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Abstract

Introduction: To identify phenotypes of type 1 diabetes based on glucose curves from continu-
ous glucose-monitoring (CGM) using functional data (FD) analysis to account for longitudinal
glucose patterns. We present a reliable prediction model that can accurately predict glycemic
levels based on past data collected from the CGM sensor and real-time risk of hypo-/hypergly-
cemic for individuals with type 1 diabetes. Methods: A longitudinal cohort study of 443 type 1
diabetes patients with CGM data from a completed trial. The FD analysis approach, sparse func-
tional principal components (FPCs) analysis was used to identify phenotypes of type 1 diabetes
glycemic variation. We employed a nonstationary stochastic linear mixed-effects model (LME)
that accommodates between-patient and within-patient heterogeneity to predict glycemic levels
and real-time risk of hypo-/hyperglycemic by creating specific target functions for these excur-
sions. Results: The majority of the variation (73%) in glucose trajectories was explained by the
first two FPCs. Higher order variation in the CGM profiles occurred during weeknights,
although variation was higher on weekends. The model has low prediction errors and yields
accurate predictions for both glucose levels and real-time risk of glycemic excursions.
Conclusions: By identifying these distinct longitudinal patterns as phenotypes, interventions
can be targeted to optimize type 1 diabetes management for subgroups at the highest risk
for compromised long-term outcomes such as cardiac disease or stroke. Further, the estimated
change/variability in an individual’s glucose trajectory can be used to establish clinically mean-
ingful and patient-specific thresholds that, when coupled with probabilistic predictive infer-
ence, provide a useful medical-monitoring tool.

Introduction

With the advent of electronic health records and medical devices, modern longitudinal studies
typically feature long sequences of observed data. Variables observed over time on study subjects
can provide insight into the clinical course of a given biological system or disease, but often
through noisy realizations of the true underlying longitudinal process that exhibit natural varia-
tion both between- and within-subjects over time. Here, we consider continuous glucose-
monitoring (CGM) data where the daily glucose curves were repeatedly observed for each
subject along with the duration of the study, and we consider these observations as repeated
functional data (FD).

Characterizing and monitoring CGM data have potential value for the assessment of out-
comes in clinical studies [1]. Maintaining glucose control is essential for individuals with dia-
betes mellitus, particularly with respect to the development of comorbidities and during
pregnancy. Variability in glucose has been studied for decades as a proxy for diabetes control,
but research studies and clinical decision-making are typically based on summary measures [2].
The most commonly reported summary measures are standard deviation, coefficient of varia-
tion, and mean amplitude of glycemic excursion, all of which have been used as clinical indica-
tors for years. With more frequent monitoring using CGM, the percentage of time spent within
the target range for a given patient is also utilized for care. Although these summary statistics
provide a measure for variation around the mean and duration of time within healthy glycemic
ranges, the underlying longitudinal structure, the mean response function, and natural variation
over time are ignored [3, 4]. This approach ignores additional information that such FD offers
[5] and forces clinicians to rely on summary statistics that are prone to measurement error [6].
Obtaining additional information, such as an indication of glucose levels across certain time
points, measures of change, rate of change, and variability, and making it available for clinical
application has the potential to advance clinical decision-making around optimizing glucose
control [5].
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Fig. 1. CGM sensor tracings of four representative (first row - females; second row - males) patients aged 18-46 from type 1 diabetes analysis cohort with glucose readings
(y-axis, in mg/dL) against clock time (x-axis). Respective demographic/clinical characteristics are on headers. Data points are colored according to observed day of week. RT-CGM,

real-time continuous glucose monitoring.

Moreover, summary measures generally result in misleading
outcomes if portions of the longitudinal data are missing for a
given individual [7]. Missingness in CGM data can arise due to
sensor failure, calibration error, or other reasons. These settings
produce unequal numbers of repeated measurements and mis-
timed measurements, both between-subjects as well as within an
individual subject recorded over a long duration of time as in
multiple CGM sessions (see Fig. 1). In the statistics literature, hav-
ing such irregular spacing over time is referred to as sparse longi-
tudinal data. The number of observations per individual can vary
considerably. Failing to account for sparse longitudinal data
through appropriate estimation methods will lead to biased results
[8]. In the clinical context, there is an abundance of data; however,
the data are distributed in a sparse fashion over time.

