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Human decisions can be biased by irrelevant information. For
example, choices between two preferred alternatives can be
swayed by a third option that is inferior or unavailable. Previous
work has identified three classic biases, known as the attraction,
similarity, and compromise effects, which arise during choices
between economic alternatives defined by two attributes. How-
ever, the reliability, interrelationship, and computational origin of
these three biases have been controversial. Here, a large cohort of
human participants made incentive-compatible choices among as-
sets that varied in price and quality. Instead of focusing on the
three classic effects, we sampled decoy stimuli exhaustively across
bidimensional multiattribute space and constructed a full map of
decoy influence on choices between two otherwise preferred tar-
get items. Our analysis reveals that the decoy influence map is
highly structured even beyond the three classic biases. We identify
a very simple model that can fully reproduce the decoy influence
map and capture its variability in individual participants. This
model reveals that the three decoy effects are not distinct phe-
nomena but are all special cases of a more general principle, by
which attribute values are repulsed away from the context pro-
vided by rival options. The model helps us understand why the
biases are typically correlated across participants and allows us to
validate a prediction about their interrelationship. This work helps
to clarify the origin of three of the most widely studied biases in
human decision-making.
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The best decisions are made by focusing on information that is
relevant for the choice. When deliberating among more than

two options (“multialternative” choices), this means ignoring
those alternatives that are inferior or unavailable. Thus, the
choice between two consumer goods should not be affected by
the introduction of an unaffordable third option, and prefer-
ences between two electoral candidates should not change when
a third contender with more dubious merit enters the race. This
normative principle, which is enshrined in the axiom of regularity
(1, 2), is of great interest to behavioral scientists because it is
robustly violated by humans (3–5), monkeys (6), and other ani-
mals including amphibians (7), invertebrates (8), and, appar-
ently, even unicellular organisms (9). Where choice alternatives
are characterized by two value dimensions (e.g., the price and
quality of a product, or the likeability and competence of a po-
litical candidate), the introduction of an irrelevant distracter
item to the choice set leads to rich and stereotyped biases in
decision-making. A major research goal in psychology and eco-
nomics has been to identify a simple and elegant computational
principle that can explain the biases provoked by an irrelevant
“decoy” stimulus (10).
The literature has focused on three decoy effects that can arise

during ternary (three-way) choice among alternatives charac-
terized by two independent and equally weighted attributes. The
phenomena are illustrated in Fig. 1A. Consider a consumer
choosing among three products that are each characterized by
dimensions (attributes) of quality and economy. The axes in
Fig. 1A are scaled such that these attributes are perfect

substitutions, in that the consumer will forego one unit of one
attribute for one unit of the other. Two target items A and B lie
on the line of iso-preference, which is perpendicular to the
identity line. In other words, A is less expensive but lower quality
than B, such that the consumer should be indifferent between
these options. The empirical phenomena describe how prefer-
ences may be biased toward either A or B as a function of a third
“decoy” item D that lies on or below the iso-preference line. The
consensus view states that a bias toward A can be provoked by
the inclusion of a decoy Da that it dominates, that is, where A
(but not B) is equivalent or superior on both dimensions (the
attraction effect); that a bias toward A occurs in the presence of
a more extreme decoy Dc which is superior in quality but more
expensive than A, making A the “compromise” option (the
compromise effect); and that a bias toward A is incurred by a
decoy Ds which is similar to B in price and quality (the similarity
effect) (Fig. 1A).
These three phenomena have been a major object of study in

psychology and behavioral economics for several decades, and, in
particular, since the 2001 landmark study that proposed the first
unified computational account of the three classic decoy effects
(11). Since then, there has been a proliferation of empirical re-
sults and a plethora of computational explanations, including
models that rely on loss aversion (12), pairwise normalization
(13), attentional weighting (14–17), lateral inhibition (14), as-
sociative biases (15), power-law transformation of attribute val-
ues (15), sampling from memory (18, 19), or various other forms
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of reference-dependent computation (20–23). However, there
has been a notable lack of consensus about the computational
principles that give rise to decoy effects (10). There are a number
of potential reasons for this, but here we focus on one limitation
of past studies: Most have tested for decoy effects by selecting
fixed attribute values for Da, Dc, and Ds and calculating for each
the relative choice share (RCS) for target items A and B, with
relative deviations from choice equilibrium signaling a bias in-
dicative of the successful detection of a decoy effect. However,
reducing the dimensionality of the data in this way (i.e., to six
data points) makes it harder to distinguish theoretical accounts,
as many models may mimic one another in successfully capturing
the phenomena, so that comparisons among models are reduced
to questions of a priori plausibility and parsimony. Relatedly,
what defines a “decoy” of each class is typically left largely to the
discretion of the researcher, who is free to choose a priori the
values for Da, Dc and Ds—that is, the space over which the at-
traction, compromise, or similarity might occur. This, coupled
with the fact that the effects are often studied in small partici-
pant cohorts, using diverse stimulus materials—consumer
choices, text-based vignettes, or perceptual judgments (24)—has
led to disagreement over the provenance and reliability of the
three effects (25–28).
Here, we address these issues by conducting a large-scale (n >

