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Results from numerous studies suggest an important role for somatic copy

number alterations (SCNAs) in cancer progression. Our work aimed to

identify the drivers (oncogenes or tumor suppressor genes) that reside in

recurrently aberrant genomic regions, including a large number of genes or

non-coding genes, which remain a challenge for decoding the SCNAs

involved in carcinogenesis. Here, we propose a new approach to compre-

hensively identify drivers, using 8740 cancer samples involving 18 cancer

types from The Cancer Genome Atlas (TCGA). On average, 84 drivers

were revealed for each cancer type, including protein-coding genes, long

non-coding RNAs (lncRNA) and microRNAs (miRNAs). We demon-

strated that the drivers showed significant attributes of cancer genes, and

significantly overlapped with known cancer genes, including MYC, CCND1

and ERBB2 in breast cancer, and the lncRNA PVT1 in multiple cancer

types. Pan-cancer analyses of drivers revealed specificity and commonality

across cancer types, and the non-coding drivers showed a higher cancer-

type specificity than that of coding drivers. Some cancer types from differ-

ent tissue origins were found to converge to a high similarity because of

the significant overlap of drivers, such as head and neck squamous cell car-

cinoma (HNSC) and lung squamous cell carcinoma (LUSC). The lncRNA

SOX2-OT, a common driver of HNSC and LUSC, showed significant

expression correlation with the oncogene SOX2. In addition, because some

drivers are common in multiple cancer types and have been targeted by

known drugs, we found that some drugs could be successfully repositioned,

as validated by the datasets of drug response assays in cell lines. Our work

reported a new method to comprehensively identify drivers in SCNAs

across diverse cancer types, providing a feasible strategy for cancer drug

Abbreviations

BH, Benjamini and Hochberg; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CCLE, Cancer Cell Line Encyclopedia;

CDEGs, correlated differentially expressed genes; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, colon

adenocarcinoma; DEGs, differentially expressed genes; FDA, US Food and Drug Administration; FDR, false discovery rate; GBM, glioblastoma

multiforme; GDSC, Genomics of Drug Sensitivity in Cancer; GO, gene ontology; HMDD, Human microRNA Disease Database; HNSC, head and

neck squamous cell carcinoma; IC50, half maximal inhibitory concentration; Ka, non-synomymous substitution rate; KEGG, Kyoto Encyclopedia

of Genes and Genomes; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; Ks, synonymous substitution rate;

LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma;

NSCLC, non-small cell lung cancer; OV, ovarian serous cystadenocarcinoma; PPI, protein–protein interaction; PRAD, prostate adenocarcinoma;

READ, rectum adenocarcinoma; SCNAs, somatic copy number alterations; SKCM, skin cutaneous melanoma; STAD, stomach

adenocarcinoma; TCGA, The Cancer Genome Atlas; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.

1459Molecular Oncology 11 (2017) 1459–1474 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.



repositioning as well as novel findings regarding cancer-associated non-cod-

ing RNA discovery.

1. Introduction

Somatic copy number alteration (SCNA) is an impor-

tant form of somatic genetic alteration in cancer (Kim

et al., 2013). Some of the elements, including protein-

coding genes, microRNAs (miRNAs) and long non-

coding RNAs (lncRNAs) that are located in amplified

or deleted regions, lead to altered activity in cancer

cells (Czubak et al., 2015). Among the many protein-

coding genes or non-coding RNAs located in regions

of SCNAs, most likely only a fraction of them are

cancer drivers (Silva et al., 2015). The identification of

drivers within SCNA regions is an urgent and chal-

lenging task.

Several methods have been proposed to detect dri-

vers with SCNAs. A simple approach is to seek known

cancer genes within the regions of SCNAs to define

the driver genes. For example, Borczuk et al. (2016)

used census cancer genes to identify the driver genes in

regions with significant SCNAs of malignant mesothe-

lioma. However, seeking known cancer genes is often

an unsuccessful approach in many regions because of

the limited number of known cancer genes. For exam-

ple, Zack et al. (2013) reported 140 focal SCNA

regions in 4934 tumor samples across 11 cancer types,

among which 102 regions were without known onco-

gene or tumor suppressor gene targets. More impor-

tantly, drivers identified by this method lack statistical

significance, and it cannot detect new drivers, includ-

ing driver non-coding RNAs such as lncRNAs and

miRNAs. Another method for revealing drivers with

SCNAs is based on the hypothesis that drivers with

SCNAs should result in corresponding gene expression

changes, as only those SCNAs that cause changes in

transcript abundance can possibly alter the corre-

sponding activity of cancer cells (Du et al., 2013). For

instance, Rubio-Perez et al. (2015) selected as candi-

date drivers, those genes that exhibited SCNAs with

significantly coherent expression changes. Du et al.

