NPs. In comparison to a p-GaN, ZnO nanowire photodiode, about a 3 order of mag-
nitude improvement is demonstrated. 

 
Figure 2. (a) Self-powered UV photodetector based on p-GaN film/n-ZnO film heterojunction. Re-
printed with a permission from reference [40]. Copyright 2008 American Chemical Society; (b) self-
powered UV photodetector based on p-GaN film/PVA-ZnO colloidal nanoparticles heterojunction. 
Reprinted with a permission from reference [42]. Copyright 2013 American Institute of Physics; (c) 

Figure 2. (a) Self-powered UV photodetector based on p-GaN film/n-ZnO film heterojunction.
Reprinted with a permission from reference [40]. Copyright 2008 American Chemical Society; (b) self-
powered UV photodetector based on p-GaN film/PVA-ZnO colloidal nanoparticles heterojunction.
Reprinted with a permission from reference [42]. Copyright 2013 American Institute of Physics;
(c) self-powered UV photodetector based on n-ZnO/p-NiO core–shell heterojunction nanowire arrays.
Reprinted with a permission from reference [43]. Copyright 2013 The Royal Society of Chemistry.
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However, compared with the p-n heterostructure composed of nanoparticles and thin
films, the 1D core–shell p-n heterojunction nanostructure can exhibit a higher self-powered
potential due to its wider active area for light absorption and excellent carrier transmission
channel. As shown in Figure 2c, a highly spectrum-selective self-powered UV photodetec-
tor has been fabricated from n-ZnO/p-NiO core–shell nanowire arrays [43]. A NiO shell
layer with a thickness of about 45 nm is deposited onto the highly oriented vertical ZnO
nanowires with a diameter of about 30 nm by the chemical vapor deposition technique
and magnetron sputtering technique. The linear I-V curves for both Au on NiO and In
on ZnO reveal good ohmic contacts, confirming that the rectification behavior arises from
the n-ZnO/p-NiO interface. The outer-layer of the p-NiO acts as a “filter” which can filter
out the photons with short wavelengths, making this photodetector only respond to a
narrow spectrum range. It is noteworthy that the peak responsivity of the n-ZnO/p-NiO
core–shell nanowire arrays photodetector at 0V bias is about 0.493 mA/W. Meanwhile,
it is over twice that of a p-GaN/n-ZnO nanoparticle wavelength-selective photodiode
(0.225 mA/W) and at least two orders of magnitude larger than that of an epitaxially grown
p-GaN/n-ZnO heterojunction for selective UV detection (about 1 µA/W). Furthermore,
the response time of the n-ZnO/p-NiO core–shell nanowire arrays photodetector is about
1.38 ms, which is estimated as the 10–90% rise time measured at zero bias. The response
speed is significantly faster compared with the photoconductive photodetector, of which
the decay time is usually in the order of several seconds due to the presence of deep level
traps and the adsorption of gas molecules. In addition, because conductive polymers can
improve the photogenerated e-h pair separation ability of inorganic semiconductors and
have excellent hole transport properties [44–53], they are also widely used to construct
self-powered UV photodetectors based on p-n heterojunction with inorganic semiconduc-
tors [54–56]. Yang’s group demonstrates a self-powered ultraviolet (UV) photodetector
based on p-P3HT/n-ZnO nanowire array heterojunction, which is fabricated by spin-
coating with a layer of P3HT on ZnO nanowire arrays [57]. At zero bias, this photodetector
exhibits a responsivity of 0.125 mA/W and a specific detectivity of 3.7 × 107 Jones, and
the response time is only 90 ms and the recovery time is ≈98 ms at a low light intensity of
0.84 mW/cm2 for λ = 365 nm, which is much shorter than previous ZnO photodetectors
(approximately in seconds). The fast response and recovery speed may be attributed to the
well-defined transport path of 1D nanowires for the photogenerated carriers. Although
considerable progress has been made on constructing low-dimensional semiconductor
nanostructures used for self-powered p-n heterojunction UV photodetectors have been
realized, there are still many limitations affecting their wide applications. One of the
urgent problems to be solved is developing low-cost fabrication methods for high-quality
active materials.