200), incentive-compatible study in which we systematically map
the decoy influence across attribute space, calculating the RCSij
for each decoy with attribute values i and j. This allows us to
explore the dimensionality of the data, with a view to asking
whether a single principle can explain the ensemble of reported
decoy effects. We find that a remarkably simple model, which
draws on a computational framework that we have described
previously (22), can capture the full decoy influence (RCS) map.
Critically, the model suggests that the three canonical decoy

effects are not, in fact, distinct phenomena but fall naturally out
of previously described dynamics of attraction and repulsion of
decision values toward and away from a reference value given by
the mean of available options.

Results
Human participants (n = 233) performed an online real estate
valuation and choice game in which they decided which of three
residential properties was being offered for the “best deal,” that
is, for the most attractive price given its quality. In an initial
(valuation) phase, participants provided their best guess of the
monthly rental value for each of 500 residential properties
(based on an exterior photograph; Fig. 2A). We assumed that
this reported dollar value estimate is proportional to the sub-
jectively estimated quality of the property for that participant.
Inconsistent ratings were discarded, and remaining properties
were binned into deciles by estimated value (Fig. 2B). This
allowed us to construct choice sets for the subsequent (decision)
phase consisting of three houses of known quality (attribute i)
that are being rented for an independently varied monthly cost
(attribute j). Using the valuation phase data, two target items
were sampled with fixed price/quality ratio: one low-quality/low-
cost item (the “low” item A) and one high-quality/high-cost item
(the “high” item B). The third item (D) was sampled exhaustively
from across the full attribute space in 10 quality × 10 economy
bins (i.e., including both inferior and superior decoys; Fig. 2
C–E). Participants indicated both their first choice and then, from
the remaining two items, their second choice (Fig. 2D). Mea-
suring ranked preference in this way allowed us to chart the in-
fluence of all decoys, including superior decoys, on the RCS for
A and B. Financial incentives were offered for making decisions
that were consistent with their initial estimates. For all analyses,
we included only participants for whom the probability that they

Fig. 1. Decoy effects. (A) Illustration of the attraction, compromise, and similarity effects. A and B denote two equally preferred stimuli; A is strong on
attribute i but weak on attribute j and vice versa for B. The introduction of decoy stimuli (rings; denoted Da, Dc and Ds) can bias preferences toward either A or
B. The color of each ring signals the direction of the bias, for example, for blue rings, A is preferred. Stimuli falling on the dashed line are iso-preferred. (B)
Illustration of the chosen locations in decoy space for Dc, Da, Ds, and Dr (boxes) and the blue−yellow color scale relative preference for target A over B
(warmer colors) or vice versa (colder colors) at each location. Black circles indicate the locations of targets A and B. (C) Average choice share for target A as a
function of decoy location. Red dots are human data, and shaded lines are model fit of adaptive gain model (see below). Bars/shaded area signal SEM ***
indicates P < 0.001.
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were responding randomly was less than 0.001 (binomial test; leaving
n = 189). More details about the task are provided in Methods.

Traditional Decoy Analysis. We began by adopting the standard
approach from previous studies that have focused on the RCS
for Da, Dc, and Ds (Fig. 1). To calculate relative preference for
the “low” item A over the “high” item B, we first defined por-
tions of the influence map that corresponded to the traditionally
defined positions of attraction, compromise, and similarity de-
coys (Fig. 1B). We also included an additional decoy set that we
called “repulsion” decoys (Dr): These were mirror-symmetric to
the attraction decoys but located in the upper triangle of the
influence map where the decoy was the objectively best option
(i.e., a set of “superior” decoys). We then calculated the RCS for
Da, Dc, Ds, and Dr, each defined with respect to target A and
target B as shown in Fig. 1C. The strength of each effect is de-
fined as the difference in RCS for each decoy set defined with
respect to targets A and B.
Our first and most general observation was that, despite the

careful sampling of targets that were matched in price/quality
ratio according to participants’ responses in the valuation phase,
and despite the incentives offered for consistent responding,
participants exhibited a bias toward the “high” item B (average
RCS of ∼0.7) over the “low” item A (perhaps because the ratings
task focused attention on quality; see Methods). This additive

bias notwithstanding, decoys still had a robust influence on
choices, with clear attraction (t188 = 4.74, P < 0.001) and com-
promise (t188 = 6.31, P < 0.001) effects all significant and in the
expected direction, as well as a repulsion effect (t188 = 3.45, P <
0.001). On average, the presence of attraction, compromise, or
repulsion decoys shifted preferences from A to B by about 3 to
5% (Fig. 1C). However, the similarity effect was not significant
(P = 0.65) in this dataset. Despite some strong past evidence for
the similarity effect (29, 30), we are not alone in finding weak or
absent effects for this decoy (19, 31).