(2013) selected lncRNAs whose SCNAs showed posi-

tive correlations with expression level changes as can-

didate drivers. Obviously, the drivers identified by this

method have high false-positive rates due to the broad

criteria. The traditional and strict method to identify

drivers in focal regions of SCNAs is to functionally

test each gene in the region via biological experiments

(Pon and Marra, 2015). For example, region 3q26 with

20 genes is frequently amplified in ovarian, breast and

non-small-cell lung cancers. Through function interro-

gation, Hagerstrand et al. (2013) found that the

increased expression of both TLOC1 and SKIL

induced subcutaneous tumor growth, and therefore,

these two genes were identified as drivers of 3q26

(Hagerstrand et al., 2013). Although functional tests

are a reliable way to identify drivers in focal SCNAs,

they are time-consuming and expensive and thus can-

not be comprehensively applied to identify drivers with

SCNAs in diverse cancer types. Sanchez-Garcia et al.

(2014) developed Helios to identify drivers with

SCNAs for breast cancer, which mainly focused on

protein-coding genes. Hence, our work aimed to sys-

tematically distinguish drivers, including protein-cod-

ing genes, lncRNAs and miRNAs, from passengers in

regions of SCNAs by integrating expression profiles,

known cancer genes and statistical control.

Here, our work aimed to identify the oncogenes and

tumor suppressor genes that reside in recurrently aber-

rant genomic regions encoding a large number of

genes, which is still a challenge for decoding the

SCNAs involved in carcinogenesis. Known cancer

genes have the characteristics of a high degree and

large betweenness centrality in protein–protein net-

works (Jonsson and Bates, 2006), high mutation rate

(Lawrence et al., 2014) and high conservation (Furney

et al., 2008), which have been pursued in our work.

Cancer genes tend to have interactive relationships in

human protein–protein networks that are involved in

the same modules and pathways underlying the hall-

marks of cancer (Vinayagam et al., 2016; Wong et al.,

2008). Thus, we hypothesized that driver genes in the

region of SCNAs should have biological relationships,

such as regulation or protein–protein interactions

(PPIs), with known cancer genes and present signifi-

cant expression correlation with known cancer genes

in cancer samples. The Cancer Genome Atlas (TCGA)

provides a large number of cancer samples for investi-

gating the drivers in SCNA regions across different

cancer types. We propose a new method to detect dri-

vers (protein-coding genes, lncRNAs and miRNAs) in

the regions of SCNAs by analyzing a total of 8740

cancer samples of 18 cancer types from TCGA. Our

work reveals many driver non-coding RNAs in diverse

cancer types. Analysis of drivers across multiple cancer

types reveals specificity and commonality across
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cancers. Drivers shared by different cancer types could

suggest novel drug repositioning.

2. Materials and methods

2.1. Datasets and processing

The level 3 RNAseq datasets (RNAseqV2 RSEM) of

mRNA and miRNA for all 18 cancer types were

downloaded from the Broad Institute, Firehose (http://

gdac.broadinstitute.org/runs/stddata__2016_01_28/).

For lncRNA, RNAseq RPKM profiles were down-

loaded from TANRIC (Li et al., 2015). The elements

(protein-coding genes, lncRNAs or miRNAs) with

zero expression in at least 90% of samples were

removed. All expression values were z-score-trans-

formed for subsequent analysis.

Level 3 of the DNA copy number datasets of the

Genome-Wide Human SNP Array 6.0 platform were

obtained from TCGA (https://cancergenome.nih.gov/).

To detect significantly recurrent regions of SCNA, GIS-

TIC 2.0 was applied to the level 3 segment data files

(Mermel et al., 2011). We detected peak regions using

a threshold of q < 0.1 (results with q < 0.25 and

q < 0.05 are listed in Table S6). Parameters used in the

GISTIC algorithm were set as follows: cap values, 1.5;

broad length cutoff, 0.5; confidence level, 0.99; joint

segment size, 4; arm-level peel-off, 1; and maximum

sample segments, 2500. Details for each parameter

were described in a previous study (Mermel et al.,

2011). We used a log2 ratio � 0.25 as a cutoff to

define copy number gain/loss similar to that of Bam-

bury et al. (2015). Beroukhim et al. (2010) referred to

arm-level events as ‘gains’ or ‘losses’, and focal events

as ‘amplifications’ or ‘deletions’. The copy number

alterations identified by GISTIC 2.0 were focal regions

and we therefore used ‘amplification’ and ‘deletion’ in

our work. Statistics of the sample numbers for each

cancer type are listed in Table S1.

2.2. Identification of drivers

To identify the drivers residing in the peak region of

SCNAs, we performed the following analyses (Fig. 1):

Step 1 (Fig. 1A): Identify elements whose expres-

sion levels were consistent with copy number alter-

ation. We used the Pearson correlation to test the

correlation between expression and SCNAs of ele-

ments, including protein-coding genes, lncRNAs

and miRNAs. The P-values were adjusted by Ben-

jamini and Hochberg (BH). Furthermore, the ele-

ments with a false discovery rate (FDR) < 0.05

and r > 0 were retained as candidates for subse-

quent analyses.