Core and novel FD techniques [9] may be useful tools to address
issues that are ignored by traditional methods that report simple
summary statistics from CGM data. The first goal is to identify
phenotypes of type 1 diabetes based on glucose curves. To accom-
plish this, goal clustering approaches are needed that account for
sparse longitudinal patterns of glucose levels. Clustering curve data
with strong temporal correlation, like that of longitudinal glucose
levels in type 1 diabetes, can be accomplished using the scores from
FD analysis technique known as functional principal components
analysis for sparse longitudinal data (FPCA) [10].

There are other methods that can be utilized to cluster glucose
curves such as latent trajectory classification [11], hierarchical clus-
tering [12], K-means clustering [13], spectral clustering [14], and
deep learning-based clustering [15]. As previously demonstrated
[4], FPCA will produce similar information to existing techniques
when there is an equal number of measurements for each curve and
the curves are measured at regular time points across individuals.

However, this is not the typical case for CGM data. In this particu-
lar CGM application, we employ FPCA as our clustering approach
for historical and methodological reasons. FPCA has been effective
in clustering tracings from CGM and oral glucose tolerance test
(OGTT) data in the literature [3, 4]. FPCA works by extracting
key modes of variation from glucose level trajectories.
Furthermore, the FPCA approach provides individual predictions
of smoothed curves of nonlinear decline/increase of glucose. The
sparse FPCA approach that we employ accommodates incomplete
longitudinal data in the form of missing at random (known as
MAR) [3], and it accounts for temporal correlation and use of
profiles with varying numbers of glucose values. Thus, this meth-
odology is well suited to CGM data analyses, where numbers of
values and trajectories of glucose change over time. FPCA is useful
for dimension reduction by yielding functional principal compo-
nents (FPCs) scores that represent modes of variation, and we then
utilize these components to identify phenotypes of glycemic vari-
ability that ultimately will lead to improved clinical action. In addi-
tion to the traditional FPCA method, we characterize the daily
specific glucose curves and their secular evolution using the double
FPCA approach described previously [16].

In prior work [4], FPCA was performed to extract shape infor-
mation of OGTT curves from 974 healthy pregnant women in their
first trimester, which was not identified by simple summary mea-
sures. The obtained information (FPC scores) discriminated
between women with and without gestational diabetes later in
pregnancy. Additionally, the FPC scores in the first trimester were
associated with large-for-gestational-age (LGA) birth, while sum-
mary measures suggested there was no association. Other previous
work [3] characterized the timing and degree of variability in glu-
cose from 147 women with type 1 diabetes who had repeated
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monitoring over the course of gestation. The glucose profiles were
clustered into three subgroups of high, moderate, or low hetero-
geneity, relative to the overall mean response. These clusters,
referred to as phenotypes, were associated with clinical character-
istics of the cohort at the beginning of pregnancy, longitudinal
changes in maternal glycohemoglobin (hbAlc), and weight and
pregnancy-related outcomes.

The second goal of the current study is to examine the risk of
glycemic excursions throughout the monitoring period in real
time. Repeated measures of glucose levels from CGM are clearly
correlated over time within a subject, and a traditional random
intercept model [17] has been commonly considered to fit longi-
tudinal data. Various semiparametric mixed-effects models have
been used to fit glucose trajectories [18]. Further, a semiparametric
mixed-effects model with penalized regression splines was consid-
ered to provide smooth estimates of the longitudinal glycemic pro-
files for blood glucose data during gestation [19]. Recently,
proposed machine learning and time series techniques for predict-
ing glucose levels have been extensively discussed [20]. These
authors later compared support vector machine (SVM), random
forest (RF), and autoregressive integrated moving average
(ARIMA) models for forecasting glucose level and concluded that
the prediction model developed using the RF method was the most
accurate of those considered. Techniques such as recurrent neural
network (RNN) [21] and artificial neural network (ANN) [22]
have been also used for predicting glucose trajectories. Training
RNN or ANN models can be computationally expensive. Most
RNN models are not able to model sparse and irregularly sampled
sequential data [23] like that in our CGM application. RNN models
automatically learn features with higher complexity and represen-
tations, but the learning capacity of ANN is limited due to the
model complexity since these models are mostly implemented
in fewer than three layers [21]. These layers are neurons within
the neural network that process a set of input features or the output
of those neurons.