A Map of Decoy Influence.Our major goal in this project was to go
beyond the conventional approach and plot the full map of decoy
influence RCSij on choices between the two primary targets. This
is shown in Fig. 3. Visual inspection reveals that the map has rich
structure beyond the traditional decoy locations (Fig. 3 A, Top
Left). Relative preferences for A and B seem to be driven by a
dynamic of attraction and repulsion that depends on the position
of the decoy with respect to each target stimulus. Robust
“attraction” effects (whereby the presence of a decoy that is dom-
inated by A shifts preferences toward A) were mirrored by strong
“repulsion” effects (whereby a decoy that dominates A shifts
preferences toward B). Attraction and repulsion were observed
for both targets in approximate symmetry. We note, in passing,
that, qualitatively, our results also appear consistent with a

Fig. 2. Task and analysis pipeline. (A) Participants first played a “property price guessing game.” On each trial, they estimated the monthly rental value (in
dollars) of a residential property, using a sliding scale. (B) After discarding properties with inconsistent responses, ratings were sorted into deciles for each
participant. (C) These bins were used to select stimuli for targets A and B (deciles 3 and 8 of estimated ratings; red and blue squares), and decoy stimuli. Each
choice task stimulus was created by matching a property with a given decile estimated value (quality; attribute j) to a new rental price (economy; attribute i)
on a 10 × 10 grid. Eight property/price combinations were generated for each cell in the grid that lies below the diagonal (yellow cells), and two property/
price combinations were generated for each cell above the diagonal (green cells). (D) Participants then played a “best value property hunting game” in which
they were asked to rank three stimuli according to their economy/quality trade-off. A star rating system was used as a reminder of their previous price
estimation judgment. (E) Illustration of how the initial rating and cost were paired to create good value options (above the diagonal; green), poor value
options (below the diagonal, yellow), and iso-valued options (here a target option; blue).
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“decoy distance effect” (13, 20), whereby more eccentric decoys
generate stronger effects.
Using an exhaustive range of decoy locations allowed us to use

dimensionality reduction approaches to examine the (potentially
distinct) factors from which the map of decoy influence is com-
posed. We used singular value decomposition (SVD) to identify
factors contributing to the map of preference for A > B and
calculate the variance explained by these factors. We plot the
first five factors identified in Fig. 3 B, Top. The first factor
accounted for ∼ 95% of the variance in the data, suggesting that
there is a single explanatory variable that drives decoy effects

across participants (Fig. 3D; note the log scale on the y axis). This
is consistent with previous reports that attraction, compromise,
and similarity decoys exhibit stereotyped correlations across the
cohort (30, 31). Indeed, using the definitions in Fig. 1A, we
plotted the correlations in influence between Da, Dc, and Ds and
found that they mirrored those previously reported (31). Spe-
cifically, we observed a positive association between the attrac-
tion and compromise effects (r = 0.72, P < 0.001) and a negative
relation between the similarity effect and both compromise
(r = −0.59, P < 0.001) and attraction (r = −0.46, P < 0.001)
effects (note that the latter correlations were observed despite

Fig. 3. (A) Decoy influence map showing RCSij for A over B (Left), A over D (Middle), and B over D (Right). (Top) The human data and (Bottom) the same data
for the simulated model. The dashed line signals iso-preference, and the black circles are the targets A and B. (B) First five components obtained from SVD of
the RCS for A vs. B. (Top) The human data and (Bottom) the model. (C) Correlations between the attraction, compromise, and similarity effects. Each dot is a
single participant, red lines illustrate best linear fit; the decoy estimate is calculated as the difference between the RCS for given decoy with respect to targets
A and B. (D) The variance (var) explained by each component obtained by SVD for (Left) the humans and (Right) the model. Note that the y axis is on a log
scale; the data are dominated by the first component in both cases. (E) Correlation between singular values (SV) for components 1 to 3 between the human
and the best-fitting model; each dot is a single participant, black lines illustrate best linear fit . For components 1 to 3, this correlation was very high.
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the fact that, in our data, the similarity effect was, on average,
nonsignificant). These are shown in Fig. 3C.

Computational Modeling. Next, we sought to identify the simplest
possible model that can reproduce the full decoy map. We note
that, in previous studies, dynamic models (in which information
is accumulated over time) have been able to jointly capture the
attraction, compromise, and similarity effects (11, 15, 17, 32, 33),
as well as accounting for other phenomena, such as the effect of
time pressure on decoy decisions (34). Nevertheless, in the in-
terests of parsimony, we focus instead on a different class of
“static” model that has been used to predict decoy effects, which
describes contextual biases as arising from normalization among
populations of neurons. This modeling focus was informed by
recent simulation work suggesting that adaptive gain control
might offer a unifying explanation for choice biases (22), as well
as the recent proposal of related models for decoy phenomena
involving logistic (21, 35), pairwise (13), or recurrent (35, 36)
normalization.
This class of model draws on a tradition proposing that deci-

sion biases occur when stimulus information is divisively nor-
malized by the local context (37, 38),

ui Ai( )DN = v Ai( )
  v avgABDi( ) + ci

, [1]

where c is a small regularization constant. In one successful var-
iant of this model, this normalization is also “recurrent”; that is,
it overweights the focal item’s contribution to normalization (35,
36). Thus, the subjective utility of attribute i of item A is com-
puted by divisively normalizing the attribute value of attribute i
of item A by both the mean of all three items and v(Ai) itself,

ui Ai( )RDN = v Ai( )
  v Ai( ) + v avgABDi( ) + ci

. [2]