Step 2 (Fig. 1B): Identify peak region-related differ-

entially expressed genes (DEGs). For each peak

region, patients were separated into two groups:

patients with and without SCNAs in this region.

The Wilcoxon rank-sum test was applied to identify

DEGs between the two groups. The P-values were

adjusted by BH, and the genes with FDR < 0.05

were selected as DEGs.

Step 3 (Fig. 1C): Identify correlated differentially

expressed genes (CDEGs) for each candidate ele-

ment. The Pearson correlation test was used to cal-

culate the expression correlation between the

candidate elements and DEGs in samples with

SCNAs of the candidate elements. Correlations

among the elements within the same region were

excluded. The P-values were adjusted by BH, and

the DEGs with FDR < 0.05 were retained. Then,

only CDEGs having an interaction relationship,

including PPI, lncRNA-protein binding and

miRNA-target interaction, with candidate drivers

were included.

Step 4 (Fig. 1D): Identify drivers in each peak

region. We hypothesize that significant overlap

between CDEGs and known cancer genes indicates

that the candidate driver tends to regulate cancer

genes and is more likely to be a driver during car-

cinogenesis. A total of 608 known cancer genes

were obtained from the Cancer Gene Census on 13

February 2017 (http://cancer.sanger.ac.uk/census/)

(Futreal et al., 2004). For each candidate element

with a + c CDEGs derived from Fig. 1C, we cal-

culated the probability (P-value) of overlapping no

less than a census cancer genes according to a

hypergeometric distribution model. a + b + c + d

is the total number of genes in the expression pro-

file, and a + b is the number of census cancer

genes in the expression profile. The probability of

overlapping a census genes from a + c CDEGs by

random chance is calculated using Eqn (1):

p ¼
aþ b
a

� �
cþ d
c

� �

aþ bþ cþ d
aþ c

� � ð1Þ

Then, the cumulative probability of overlapping no

less than a census cancer genes between a + c CDEGs

and a + b census cancer genes by random chance was

calculated according to Eqn (2):
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p ¼ 1�
Xa�1

k¼0

aþ b
k

� �
cþ d

aþ c� k

� �

aþ bþ cþ d
aþ c

� � ð2Þ

2.3. Interaction dataset and other information

First, 608 641 PPI were downloaded from the InWeb_

InBioMap database using version 2016_09_12 (https://

www.intomics.com/inbio/map/#downloads). Then, 77

383 lncRNA-protein binding pairs were collected from

ChIPBase (http://rna.sysu.edu.cn/chipbase/) and NPInter

(http://www.bioinfo.org/NPInter); 1 754 150 miRNA-

target interactions were collected from TargetScan (http://

www.targetscan.org/vert_71/), miRanda (http://www.mic

rorna.org/microrna/home.do), miRBase (http://www.mir

base.org/), miRTarBase (http://mirtarbase.mbc.nctu.edu.

tw/) and starBase (http://starbase.sysu.edu.cn/).

2.4. Known cancer gene database

Cancer driver genes identified by at least two methods

were collected from DriverDB (http://driverdb.tms.c

Fig. 1. Schematic procedure of our work. (A) Identification of candidate elements whose expression levels are positively correlated with copy

number alterations. (B) Identification of DEGs affected by the copy number alteration for each peak region. (C) Identification of CDEGs for each

candidate element. PPIs, lncRNA-protein binding relationships and miRNA-target interactions are used to filter the CDEGs. (D) Identification of

drivers whose CDEGs significantly overlap with known cancer genes. a + b + c + d is the total number of genes in the expression profile, and

a + b is the number of census cancer genes in the expression profile. a + c is the number of CDEGs of one candidate driver. a is the number

of overlapping genes between CDEGs and cancer genes. (E) Validation of drivers. (F) Analysis of drivers in multiple cancers.
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mu.edu.tw/driverdbv2/). A total of 2027 cancer genes

were collected from Bushman (http://www.bushman

lab.org/links/genelists), and 716 tumor suppressor

genes were downloaded from TSGene (https://bioinfo.

uth.edu/TSGene1.0/).

2.5. Information on drug target and drug

response data

An integrated dataset of 24 141 drug-target pairs was

collected from DrugBank (http://www.drugbank.ca/),

Cancer Cell Line Encyclopedia (CCLE; http://www.b

roadinstitute.org/ccle/home), Genomics of Drug Sensi-

tivity in Cancer (GDSC; http://www.cancerrxgene.

org/) and ChEMBL (https://www.ebi.ac.uk/chembl/).

The drug response data of the cell lines were down-

loaded from the CCLE and GDSC. We used the half

maximal inhibitory concentration values (IC50) in

CCLE and the area above the fitted dose response

curve (Act Area) in GDSC for the following analysis.

A higher Act Area or lower IC50 means higher sensi-

tivity to the drug. Information regarding known drug-

disease relationships was collected from DrugBank

(http://www.drugbank.ca/) and the US Food and Drug

Administration (FDA; https://www.accessdata.fda.gov/

scripts/cder/daf/).