2.2. Expand the p-n Heterojunction Interface

An inner potential difference is necessary for the separation of photogenerated e-h
pairs and can be automatically created due to the Fermi energy difference between two
dissimilar semiconductors. Subsequently, the built-in electric field induced by the po-
tential difference in the p-n heterojunction will guide the movement of photogenerated
carriers and give rise to photocurrent [58]. However, the interface of p-n heterojunc-
tion provides an ideal place for the separation of photogenerated e-h pairs. The expan-
sion of the heterogeneous interface is conducive to the separation of photogenerated e-h
pairs, resulting in greater photocurrent. A core–shell heterostructure is a typical struc-
ture with a large heterogeneous interface that is widely used in the field of photoelectric
detection [59–69].

Numerous self-powered UV photodetectors based on core–shell p-n heterojunction
have already been reported by many groups [70–74]. As shown in Figure 3a, Dunn and
coworkers fabricated a self-powered ZnO-Nanorod/CuSCN UV photodetector exhibiting
rapid response using the method of an array of ZnO nanorods 2–3 µm in length and
70–100 nm in diameter coated with a layer of CuSCN [75]. The device performs as a self-
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powered UV detector that operates at a nominal zero-applied field with a photocurrent
response of 4.5 µA for a low UV irradiance of 6.0 mW/cm2. A fast 500 ns rise and a
6.7 µs decay time are recorded with a UV-vis rejection ratio of ≈102. As a binary UV
photodetector, working at an applied positive bias of 0.1 mV, a rapid detection time of
4 ns is possible. Furthermore, the responsivity increases with illumination intensity up to
7.5 mA/W with a corresponding gain of ≈0.04 for 6 mW/cm2 irradiance, and the device is
operated at higher applied fields, and a responsivity of 9.5 A/W at −5 V is obtained.
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Reprinted with a permission from reference [75]. Copyright 2013 Wiley-VCH; (b) high-performance
self-powered UV photodetector based on p-CuZnS/n-TiO2 core–shell heterojunction. Reprinted with
a permission from reference [76]. Copyright 2018 Wiley-VCH; (c) self-powered photodetector based
on core–shell ZnO-Co3O4 p-n heterojunction nanowire arrays, Reprinted with a permission from
reference [77]. Copyright 2019 American Chemical Society.

In response to the growing need for wearable health monitoring systems, which call
for a high-performance real-time UV sensor to prevent skin diseases caused by excess UV
exposure, Fang’s group developed a novel high-performance self-powered UV photodetec-
tor based on p-CuZnS/n-TiO2 core–shell heterojunction (Figure 3b) [76]. The photodetector
exhibits a responsivity of 2.54 mA/W at 0 V toward 300 nm, and the response time of the
fiber-shaped photodetector is fast (both the rise and decay time are less than 0.2 s at 0 V
under 320 nm). Moreover, by effectively replacing the Ti foil with a thin Ti wire for the an-
odization process, the conventional planar rigid device is artfully turned into a fiber-shaped
flexible and wearable one. The fiber-shaped device shows an excellent responsivity of
640 A/W, an external quantum efficiency of 2.3 × 105%, and a photocurrent of ≈4 mA at
3 V. These outstanding performances exceed those of most current UV photodetectors.
These excellent performances are attributed to the large p-n heterogeneous interface pro-
duced by the core–shell structure, which produces excellent rectification effects and photo-
electric response.
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As shown in Figure 3c, Vomiero’s group prepared a self-powered photodetector based
on core–shell ZnO-Co3O4 p-n heterojunction nanowire arrays [77]. Ultrathin Co3O4 films
(in the range of 1–15 nm) are sputter deposited on hydrothermally grown ZnO nanowire
arrays. Interestingly, a thin layer of Al2O3 buffer layer between ZnO and Co3O4 may inhibit
charge recombination, boosting device performance. The photoresponse of the ZnO-Al2O3-
Co3O4 system at 0 V bias is six times higher compared to the ZnO-Co3O4. The responsivity
and specific detectivity of the best device are 21.8 mA/W and 4.12 × 1012 Jones, respectively.
This could be due to the physical barrier between the p-Co3O4 and the n-ZnO layer, which
reduces the recombination rate of photogenerated electrons and holes, thus physically
isolating the electrons and holes during their collection at the electrodes. In addition,
the alumina barrier may improve the electric field in the depletion region, helping the
photogenerated e-h pairs to be separated more efficiently.