The adaptive gain model mentioned above proposes that the
focal item is evaluated relative to the context mean via a
sigmoidal nonlinearity or equivalent (22, 39),

ui Ai( )AG = 1

1 + e− v Ai( )−  v avgABDi( )−ci( )s−1 . [3a]

Thus, for each attribute, the utility of each target is given by a
logistic function with slope s whose inflection point is the mean
value of all items (plus a bias c). The parameters c and s can

Fig. 4. (A) Effect of varying the parameter w from low (Left) to high (Right). The parameters used to generate each plot are shown in SI Appendix, Table S1. This
parameter controls the relative preference for low price/quality to high price/quality items. (B) The effect of varying the parameter s from high to low. This parameter
controls whether A and B are equally preferred, or whether there is decoy-like distortion. (C) The effect of varying the difference of bias terms ci = −cj from negative
(Left) to positive (Right). Varying this difference alters whether the maximal distortion occurs proximal to target A (Left) or target B (Right). (D) The effect of varying
the sum of bias terms ci = c from negative (Left) to positive (Right). Varying this difference alters whether the maximal distortion occurs for inferior decoys (Left) or
superior decoys (Right). Red arrows in C and D highlight directions of repulsion, with arrow width schematically representing the strength of the effect. The dashed
line in A–D signals iso-preference, and the black circles are the targets A and B. (E) Correlation between the compromise effect and the relative strength of attraction
vs. repulsion in the human data. Each dot is a participant; the red line is the best fitting linear trend.
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potentially vary across attributes. We note, in passing, the resem-
blance with another account that deploys a logistic function for
normalization (21). Connecting these models, we note that Eq.
3a is equivalent to a form of the recurrent divisive normalization
model in which the values are exponentiated prior to normaliza-
tion (see SI Appendix, Fig. S1 for a detailed comparison between
AG and RDN),

ui Ai( )AG = e
v Ai( )

s

e
v Ai( )

s + e
v avgABDi( )+ci

s

. [3b]

In each case, the utility of target A is a weighted sum of its
attributes i and j, and the final decision is made by passing the
utilities of all three rival stimuli through a softmax function to
make a ternary choice,

u(A) = w·ui(Ai) + (1 − w)·uj(Aj) [4]

p(A) = eτu(A)

eτu(A) + eτu(B) + eτu(D). [5]

In addition to the softmax temperature τ, the model potentially
has four free parameters of interest: the slope s and inflection
points ci and cj of the logistic function in Eq. 3a, and the weight-
ing parameter w in Eq. 4.
We begin with the adaptive gain model, exploring the effects

of manipulating the parameters on the predicted decoy influence
map in Fig. 4 (see SI Appendix, Table S1 for a full description of
the parameters used). This figure shows how the model can
systematically account for not only the pattern observed in the
current study but also those from previous (and potentially
contradictory) papers. In Fig. 4A, we show the effect of manip-
ulating the parameter w. This simply shows how we can tip the
balance of responding from A to B according to the relative
weight given to each attribute. In Fig. 4B, with w now fixed to 0.5
(equal weighting of attributes), we show how the decoy effects
grow in strength with s. Above each plot, the relative positive or
negative strengths of the compromise (C), attraction (A), simi-
larity (S), and repulsion (R) effects are shown in a bar plot. As
can be seen, the attraction and repulsion effects grow as s grows,
including a weak compromise effect but no similarity effect.
Fig. 4C shows the influence of varying ci = −cj while s and w are
fixed. This has the effect of shifting the relative strength of the
attraction/repulsion effect for targets A and B. For example,
when ci > cj, the attraction/repulsion effects are strongest for the
target A, whereas, when cj > ci, they are strongest for B (red
arrows). However, because these effects cancel out symmetri-
cally, this does not affect the overall RCS for Dc, Da, Ds, or Dr.
Finally (Fig. 4D), varying ci = cj brings about an asymmetric
distortion whereby either attraction effects are stronger
(i.e., below the iso-preference line) or repulsion effects are
stronger (in the superior decoy portion of space). In addition to
varying the relative strength of attraction and repulsion, this allows
the compromise effect to vary from positive to negative, as de-
scribed in previous studies; it allows a weak similarity effect to
emerge. Combinations of all of these factors give the model sys-
tematic flexibility to account for a wide range of observed effects.
Interestingly, the simulations shown in Fig. 4D allow us to