2.6. Other datasets

Pathway information was downloaded from Kyoto

Encyclopedia of Genes and Genomes (KEGG, release

58.0). Synonymous substitution rate (Ks) and non-

synonymous substitution rate (Ka) data of human

genes and mouse homologs were downloaded from

NCBI HomoloGene (build 68). We calculated the Ka/

Ks ratio as the evolution rate. A smaller Ka/Ks means

that the gene is more conservative.

2.7. Bioinformatics tools

All analysis processes were performed in R 3.2.3

(https://www.r-project.org/). Network visualizations

were performed in CYTOSCAPE 3.4.0 (http://www.cy

toscape.org/).

3. Results

3.1. Focal SCNA regions are revealed in diverse

cancer types

We analyzed the copy number profiles of 8740 cancer

samples across 18 cancer types from TCGA. For each

cancer type, GISTIC 2.0 was used to identify

significantly recurrent regions of SCNA (Mermel et al.,

2011). A total of 1160 peak regions were identified in

18 cancers with an average coverage of 418 Mb in

each cancer. There were 462 amplified and 698 deleted

peak regions. For each cancer, a mean of 4903 ele-

ments was included in the peak regions. The elements

within each peak region include protein-coding genes,

lncRNAs or miRNAs. The statistics of the peak num-

bers and peak element numbers are listed in Table S2.

3.2. Identification of drivers in peak regions

We performed the following process to identify drivers

(Fig. 1). First, only those protein-coding genes or non-

coding RNAs with SCNAs that cause changes in tran-

script abundance can possibly alter the corresponding

activity of cancer cells (Du et al., 2013). Thus, we

selected the elements whose expression levels were sig-

nificantly correlated with SCNAs as candidate drivers

by Pearson correlation test with FDR < 0.05 and

r > 0 (Fig. 1A). Second, alterations, including SCNAs,

that affect expression levels of other genes in the can-

cer genome have been used to identify key events for

carcinogenesis (Masica and Karchin, 2011). Thus, we

detected SCNA-related DEGs for each peak region by

comparing patients with and without alterations in this

peak region (Wilcoxon rank-sum test, FDR < 0.05;

Fig. 1B). Third, we detected CDEGs for each candi-

date driver by calculating the correlation between the

candidate driver and DEGs with FDR < 0.05. If the

elements with SCNAs in peak regions truly affect the

DEGs, the elements should have interactions or a reg-

ulatory relationship with CDEGs in addition to show-

ing expression correlation with CDEGs. Based on this

hypothesis, we filtered the CDEGs by PPI, miRNA-

target interaction and lncRNA-protein binding infor-

mation, which support the biological relationship

between candidate driver and CDEGs (Fig. 1C).

Finally, previous studies found that cancer genes have

direct or indirect interactions in biological pathways or

networks (Vinayagam et al., 2016). Thus, the CDEGs

of a driver should significantly overlap with known

cancer genes (P < 0.05, hypergeometric test; Fig. 1D).

Detailed statistics of the results for each step in our

work flowchart are summarized in Table S2.

On average, 84 drivers were defined for each cancer

type. Statistics for the number and type of driver of

each cancer are shown in Fig. 2A, and drivers for each

cancer are listed in Table S3. Among the 18 cancers,

breast invasive carcinoma (BRCA) has the largest

number of drivers, and glioblastoma multiforme

(GBM) the smallest number. Nearly 1.7% of elements

in the peak region were identified as drivers, and an
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Fig. 2. Statistics of drivers. (A) Statistics of the drivers in each cancer. Green, orange and blue cylinders represent driver protein-coding

genes, lncRNAs and miRNAs, respectively. (B) Overlap between drivers and census cancer genes. The gray pillar represents the ratio of

drivers to all of the elements in the peak region in each cancer type. The red pillar represents the ratio of overlap between census cancer

genes and drivers in each cancer type.
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average of ~ 18% of the drivers were known census

cancer genes in each cancer (Fig. 2B).

3.3. Drivers capture the features of cancer genes

To confirm the drivers identified by our method, we

compared the different attributes of drivers and non-

drivers. Here, both driver and non-driver elements

were limited to those whose expression levels were con-

cordant with copy number alterations in peak regions.

Cancer genes have a higher degree and larger between-

ness centrality in the human protein–protein network

and tend to be conserved across species (Furney et al.,

2008; Jonsson and Bates, 2006; Xia et al., 2011).

Drivers identified by our method also showed a signifi-

cantly higher degree and larger betweenness centrality

than did the those of non-drivers in the PPI network

(Fig. 3A,B; P < 0.05, Wilcoxon rank-sum test). Twelve

of the 18 cancers showed that the drivers have signifi-

cantly lower Ka/Ks ratios than those of non-drivers

(P < 0.05, Wilcoxon rank-sum test; Fig. 3C). Further-

more, in six other cancers, the drivers showed the same

tendency, indicating that the drivers tend to be con-

served. Somatic mutations are another important

mechanism employed by cancer genes to augment can-

cer progression (Czubak et al., 2015). The drivers

tended to have a higher mutation rate than do non-

drivers (Fig. 3D; P < 0.05, Wilcoxon rank-sum test).