2.3. Improve the Crystalline Quality of Semiconductors

A large number of microscopic material units (atoms, ions, molecules, etc.) are orderly
arranged to form the crystals. Compared with organic semiconductors, inorganic semicon-
ductors are easier to form crystalline structures. In a semiconductor with low crystalline
quality, there are more defects and grain boundaries, which is not conducive to the sepa-
ration and transmission of photogenerated carriers. Therefore, improving the crystalline
quality of semiconductors is one of the most effective ways to build high-performance
self-powered UV detectors [78–82].

As shown in Figure 4a, Zhang’s group constructed a high-sensitivity, broadband
photodetector based on 2,4-bis[4-(N,N-dimethylamino)phenyl]squaraine (SQ) nanowire/
crystalline Si (c-Si) p-n heterojunctions [83]. Owing to the high crystal quality of the SQ
nanowires, the heterojunctions exhibit excellent diode characteristics and the ability to
detect broadband light spanning from ultraviolet (UV) light, to visible (Vis) light, to near-
infrared (NIR) light. Under the 0.66 mW/cm2 254 nm and 302 nm light illumination, the
device exhibits a photosensitivity (defined as (Ilight − Idark)/Idark) as high as 430% and
a rise time of 0.6 s at a bias voltage of −3 V and reveals a power conversion efficiency
(PCE) of up to 1.17%. This result also proves the potential of the device as a self-powered
photodetector operating at zero external bias voltage. As shown in Figure 4b, Fang’s
group fabricated a high-responsivity self-powered solar-blind UV photodetector with a
high rejection ratio based on PEDOT:PSS/Ga2O3 organic/inorganic p-n junction [84]. At
zero bias, the device exhibits ultrahigh responsivity of 2.6 A/W at 245 nm with a sharp
cutoff wavelength of 255 nm, which is much larger than that of previous solar-blind DUV
photodetectors. Moreover, the device exhibited an ultrahigh solar-blind/UV rejection ratio
(R245 nm/R280 nm) of 103, which is two orders of magnitude larger than the average value
ever reported in Ga2O3-based solar-blind photodetectors. In addition, the photodetector
shows a rise time of about 0.3 ms from 10% to 90% and a decay time of about 3 ms from
90% to 10% at −10 V.

2.4. Utilize Transfer of Photogenerated Carriers or Enhance the Built-In Electric Field

Under ultraviolet (UV) irradiation, inorganic semiconductors with a wide band gap
show excellent photoelectric response properties, which makes them the main candidates
for UV detectors. However, the recombination of photogenerated electrons and holes
is a headache because it reduces the effect of converting light absorption into photocur-
rent, which limits the further improvement of UV photodetector performance. Therefore,
how to effectively inhibit the recombination of photogenerated electrons and holes or
promote the separation of photogenerated e-h pairs has become an important improvement
direction [85,86].
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photodetector based on PEDOT:PSS/β-Ga2O3 organic/inorganic p-n junction. Reprinted with a
permission from reference [84]. Copyright 2019 American Chemical Society.