make a prediction about the human data. As seen in the bar plots
accompanying each predicted influence map, when ci and cj are
both negative, the compromise effect is positive, and attraction is
stronger than repulsion. By contrast, when ci and cj are both
positive, the compromise effect is negative, and the repulsion
effect is stronger than attraction. The model thus predicts that,
on average, in the human data, there will be a correlation be-
tween the (signed) compromise effect and the relative magnitude

of attraction vs. repulsion. This is plotted in Fig. 4E, and, as can
be seen, this prediction holds for the data we collected (r = 0.57,
P < 0.001). Of note is that this effect was driven both by a
positive correlation between the compromise effect and the
strength of repulsion and by the correlation between compro-
mise and attraction effects described above (r = 0.43, P < 0.001).
In fact, to fully account for the distortions observed in the

human dataset, we also need to vary w, to account for the fact
that participants overweighted quality relative to price during the
decision phase. Fitting this five-parameter (τ, s, ci, cj,w)model to
human data, we can fully recreate the decoy effects observed in
this study using both traditional (Fig. 1) and novel (Fig. 3)
analysis methods. Specifically, the model captured almost exactly
the pattern of traditional decoy effects, in terms of the relative
impact on RCS of Da, Dc, and Ds, as well as the repulsion decoy
Dr (red shaded lines in Fig. 1C; see also Fig. 3 A, Lower). The
model reproduced the pattern of preferences for target A >
target B qualitatively and quantitatively across the decoy space.
Further, when we applied SVD to the model data generated
under the best-fitting parameterization for each participant, the
first five components that emerged were nearly identical to those
for humans, and the first model component explained 97% of
the variance (Fig. 3D). When we plotted the estimated singular
values for the first three components for humans and the best-
fitting model, we found them to be very tightly correlated
(Fig. 3E). The model also displayed the same pattern of positive
association between attraction and compromise effect (r = 0.86)
and negative association between the similarity and attraction
(r = −0.85) and similarity and compromise effects (r = −0.94) as
the human data. In other words, the model captures the human
data very closely, both at the individual and the aggregate level.

Model Comparison. Finally, we compared our model to a broad
space of alternative accounts based on normalization, that is,
those that assume the value of each target (on each attribute) is
encoded relative to its competitors. We note that fitting response
times was not possible in the current project, due to the ranking
procedure used to elicit preferences, precluding the comparison
of dynamic models. We thus began by comparing the adaptive
gain model to the vanilla and recurrent divisive normalization
models described in Eqs. 1 and 2. A different class of contextual
normalization model uses the range (rather than the average) of
values being encoded on a given trial to normalize an imperative
stimulus,

ui(Ai)RN = β1
v(Ai)

v(rngABDi )
, [6]

where v(rngABDi ) corresponds to the difference between highest
and lowest values of attribute i across all stimuli (target or decoy)
in the trial, and β1 is a scaling term (20, 40).
We compared the fit of each of the candidate normalization

accounts to adaptive gain in a direct model comparison exercise.
To achieve this, we used Bayesian model selection on cross-
validated model evidence. Cross-validation involved estimating
model parameters from one-half of the trials (by comparing fits
to preferences between target items A and B, as well as prefer-
ences between target and decoys) and computing log-likelihoods
from the held-out trials. This comparison revealed that the
exceedance probability for the adaptive gain model over each of
the models, vanilla divisive normalization, recurrent divisive
normalization, and range normalization, was 0.99, providing
decisive evidence for the former over each of the latter.
However, to compare our model to a broader range of com-

petitors, we also devised and fit a more flexible model which
encompassed a large space of possible normalization schemes.
This “grandmother” model could capture the encoding scheme
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proposed by the four models introduced above, along with a
number of other “hybrid” models (see Methods). The model had
the general form

ui(Ai) = 1

β1 + e−(v(Ai)k−μik)(s·k)−1 , [7]

where

μi = ci + β2 · v(avg
ABD
i ) + (1 − β2) · v(rngABDi ). [8]

We focus on free parameters β1, β2, and k, which respectively
encode the tendency to engage in asymmetric weighting of the
evaluated (recurrent) item (β1), the tendency to normalize with
respect to the mean vs. range (β2), and the extent to which inputs
are compressed before being transduced (k). Further explana-
tions, including derivations of adaptive gain and other normali-
zation models nested within this account, are provided in
SI Appendix.
Fitting the grandmother model to human data revealed the