Fig. 3. Comparisons between drivers and non-drivers. (A) Degree in the human PPI network. (B) Betweenness centrality in the human PPI

network. (C) Ka/Ks ratio. (D) Mutation rate. The orange and green bars represent drivers and non-drivers, respectively. The blue bar

represents the P-value tested by Wilcoxon rank-sum test. P-values were �log2-transformed (Y-axis in the right side). The red dotted line

directed by the red arrow represents a P-value < 0.05.
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P-values were calculated by Wilcoxon rank-sum test

and are marked as blue bars in Fig. 3. The red dotted

line with an arrow corresponds to a P-value < 0.05.

We used different sources of cancer genes to further

support the drivers identified in our work. Four data-

bases of cancer genes were used, including census can-

cer genes (Futreal et al., 2004), DriverDB cancer genes

(Chung et al., 2016), Bushman cancer genes (Sadelain

et al., 2011) and TSGene tumor suppressor genes

(Zhao et al., 2016) (see Materials and methods). Dri-

vers identified by our method significantly overlapped

with known cancer genes in most of the cancer types

(Fig. 4A–C; P < 0.05, hypergeometric test). The drivers

with deletions also significantly overlapped with tumor

Fig. 4. Overlap between drivers and known cancer genes. (A) Overlap between drivers and census cancer genes. (B) Overlap between

drivers and cancer genes from DriverDB. (C) Overlap between drivers and cancer genes from Bushman. (D) Overlap between drivers with

deletions and tumor suppressor genes in TSGene. The gray bars represent the number of known cancer genes. The orange bars represent

the number of overlapping genes between drivers and known cancer genes. The blue bars represent the P-values of overlapping genes

between drivers and known cancer genes calculated by the hypergeometric test. P-values were �log2-transformed (Y-axis in the right side).

The red dotted line indicated by the red arrow represents a P-value < 0.05.
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suppressor genes in the TSGene database in 11 of the

18 cancer types (Fig. 4D; P < 0.05, hypergeometric

test). P-values were calculated by hypergeometric test

and are marked as blue bars in Fig. 4. The red dotted

line with an arrow corresponds to a P-value < 0.05.

3.4. Pan-cancer analyses of drivers reveal

specificity and commonality

We next investigated the distribution of drivers across

the 18 cancer types. The results showed that 81.3% of

the drivers (including 806 protein-coding genes, 117

lncRNAs and 42 miRNAs) were cancer-specific and

that 222 drivers were shared by at least two cancer

types (including 210 protein-coding genes, eight

lncRNAs and four miRNAs; Fig. 5A). Interestingly,

79.3% of the driver coding genes were cancer-specific

(Fig. 5B) in contrast to 92.98% of the driver non-

coding RNAs (Fig. 5C). The driver non-coding RNAs

showed significantly more specificity of cancer type

than that of the driver protein-coding genes

(P = 6.40 9 10�6, Fisher’s exact test). In Fig. 5B, 152,

33, 14 and 11 protein-coding genes were identified as

drivers in two, three, four and more than five cancer

types, respectively. For the 11 protein-coding genes

(CDKN2A, CBL, GRB7, HDAC4, HRAS, MYC,

POU5F1B, PIK3CD, RB1, RPS6KA1 and ZBTB48)

shared by at least five cancer types, except POU5F1B

(also known as OCT4-pg1), all 10 of the other drivers

have been recorded as cancer genes in the databases of

census, DriverDB, Bushman or TSGene. Many studies

have reported aberrations in POU5F1B in cancer, such

as in gastric and prostate cancer (Hayashi et al., 2015;

Kastler et al., 2010). In Fig. 5C, a total of nine non-

coding drivers (hsa-mir-106b, hsa-mir-218-2, hsa-mir-

548k, AP006216.10, CAPN10-AS1, RP11-1191J2.4,

Fig. 5. Distribution of drivers in 18 types of cancer. (A) Pie chart of drivers, including protein-coding genes, lncRNAs and miRNAs. (B) Pie

chart of driver protein-coding genes. (C) Pie chart of driver non-coding RNAs, including lncRNAs and miRNAs. Numbers 1–5 denote the

number of cancer types that the driver presents. (D) Significance of overlapping drivers between cancer types. Color represents the �log2-

transformed P-value calculated by the hypergeometric test. The numbers in the ellipses represent the number of drivers in the cancer type.
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RP11-191L9.4, RP11-443B7.1 and RP11-794P6.1)

were shared by two cancer types, and three non-coding

drivers (PVT1, SOX2-OT and hsa-mir-429) by three

cancer types.