On the one hand, the transfer of photogenerated carriers between different compo-
nents is usually used to inhibit the recombination of photogenerated electrons and holes. As
shown in Figure 5a, Basak’s group has developed an unprecedented high performance dual
wavelength self-powered ZnO@CdS/PEDOT:PSS core–shell nanorod array photodetector
through a simple aqueous chemical method wherein a suitable band alignment between
ZnO and CdS has been utilized [87]. Due to the good energy level matching between
ZnO and CdS, the photogenerated holes in the valence band of ZnO are transferred to
CdS under ultraviolet light, and then input to the electrode through PEDOT:PSS, and
while the photogenerated electrons in the conduction band of ZnO are easily transferred
to the electrode, which promotes the rapid separation of photogenerated electron hole
pairs and inhibits recombination, so that the photocurrent is about three times higher than
that of CdS/PEDOT:PSS, reaches 2.2 × 10−6 A at 0 V bias (light intensity of 1 mW/cm2).
Furthermore, temporal responses faster than 20 ms can be achieved in these solution-
processed photodetectors. On the other hand, the separation efficiency of photogenerated
carriers is improved by enhancing the built-in electric field. As shown in Figure 5b,
Liu’s group has fabricated a super-high performance self-powered UV photodetector
based on GaN/Sn:Ga2O3 p-n junction by depositing a Sn-doped n-type Ga2O3 thin
film onto a p-type GaN thick film. At 0 V bias, the device shows an ultra-high re-
sponse rate of 3.05 A/w to 254 nm ultraviolet light, a high UV/visible rejection ratio of
R254nm/R400nm = 5.9 × 103, and an ideal detectivity of 1.69 × 1013 cm·Hz1/2·W−1, which is
well beyond the level of previous self-powered UV photodetectors. Moreover, this device
also has a low dark current (1.8 × 10−11 A), a high Iphoto/Idark ratio (~104), and a fast
photoresponse time of 18 ms. These excellent properties are attributed to making the Fermi
level move close to the conduction band by doping the tetravalent element Sn in Ga2O3,
which makes the built-in potential barrier in the GaN/Sn: Ga2O3 p-n structure film larger
and can separate photogenerated e-h pairs more effectively in the interface depletion region
of the GaN/Sn: Ga2O3 p-n heterojunction [88].
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Figure 5. (a) Highly enhanced self-powered dual wavelength photodetector based on ZnO@CdS
coreshell nanorod arrays. Reprinted with a permission from reference [87]. Copyright 2015 American
Chemical Society; (b) self-powered ultraviolet photodetector with superhigh photoresponsivity based
on the GaN/Sn:Ga2O3 p-n junction. Reprinted with a permission from reference [88]. Copyright 2018
American Chemical Society.

2.5. Adjust the Bandgap of Semiconductors for Deep UV Detection

In recent years, biological and medical research has shown the very important role
of the UV-A (400–320 nm) and UV-B (320–280 nm) bands on the Earth’s biosystem and
human health (erythema, eye cataracts, skin cancer, etc.). Thus, it is of great research
value to develop wide-bandgap semiconductor photodetectors tailored to the various
solar UV bands and blind to the visible and IR emissions [89,90]. Although a variety of
semiconductor photodetectors are able to respond to UV photons, it has been recognized
that GaN-based photodetectors are excellent candidates for the detection of UV radiation,
and moreover, AlGaN-based photodetectors with threshold energies of 3.4 eV (GaN) up to
6.2 eV (AlN) can be fabricated by a proper choice of the Al mole fraction, which provides a
good opportunity for deep UV detection [91–94].