different patterns of decoy influence predicted by variations of
the general coding scheme. We used the t-distributed stochastic
neighbor embedding (t-SNE) visualization technique (41) to
calculate relations among the resulting decoy influence maps
from 125 variations of the grandmother model, encompassing
five stepwise levels of the parameters β1, β2, and k. The adaptive
gain, vanilla, and recurrent divisive normalization and range
normalization models were nested within the grandmother
model (see SI Appendix, Table S2 for parameterizations). In the
resulting embedding plot (Fig. 5A), neighboring maps reflect
models that produce relatively similar patterns of decoy influ-
ence (and vice versa for distant points). In Fig. 5 B–D, the points
are colored according to levels of β1, β2, and k, revealing the
human data are neighbored by maps generated by models with
high values of parameters β1 and β2, that is, those that resemble
the adaptive gain model.
We note that the precise value of parameter k, which inter-

polates between models implementing logistic and linear divisive
normalization, is less important for fitting human data. This
implies that the model is equally well fit with an exponentiated
implementation of recurrent divisive normalization (k = 1, such

as the adaptive gain model, Eqs. 3a and 3b) and with a power
transform implementation of recurrent divisive normalization
(k = 0), where inputs are transformed with a power parameter s
prior to normalization (see SI Appendix, Eq. S4 for derivation
and SI Appendix, Fig. S4 for the shape of the transfer function).
We note that this formulation is conceptually analogous to a
form of recurrent divisive normalization in which values are
power transformed (as in ref. 35),

ui(Ai)PRDN = v(Ai)α
  v(Ai)α + v(avgABDi )  α + ci

. [9]

Indeed, Bayesian model selection reveals that this model fits the
data equally as well as the adaptive gain model (exceedance
probability for recurrent divisive normalization featuring a power
transform = 0.49), suggesting that our dataset cannot arbitrate
between an exponential and power transform. For completeness,
we also fit another model implementing a flavor of normalization
similar to power recurrent divisive normalization but differing
substantially in its assumptions for how inputs are parsed, pair-
wise normalization (13, 42). Power recurrent divisive normaliza-
tion and pairwise normalization were equally preferred by
Bayesian model selection on cross-validated model evidence
(exceedance probability for pairwise normalization = 0.48).
One additional question which arises from our modeling ex-

ercise is whether the adaptive gain model fits better than the full
grandmother model after appropriate penalization for com-
plexity. A failure to do so would imply the existence of a “hybrid”
normalization solution that fits the human data even better,
presumably involving some combination of parameters that has
yet to be described in the literature. To assess this, we performed
Bayesian model selection on complexity-penalized model fit
metrics (Bayesian information criterion) which revealed that the
exceedance probability for the normalization scheme favored by
our empirical data, the adaptive gain model, over the grand-
mother model is 0.97, offering evidence against a hybrid solution.

Discussion
Decoy effects have been studied for decades, but substantial
controversy has surrounded their replicability, their interrela-
tionship, and their computational origins. The current work

Fig. 5. Embedding space for normalization models of decoy effects. (A) The t-distributed stochastic neighbor visualization of the maps of decoy influence produced
by different variants of the grandmother model. Eachmap represents a variant of the grandmother model positioned in two-dimensional space such that models with
similar decoy influence patterns are nearby, while models with more different decoy patterns are farther apart. Heat maps illustrate decoy influence. (B–D) Each
model-produced decoy map is denoted as a dot and color coded to indicate parameter value: (B) β1, (C) β2, or (D) k. Human data are represented with a cross.

Dumbalska et al. PNAS | October 6, 2020 | vol. 117 | no. 40 | 25175

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S
EC

O
N
O
M
IC

SC
IE
N
CE

S

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005058117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005058117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005058117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005058117/-/DCSupplemental


sheds light on these debates by gathering and analyzing a large-
scale dataset that systematically maps the influence of a decoy
stimulus across both the inferior and superior locations of mul-
tiattribute space. Conducting our analysis in a conventional
fashion, we broadly replicate past studies, in that we find strong
attraction effects, strong compromise effects, and a weaker
similarity effect (not significant in our dataset). As in previous
studies, the three decoy effects are correlated across the cohort,
with a positive relationship observed between attraction and
compromise, and a negative relationship between those two and
the strength of the similarity effect (31, 32). This finding implies
that three decoy phenomena have a single cause, and, indeed,
previous dynamic models (in which information is accumulated
over time) have been able to capture the three discrete effects
with a single set of parameters (11, 15, 17, 32, 33). Here, we use
dimensionality reduction on the full decoy influence map to
confirm that, indeed, there is a single component that explains
the vast majority (∼95%) of the variance in decoy influence,
suggestive of a single computational origin for these biases.
To understand the computational origin of decoy effects, we

chose to model our data with a framework based on divisive
normalization. We made this choice because the normalization
model offers a simple, parsimonious account of contextual biases
in decision-making based on a rich, neurobiologically grounded
tradition in the cognitive sciences (13, 21, 36–38). In particular, it
allowed us to systematically measure the influence of various
candidate computational steps on the predicted decoy map,
providing an interpretable mapping from model to data (Fig. 4).
On this basis, we were able to establish (for example) that nor-
malization occurs relative to the average of the available values
(via a sigmoidal gain function) rather than to the lower end (via a
concave gain function) as proposed in some previous models (SI
Appendix, Fig. S1). This characteristic sigmoidal shape of the
transfer function may be approximated by transforming inputs
via a power term (α> 1) in recurrent divisive normalization
(35, 36).
Overall, out of the models tested here, evidence favored a