To investigate the commonality between cancers,

we tested whether pair-wise cancer types significantly

shared drivers using the hypergeometric model. The

results revealed both known and new relationships of

pair-wise cancer types (Fig. 5D). For example, BRCA

and ovarian cancer (OV), two female malignant

tumors, exhibited significantly overlapping drivers

(P = 3.10 9 10�8, hypergeometric test, Fig. 5D). In

total, seven drivers (MYC with amplification, PER2,

HDAC4, PTPRG, PIK3R1, RAPGEF1 and PPP5C

with deletion) were detected in both BRCA and OV.

MYC is a known oncogene that is overexpressed in

BRCA and OV, and PER2 and PRPRG are known

tumor suppressor genes in BRCA (Shu et al., 2010;

Xiang et al., 2008). Lung adenocarcinoma (LUAD)

and lung squamous cell carcinoma (LUSC), two

main subtypes of non-small cell lung cancer

(NSCLC), also showed significantly overlapping dri-

vers (P = 5.05 9 10�8, hypergeometric test, Fig. 5D).

Interestingly, head and neck squamous cell carcinoma

(HNSC) and LUSC had significantly overlapping dri-

vers (P = 3.64 9 10�21, hypergeometric test, Fig. 5D).

Both HNSC and LUSC belong to squamous cell car-

cinomas, and a total of 17 drivers were shared by

HNSC and LUSC. SOX2, one of the 17 drivers, was

amplified in HNSC and LUSC and has been reported

as an oncogene in squamous cell carcinoma (Hussenet

and du Manoir, 2010). Moreover, we found some

other new pair-wise cancer types with significantly

overlapping drivers, e.g. bladder urothelial carcinoma

(BLCA) and HNSC (P = 7.79 9 10�7, hypergeomet-

ric test), BLCA and LUSC (P = 1.87 9 10�6, hyper-

geometric test). The similarity in copy number

alterations among HNSC, LUSC and BLCA may

reflect a similar cell type of origin, as also reported

by Hoadley et al. (2014). Information regarding the

drivers shared by different cancer types is presented

in Table S4. These results suggest that different

cancer types may share common mechanisms of

carcinogenesis.

3.5. Driver non-coding RNAs have oncogenic and

tumor-suppressive roles in cancer

Copy number alterations of non-coding RNAs play

important roles in the progression of diverse types of

cancer (Du et al., 2016). Our work revealed 125 driver

lncRNAs and 46 driver miRNAs across 18 cancer

types (Fig. 6A). Some relationships between cancer

and driver lncRNAs or miRNAs identified in our

work have been supported by data from the Lnc2Can-

cer database and the Human miRNA Disease Data-

base (HMDD) (Li et al., 2014; Ning et al., 2016)

(Table S5). For example, driver lncRNA GAS5 with

amplification in liver hepatocellular carcinoma (LIHC)

identified in our work has been reported with onco-

genic roles in LIHC by Tao et al. (2015). Hsa-mir-134,

a driver miRNA with a deletion in LUAD, was found

to suppress NSCLC progression through down-regula-

tion of CCND1 (Sun et al., 2016).

A total of 12 driver non-coding RNAs (eight

lncRNAs and four miRNAs) were altered in at least two

cancer types (Fig. 6A). Notably, PVT1, SOX2-OT and

hsa-mir-429 were identified as common drivers in three

cancer types. PVT1 is a driver lncRNA that was ampli-

fied in cervical squamous cell carcinoma and endocervi-

cal adenocarcinoma (CESC), LIHC and skin cutaneous

melanoma (SKCM), which has been reported to be

related to the progression of CESC, LIHC and SKCM

(Table S5). The PVT1 locus resides ~ 2 Mb from the

well-known oncogene MYC. In our results, we observed

a significant correlation between PVT1 and MYC in

CESC (r = 0.67, P = 1.01 9 10�9, Pearson correlation),

LIHC (r = 0.36, P = 8.40 9 10�5, Pearson correlation)

and SKCM (r = 0.27, P = 7.53 9 10�3, Pearson corre-

lation; Fig. 6B). SOX2-OT, another common driver

lncRNA in HNSC, kidney renal clear cell carcinoma

(KIRC) and LUSC, participated in the regulation of

oncogene SOX2. Pearson correlation analysis revealed

that SOX2-OT and oncogene SOX2 had a significant

correlation in HNSC (r = 0.41, P = 4.69 9 10�13, Pear-

son correlation), KIRC (r = 0.69, P = 2.81 9 10�8,

Pearson correlation) and LUSC (r = 0.56,

P = 2.21 9 10�16, Pearson correlation; Fig. 6C). Hsa-

mir-429 was identified as a deleted driver in kidney

Fig. 6. Driver lncRNA-cancer network and functional analysis. (A) Network of driver lncRNAs and cancer types. Circles represent lncRNAs,

and triangles represent miRNAs. Orange and gray colors represent amplification and deletion, respectively. The octangle represents cancer

type. Edge represents the relationship between the identified driver and cancer type. The driver non-coding RNAs identified in three cancer

types are marked by blue dashed rectangles. (B) Pearson correlation of driver lncRNA PVT1 and oncogene MYC in CESC, LIHC and SKCM

samples with amplification of PVT1. The z-score-transformed expression profile was used. (C) Pearson correlation of driver lncRNA SOX2-