To produce predictions while preserving clinical interpretabil-
ity, we adapt a nonstationary Gaussian linear mixed-effects model
(LME) that is preferable over the traditional random slope-
intercept mixed-effects models, especially when the data have long
follow-up sequences to fit the glycemic profiles and predict excur-
sions. In line with our prediction goal, this model provides a frame-
work for estimating the real-time risk of hypo-hyperglycemic
based on target functions that we define in Sect. 3.3. Unlike most
of the machine learning methods, our chosen approach does not
require model training; hence, it is computationally quite efficient.
The proposed model yields predictive probabilities that are i
nterpretable for risk assessment, and the traditional parameter esti-
mates provide useful information about how different covariates/
features are associated with the response variable. Additionally,
this prediction model allows further analysis of the derivative of
the fitted curves (e.g., computing rate of change for glucose trajec-
tory) which could be useful if one is interested in obtaining rapid
decline/increase in glucose. By contrast, the weights from machine
learning prediction techniques, which serve as the primary deci-
sion-making information, are not directly interpretable without
performing transformations that require additional assumptions
[24]. Methods stemming from our chosen approach have been
mostly utilized for monitoring in clinical trials to compute the pre-
dictive probability of success given interim data [25]. Recently, pre-
dictive probabilities have been expanded in the context of
monitoring progression toward renal failure [26] and rapid pro-
gression of lung function in cystic fibrosis [27].

The next section gives the details of the CGM data. Section 3
provides the statistical methods used in our work. Section 4
presents the results for our FDA and stochastic model applications.
We conclude in Sect. 5 with a discussion of the statistical methods
used in this work. The computer code for our analyses is provided
in Supplemental materials.

Description of CGM Data

We downloaded data from the Jaeb Center for Health Research
from the Juvenile Diabetes Research Foundation (JDRF) CGM
Study [28]. The goal of this randomized trial was to compare
unblinded real-time CGM (RT-CGM) to blinded collection
(Control). The analysis cohort used for this study consisted of
patients with a clinical diagnosis of type 1 diabetes who had used
daily insulin therapy for at least 1 year, were at least 8 years of age,
had glycohemoglobin A1C (HbA1C) less than or equal to 10%
and insulin regimen involving either use of an insulin pump or
multiple daily injections of insulin and had been stable for the last
2 months prior to randomization. The approval of the
Institutional Review Board at Cincinnati Children’s Hospital
Medical Center is not required since the data is publicly
available  at  http://publicfiles.jaeb.org/jdrfapp/dataset/RT_
CGM_Randomized_Clinical_Trial.zip.

The analysis cohort includes a total of 443 (232 RT-CGM; 211
Controls) participants [28] and we focus on the primary cohort’s
7-day CGM sessions at the first week. Of the 443, 55% of participants
are female, 94% of them are White, and mean age (range) is 25 (8-
72) years. The glucose level of individuals is reported every 5 min
between clock time 0:00 and 24:00 over a week, which yielded a total
of 610,823 measurements. The average number of CGM measure-
ments per subject is 204/day and 1379/week, indicating an overall
missing data rate of 31.6% (assuming 5-min observations over
7 days). The daily curves of glucose data are repeatedly collected
for each subject as the study progresses from the beginning to the
end. The daily glucose curve was repeatedly observed for each sub-
ject across the duration of the study. This data is considered to be
repeated FD. There is substantial variation both between individuals
and within a given individual over time (see Fig. 1).

Methods

In this section, we describe the approaches undertaken to complete
the two goals of our study - clustering and prediction. Although
these two goals are related, we pursue each goal independently.
For the first goal, we used FPCA to extract the modes of temporal
variation between glucose curves (Sect. 3.1). We then used the two-
stage FPCA method to characterize the daily specific glucose
curves and their secular evolution (Sect. 3.2). To address the second
goal, we fit a Gaussian LME to predict periods of glycemic excur-
sions by using CGM data (Sect. 3.3).