model that we have previously called the adaptive gain model
(22, 39). This account is closely related to other models involving
recurrent divisive normalization, especially those proposing that
values are nonlinearly transformed beforehand, as well as being
very similar to another model known as the logistic model of
subjective value (21). We draw the reader’s attention to the close
correspondence between qualitative features of model and hu-
man performance displayed in Fig. 3, and, in particular, the close
correspondence achieved after decomposition of the decoy map
into linear components using SVD (Fig. 3B). The adaptive gain
model even predicted a potentially counterintuitive relationship
between the decoy effects: that, when the compromise effect is
positive, attraction should dominate over repulsion (and vice
versa), a prediction that was satisfied in the data.
We acknowledge, however, that the “static” models tested

here abstract over the process by which information is accumu-
lated dynamically to a decision bound. A more complete attempt
to model the decision process would involve fitting the data with
models based on the sequential sampling framework. It was
beyond the scope of the current project, in particular, as our task
involved a sequential ranking approach that was not suited to
modeling decision latencies. However, we do note, in passing,
that the pattern of decoy influence did not vary qualitatively for
fast and slow trials, suggesting that, in our dataset, decision la-
tencies are not indicative of distinct profiles of information ac-
quisition and processing over time (SI Appendix, Fig. S2).
Nevertheless, we hope that, in future studies, the full decoy in-
fluence map will help arbitrate among dynamic models of con-
textual decision biases.
Under the adaptive gain control framework described here,

decoy effects occur because of contextual biases arising when

each target item is transduced via a logistic function whose in-
flection point lies at the mean of all three items, including the
decoy. For example, the “attraction” effect thus occurs because,
when the decoy is lower in value than item A, the inflection point
is lower than item A, and so A lies at the steepest portion of the
sigmoidal gain function and is thus “overvalued” or repulsed
away from this mean point. The precise converse occurs when the
decoy is higher in value than A, as well as for B. We have previ-
ously shown how exactly this mechanism can, in principle, account
for a range of decision biases arising in the presence of distracters,
across perceptual, cognitive, and economic domains (22).
Whereas the attraction effect tends to be highly robust and

consistent across participants, the compromise effect and simi-
larity effect tend to be more idiosyncratic, with a high proportion
of participants showing effects which are inverted with respect to
the canonical form. For example, in previous studies, only a
minority of participants show all three effects (numerically) in
the expected direction (for example, only 23% in ref. 26; we find
a comparable figure of 22%). Indeed, the similarity effect did not
reach statistical significance in our dataset. In our model, the
compromise and similarity effects occur when attractive and
repulsive processes are asymmetric due to differential weighting
or biasing of the two attributes, causing attraction effects (and
their converse for superior decoys) to warp and/or “spill over”
into locations where compromise and similarity decoys are typ-
ically tested. In other words, the fragile nature of the compro-
mise and similarity effects might be, at least in part, due to
heterogeneity in the asymmetric way each attribute is coded or
transformed, which, in turn, might (for example) be due to dif-
fering choices concerning stimulus materials. A systematic
unpicking of ways in which different classes of stimulus material
(e.g., numerical values in distinct ranges, perceptual stimuli such
as rectangles, and vignettes) are encoded, and thus why decoy
effects may or may not have emerged in previous studies, is
beyond the scope of our research project here. However, our
simulations suggest that a relatively low-dimensional encoding
model may be sufficient to capture this variation and thus to
pinpoint the source of variation in previous studies.
This work thus explains decoy effects as a manifestation of a

broader phenomenon whereby inputs are compressively nor-
malized by their context in both space and time. As alluded to
above, this principle has been previously proposed to explain
phenomena as diverse as confirmatory biases in sequential
sampling of perceptual information, low-level perceptual biases
such as the tilt illusion, central tendency effects in summary
statistical perception, and conflict effects in control tasks. Our
previous work has considered a variant of this model whereby
encoding gain is controlled by the tuning envelope of a pop-
ulation of feature-selective neurons (22). There, as in this man-
uscript, we demonstrate that contextual biases may arise because
decisions are repulsed away from the contextual expectation.
The brain may have evolved the type of normalization scheme
proposed here because it promotes efficient neural coding
(43, 44).