As shown in Figure 6a, Song and coworkers fabricated a heterojunction UV photode-
tector based on p-CuZnS and n-GaN using a facile chemical bath deposition method [95].
Benefiting from the high hole mobility of p-type inorganic semiconductor CuZnS and
the excellent electron mobility of n-type inorganic semiconductor GaN, the CuZnS/GaN
heterojunction film device shows a significantly enhanced photocurrent and good rec-
tifying behavior at 3 V and 350 nm. More importantly, the p-CuZnS/n-GaN device r
presents a high photocurrent (19 mA), high responsivity (0.36 A/W), a fast response speed
(0.14 ms/40 ms), and an ultrahigh on/off ratio (3 × 108) under 350 nm light illumination
at zero bias. In particular, the self-powered CuZnS/GaN photodetector demonstrates
high detectivity (8 × 1013) and an ultrahigh linear dynamic range (137 dB). These excellent
results reveal that the p-CuZnS/n-GaN heterojunction device can act as a high-performance
self-powered UV photodetector with the prospect of wide application. Trapped in low light
absorption and the quick recombination of photo-generated electron-hole pairs, the perfor-
mance of available GaN-based UV photodetectors is still unsuitable for real applications.
Fabricating nanoporous GaN (porous-GaN) is a promising approach to improve the light
absorption due to large specific surface area and photo trap effect of porous structures [96].
As shown in Figure 6b, Qin’s group prepared a novel self-powered UV photodetector
based on p-type cobalt phthalocyanine (CoPc)/n-type porous-GaN vertical heterojunc-
tion through a thermal vapor deposition method [97]. At 0 V bias, the device exhibits a
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photoresponsivity of 588 mA/W, a detectivity of 4.8 × 1012 Jones, and a linear dynamic
range of 79.5 dB under 365 nm 9 µW/cm2 light illumination, which displays an upper
level among the reported work. In addition, compared with the CoPc/flat-GaN-based pho-
todetector, the photocurrent of this CoPc/porous-GaN-based photodetector has increased
by about four times. These excellent results can be attributed to the nanopores on the
GaN surface providing higher light absorptivity and a lower interface migration distance,
which induced more electrons to take part in the excitation and recombination process. The
AlGaN-based solar-blind ultraviolet detectors have attracted much attention due to their
good chemical and thermal stability, and particularly their potential application in the deep
ultraviolet region depending on the adjustable band gap (3.4–6.2 eV) [98–100]. As shown
in Figure 6c, Razeghi’s group has presented a back-illuminated p-i-n structure with Si-In
co-doped Al0.5Ga0.5N solar-blind UV photodetector grown on a high-quality crack-free
AlN template [101]. At zero bias, the device exhibits an external quantum efficiency (EQE)
of 80% and a responsivity of 176 mA/W at 275 nm. Furthermore, the UV/visible light
rejection ratio exceeded six orders of magnitude. These results are closely related to a
highly conductive Si-In co-doped Al0.5Ga0.5N layer, adjustment of the composition and
thickness of the n-Al0.45Ga0.55N layer, and improvement of p-type Al0.38Ga0.62N doping.
For AlGaN-based solar-blind ultraviolet detectors, the forbidden band can continuously
change from 3.4 eV (GaN) to 6.2 eV (AlN) by changing the alloy composition, and the
cutoff wavelengths can vary continuously between 365 nm and 200 nm in theory, which
has great advantages over traditional inorganic semiconductors (ZnO, ZnS, TiO2, SnO2,
etc.). However, a high density of dislocations and other structural defects hinders their use.
In the future, improving the crystallization quality of AlGaN will still be an important way
to promote the performance of AlGaN-based UV photodetectors [102,103].
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Figure 6. (a) High-performance self-powered p-CuZnS/n-GaN UV photodetectors with ultrahigh
on/off ratio. Reprinted with a permission from reference [95]. Copyright 2021 The Royal Society of
Chemistry; (b) high-performance self-powered ultraviolet photodetector based on nano-porous GaN
and CoPc p–n vertical heterojunction. Reprinted with a permission from reference [97]. Copyright
2019 Multidisciplinary Digital Publishing Institute; (c) AlxGa1-xN-based back-illuminated solar-blind
photodetectors with external quantum efficiency. Reprinted with a permission from reference [101].
Copyright 2013 American Institute of Physics.
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3. Summary and Perspectives

This review article summarized several examples focused on improving the perfor-
mance of self-powered UV photodetectors based on p-n heterojunction low-dimensional
nanostructures from different aspects, resulting in the main performance parameters of
those detectors (such as responsivity, response time, quantum efficiency, etc.) having been
improved to a certain extent, but there is still a certain gap compared with the current
commercial photodetector. An ideal self-powered UV photodetector should satisfy the 5S
requirements of high sensitivity, high signal-to-noise ratio, high spectral selectivity, high
speed, and high stability. Combined with the characteristics of semiconductor materials
and low-dimensional nanostructures, the built-in electric field of the p-n junction should be
fully utilized to meet the great demand for weak UV signal detection and faster and more
sensitive devices.

So far, researchers have made a lot of efforts and many gratifying developments have
been acquired, but self-powered UV photodetectors with higher performance are still
highly desired. On the one hand, exploring novel nanostructures that can promote the
separation of photogenerated e-h pairs and be prepared by simple and stable methods may
still be an important direction in the future; on the other hand, with the emergence of new
high-performance semiconductor materials (such as graphdiyne [104–111], h-BN [112–116],
perovskites [117–127], black phosphorus [128–135], and MoS2 [136–144]), the situation of
inorganic semiconductors as leading materials in self-powered photodetectors may be
changed. In addition, inspired by the rise of wearable photodetectors in recent years, the
new generation of photodetectors needs to be designed to be more dexterous and intelligent,
which obviously puts forward new requirements for the design, size, and performance of
materials and structures.
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