OT and SOX2 in HNSC, KIRC and LUSC samples with amplification of SOX2-OT. (D) KEGG enrichment analysis of targets of has-mir-429

using the hypergeometric test with FDR < 0.05.
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renal papillary cell carcinoma (KIRP), LIHC and

LUSC in our work. Hidaka et al. reported that hsa-

mir-429 has a potential tumor suppressor role in renal

cell carcinoma (Hidaka et al., 2012). We performed

KEGG pathway enrichment analysis of targets of

hsa-mir-429 that showed expression correlation in

KIRP, LIHC and LUSC. Five KEGG pathways

(MAPK signaling pathway, peroxisome, Wnt signal-

ing pathway, ABC transporters and renal cell carci-

noma) were significantly enriched with targets of hsa-

mir-429 (FDR < 0.05, hypergeometric test), suggesting

a possible functional role of has-mir-429 in the car-

cinogenesis of KIRP, LIHC and LUSC (Fig. 6D).

3.6. Drivers shared by different cancer types

suggest drug repositioning

The pan-cancer analyses of drivers presented above

indicate that some cancer types have similar causes and

may be treated by the same drugs, which provides a new

method for investigating drug repositioning. Consider-

ing that most targeted drugs exhibit anti-cancer effects

by blocking targets that are overexpressed (Gharwan

and Groninger, 2016), we focused on drivers with ampli-

fications in cancer. In total, 36 driver genes were ampli-

fied in at least two cancer types, and eight of them were

targeted by 49 known drugs. The drug and target infor-

mation were integrated from DrugBank, CCLE, GDSC

and ChEMBL (see Materials and methods). Then, the

cancer driver-drug network was constructed (Fig. 7A).

In Fig. 7A, triangles and ellipses represent drivers and

cancer types, respectively. The drivers in specific cancer

types are connected by a rhombus arrow. The relation-

ships of drugs (capsules in Fig. 7A) targeting the drivers

are marked by T-type arrows. On the basis of the known

drug-disease associations, we connected the drug and

disease (octagons in Fig. 7A) by arrows in the network.

We hypothesized that two cancers having common

drivers could be treated by the same drug (Rubio-

Perez et al., 2015). For example, ERBB2, targeted by

lapatinib and afatinib, is a driver of BRCA and

LUAD. EGFR, also targeted by lapatinib and afatinib,

is a driver of LUSC and lower grade glioma (LGG) in

the brain. Lapatinib has been approved by the FDA

for the treatment of ERBB2 (HER2) overexpressed

metastatic breast cancer (Ryan et al., 2008) (Fig. 7B).

Afatinib, another FDA approved drug, is used to treat

late stage (metastatic) NSCLC with EGFR mutations

(Dungo and Keating, 2013) (Fig. 7C). LUSC cell lines

with amplification of EGFR show marginally signifi-

cant sensitivity to lapatinib compared with those of

LUSC cell lines with wild-type EGFR in the CCLE

database (P = 0.049, Wilcoxon rank-sum test,

Fig. 7D). LGG cell lines with amplification of EGFR

show significant sensitivity to lapatinib compared with

those of LGG cell lines with wild-type EGFR in the

GDSC database (P = 6.1 9 10�3, Wilcoxon rank-sum

test, Fig. 7E). BRCA cell lines with amplification of

ERBB2 show significantly lower IC50 levels of afatinib

compared with those of BRCA cell lines with wild-

type ERBB2 in the GDSC database (P = 6.1 9 10�3,

Wilcoxon rank-sum test, Fig. 7F). Thus, we inferred

that afatinib could be used to treat BRCA, and lapa-

tinib could be used to treat LUSC and LGG. Lin

et al. (2012) reported promising clinical activity of afa-

tinib in HER2-positive breast cancer patients who had

progression following trastuzumab treatment in a

Phase II study. Ramlau et al. determined a potential

use for lapatinib combination therapy in NSCLC

through a Phase I study (Ramlau et al., 2015).

4. Discussion

A critical challenge in the genome-wide analysis of

SCNAs is distinguishing the alterations that drive can-

cer growth from the numerous random alterations that

accumulate during carcinogenesis. In this study, we

explored a new method for identifying drivers in

regions with significant SCNAs. We revealed an aver-

age of 84 drivers for each cancer type, including pro-

tein-coding genes, lncRNAs and miRNAs, and found

that the drivers showed attributes of cancer genes

(Fig. 3A–D) and significantly overlapped with known

cancer genes (Fig. 4A–D). Our method identified not

only many known cancer genes such as CCND1,

MYC, ERBB2, RB1 and BRCA1 in breast cancer but

also many novel protein-coding genes as well as non-

coding RNAs that may contribute to carcinogenesis

(Table S3).