Methods
Participants. A total of 358 US-based participants were recruited via the
platform Amazon Mechanical Turk to participate in a three-phase study. All
participants took part in the first phase (ratings task), and those who passed
a performance threshold (n = 231; see below) were invited to join the sec-
ond and third parts of the study in separate testing sessions (choice task). Of
these, 189 met our criteria for inclusion in the analysis, namely, P < 0.001 of
responding randomly during the choice task (binomial test). Phases 2 and 3
(choice task) were identical; phase 3 simply allowed us to gather more data
(n = 149 completed both phases 2 and 3). Data were collected in two distinct
batches. In the first batch, we paid participants $4 for completing each
phase, in addition to a performance-based bonus of up to $20 for the second
and third parts of the study (a maximum payment of $32). To reduce the
dropout rate, in the second batch, the base payment was increased to $5,
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and the bonuses were increased to $12 and $18 in the second and third
phases, respectively (a maximum payment of $45). All participants gave in-
formed consent to participate by completing an online consent form. The
study was approved by the University of Oxford Medical Sciences Division
Research Ethics Committee (Ethics Approval Reference: R50750).

Task. The first phase of the study (ratings task) was introduced as a “property
rental price guessing game.” The task involved estimating the market rental
price of residential real estate by viewing an exterior image of the property.
On each trial, an image of a property was shown along with a horizontal
slider for a maximum of 60 s. The task was to guess the market rental price
of the property, that is, the dollar amount that an average person would be
willing to pay per month to rent it, and to indicate it by moving a button
over a slider. The slider ranged from $0 to $2,500, and the initial value of the
button was randomized on each trial. We presented a total of 250 unique
house images, each presented twice in randomized order (for a total of 500
trials per participant). The 250 houses had been selected to have the lowest
average choice variability in a pilot study involving 30 distinct participants
and a larger set of properties (n = 450), conducted before the main
experiment.

We also used ratings from the pilot dataset to include/exclude participants.
After phase 1, we correlated the 250 ratings for each participant against the
average ratings obtained from the pilot study. Participants with a Spearman’s
rank correlation of <0.7 were excluded; others (n = 231) were invited to
progress to the choice task. We introduced phases 2 and 3 as a “best-value
property hunting game.” Here, participants were told to imagine that they
were a real estate agent recommending to a client the best-valued house
offered from us—a fictitious real estate company. On each trial, three
properties (i.e., choice alternatives) were displayed for a maximum of 60 s on
left, central, and right positions on the screen. Underneath each image, we
displayed an allocated rental cost (in dollars) and a number of stars (see
below). The number of stars was proportional to value given in the ratings
task, and merely served as a reminder; in piloting, we found that this im-
proved choice consistency. Participants were informed that the property
images were a subset of those that they had viewed in phase 1, and that that
the stars were related to the ratings they had offered. The task was to press
three keyboard buttons (left, down, and right arrow buttons) to indicate
their ordered preference from the best-valued house to the worst-valued
house. Participants were explicitly instructed that the best-valued house
was the one with the highest market value but the lowest allocated rental
price. At the end of each block, participants were told how many trials’

recommendations were correct, given their initial ratings. The bonus payment
at the end of each phase was proportional to their accuracy.

Unbeknownst to participants, the options were carefully selected for each
participant, to allow us to test our hypotheses of interest. First, for each
participant, we filtered out the 90 properties with the highest rating vari-
ability, that is, the highest absolute deviance between the two ratings.
Second, the remaining 160 properties were binned into quality deciles
(attribute i) on the basis of each participant’s ratings and could be associated
with an allocated rental cost that was drawn uniformly from within the
range of dollar values that defined each decile (attribute j). This allowed us
to select, on each trial, the three stimuli that differed on two dimensions:
two targets A and B, and a decoy stimulus. Target A was always a property
drawn from the third decile of quality (i.e., rating) and the eighth decile of
economy (i.e., the third decile of cost); target B was always drawn from the
eighth decile of quality and the third decile of economy (i.e., the eighth
decile of cost). The decoy stimulus was sampled exhaustively from the full
attribute space. Thus, targets A and B were equally valued options, and the
decoy stimulus could be either superior or inferior in value. Participants
completed a total of 530 trials in the second part of the study. The third part
constituted an additional 530 trials of the same task.

Model Fitting and Comparison. Models provided predictions about proba-
bilities of choosing option A over B, which allowed us to compute model
likelihoods on each trial, which were then used for model fitting. For pa-
rameter estimation, we used the Global Search function from the MATLAB
Optimization Toolbox. Equations for the models are given in the Compu-
tational Modeling and Model Comparison sections. Derivations of special
case models from the Grandmother model are in SI Appendix.

For the t-SNE plot, we fit 125 variations of the grandmother model, by
varying β1 and β2in five steps between 0 and 1, and k in five steps between
0.001 and 1, in addition to four additional constrained parameterizations of
the grandmother model that result in the vanilla divisive normalization,
recurrent divisive normalization, adaptive gain, and range normalization
models (SI Appendix, Table S2). We specified the hyperparameter perplexity,
which controls the number of expected close neighbors, following guide-
lines in the literature to balance the trade-off between perplexity and the
Kullback–Leibler divergence (45). A zoomed-out version of Fig. 5 B–D visu-
alizing the parameters of all 129 models is available in SI Appendix, Fig. S3.

Data Availability. Anonymized Matlab files of data have been deposited in
Open Science Framework (https://osf.io/U6BR3).
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