Pan-cancer analysis of drivers could reveal similarities

among cancer types from different tissues by their geno-

mic signatures (copy number alterations). Consistent

with histological classifications, our work found that

LUAD and LUSC as well as OV and BRCA showed

significantly overlapping drivers. Furthermore, we

found some new cancer types with similar genomic alter-

ations, such as HNSC and LUSC, and LGG and BRCA

(Table S4). LGG and BRCA had a significant overlap

of 16 drivers (P = 1.39 9 10�14, hypergeometric test),

including known cancer genes CDKN2A, HRAS, MYC

and RB1. Both CDKN2A and RB1 were reported to

have deletions in BRCA and LGG (Bieche and Lider-

eau, 2000; Debniak et al., 2004). The pan-cancer analy-

sis of drivers could help us understand carcinogenesis as

well as provide new strategies for cancer therapy. Nota-

bly, our work investigated the similarity and specificity
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of different cancer types from copy number alterations,

which only represents one kind of molecular feature of

cancer cells. In the future, we will systematically per-

form the pan-cancer analysis by integrating multiple

molecular features, such as methylation and expression

of mRNAs, miRNAs and proteins.

Helios is another method that was used to identify

amplified drivers in BRCA (Sanchez-Garcia et al.,

Fig. 7. Cancer driver-drug network. Relationship of drug, driver and cancer. Triangles and ellipses represent drivers and cancer types. The

drivers in specific cancer types are connected by rhombus arrows. The relationship of drugs (capsules) targeting the drivers are marked by

T-type arrows. The known drug and disease (octagons) relationships are marked by arrows. (B) Lapatinib and targets in cancers. (C) Afatinib

and targets in cancers. The orange solid T-type line represents known drug-cancer relationships, and the orange dotted T-type line

represents the predicted drug-cancer relationship. (D) Box-plots of Act Area values of LUSC cell lines treated with lapatinib in the CCLE

database. (E) Box-plots of IC50 values of LGG cell lines treated with lapatinib in the GDSC database. (F) Box-plots of IC50 values of BRCA

cell lines treated with afatinib in the GDSC database. The IC50 values are natural logarithm-transformed. In (D–F), the red dots present

amplification of the corresponding gene in cell lines, and the blue dots represent wild-type. Wilcoxon rank-sum test was used.
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2014). The drivers with amplifications in BRCA identi-

fied by our work significantly overlapped those

detected by the Helios method (P = 9.46 9 10�10,

hypergeometric test), including CCND1, MYC,

ERBB2, ERLIN2, FOXA1, RAD52 and TOMM20.

Compared with Helios, our method could not only

find amplified and deleted coding gene drivers but

could also determine many driver non-coding RNAs,

including 44 lncRNAs and five miRNAs (Fig. 6A).

However, as done in Helios, employing shRNA data

to further validate drivers with amplifications in

BRCA identified in our work is a good strategy and

warrants attention in the future.

Our work used GISTIC 2.0, a state-of-the-art algo-

rithm, to detect recurrent regions with SCNAs. van

Dyk et al. (2016) reported that GISTIC 2.0 tends to call

larger deletion regions than amplification regions and

identifies more drivers in deleted regions than in ampli-

fied regions for breast cancer. Generally, our methods

identified more drivers with deletions than drivers with

amplifications for each cancer type, except for LIHC,

which has 77 amplified drivers and 41 deleted drivers

(Table S2). Deleted drivers in 11 cancer types identi-

fied by our method significantly overlap with known

tumor suppressor genes recorded in the TSGene data-

base (P < 0.05, hypergeometric test; Fig. 4D). Some

studies have also found that deletions or losses are

more common than amplifications or gains in cancer

(Cancer Genome Atlas Network, 2012; Schoch et al.,

2002), which is an interesting phenomenon that

warrants further exploration.

The key aspect of our method for identifying drivers

is to test whether the candidate drivers significantly

regulate known cancer genes. Thus, for each candidate

driver, we intersected the known cancer genes with the

CDEGs rather than with the candidate driver itself.

We used the census cancer genes from COSMIC,

which is a widely used cancer gene set because of its

strict standards. However, most of the census cancer

genes were identified based on mutation analysis. The

mutation status of known cancer genes may affect the

expression of CDEGs. In our method, we used expres-

sion correlation and regulatory interaction data to

reduce the influence induced by the alteration status of

known cancer genes. Moreover, the number of census

cancer genes is far from the actual number of cancer

genes in the human genome. When more real cancer

genes are employed by our method, the drivers derived

by our method will be more precise. In this study, the

new drivers captured the characteristics of cancer

genes, such as a high degree and large betweenness

centrality in the protein–protein network, high conser-

vation, and so on, which supports the reliability of our

results. Of course, validation of the drivers by biologi-

cal experiments warrants detailed studies in the future.
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