FPC Analysis

FPCA for sparse longitudinal data was used to extract phenotypes
of variation from glucose level trajectories. Similar to traditional
principal component analysis (PCA), FPCA utilizes linear combi-
nations of a small number of features to maximize variance across
data. FPCA achieves this by extracting the common temporal char-
acteristics of a set of curves. This approach was previously per-
formed to identify phenotypes of type 1 diabetes in pregnancy
by finger stick data [3]; similar steps were taken for the observed
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glucose levels in this study. Briefly to perform the sparse FPCA,
we started by choosing a suitable basis function for representing
the eigenfunctions using cubic B-splines. We used a routine from
the R package “fpca” to implement the restricted maximum like-
lihood estimation through a Newton-Raphson procedure, and
estimate the FPCs from the CGM data. This approach addressed
both the selection of the number of basis functions, as well as the
dimension of the process (i.e., number of nonzero eigenvalues)
used in the model by minimizing an approximation of the
leave-one-curve-out cross-validation score. We implemented
the algorithm for each subject’s monitored glucose collection
of longitudinal data to obtain smooth individual functions across
study duration. Cubic B-splines were specified with equally
spaced knots. The candidate models had different settings of
the number of basis functions for the eigenfunctions (M) and
the number of nonzero eigenvalues used in the model (r). We
examined combinations of M = (4, 5, 6) and r = (2, 3, 4), and
report results from the model with the best (i.e., the smallest)
cross-validation score. This procedure for selecting basis func-
tions and eigenfunctions has been used in prior studies [3, 29].
After fitting the FPCA model (by trying all the combinations
of M and R), the final selected model with convergence was
M =6 and r = 4, which showed four FPCs. Then the scores from
the FPC were used to classify CGM sensor tracings as used for
previous work in glucose monitoring [3, 4] and other studies
[29] using the first and third quartiles (Q; and Qj, respectively).

Two-stage FPCA

In this part, we consider the CGM data observed during the first
week of the study. The two-stage FPCA method is capable of incor-
porating the nested design of the data for a whole week. The tradi-
tional FPCA cannot accommodate nested data; thus, we used this
method to assess variation for a single day from each subject’s pro-
file. The goal of the two-stage FPCA was to characterize the daily
specific glucose curves and their secular evolution over a week
using the double FPCA approach.

The double FPCA [30] procedure is an extension of the conven-
tional FPCA method. It provides a decomposition of the total
variation into the variation within the repeatedly observed func-
tions and the variation between these random functions as the sec-
ond component. The method has several appealing advantages
over the traditional FPCA methods. First, it relies on mild assump-
tions [30]. Previous models for repeated FD rely on a general hier-
archical structure. The multiple functions observed for each subject
are modeled as a multilevel ANOVA design, relying on the additive
assumption [31]. In contrast, the two-stage FPCA approach
assumes the functions are smoothly changing over the times at
which the repeated functions are recorded, which leads to a non-
parametric model under minimal assumptions. Second, the results
provide the variation within the repeatedly observed functions as
one component and the variation between these random functions
the second component. It’s easy to interpret the patient’s glucose
trend within a 24-h routine, as well as the evolution of the glucose
levels over a long period. Third, the method adopts a local-linear
smoother approach [30] to estimate mean and covariance kernel,
thus it is applicable to both dense and sparse observations. Even
though our data contain individuals with very sparse observations,
such as Fig. 1 (the second plot in the first row), we can still effec-
tively estimate the mean surface by borrowing strength from the
entire sample.

Gecili et al.

Real-time Prediction of Glycemic Excursions

The goal of this section is to develop a reliable prediction model
that can accurately predict glycemic levels based on past data col-
lected from the CGM sensor and real-time risk of hypo-hypergly-
cemic for individuals with type 1 diabetes. Below, we provide
details of the Gaussian LME with nonstationary covariance that
we used for modeling the trajectories of glucose levels and predict-
ing real-time risk of hypo- and hyperglycemic excursions. This
model allows for estimating risk based on target functions, which
we specified as glycemic excursions. Previously, this model has
been used in studies of renal failure and cystic fibrosis [27]. This
model captures between and within patient heterogeneities by a
random intercept and stochastic process. The main effects are lin-
early included in model (1); however, the model is able to predict
nonlinear curves. It was shown to outperform traditional random
slope-intercept models when data has long sequences of repeated
measurements [32, 33] which is the case for our CGM data. Some
model details are provided below.

We let Yjdenote the glucose measurements for the
i patient taken at time point t;j» where t; is time of measurement
since midnight based on clock time (in hours) and
i=1,...,N;j=1,...,n,

The nonstationary LME has the following form:

Y; = Xi<tzj)°5 + Ui+ Wi(ttj> + Zy, (1)

where X; (t,-j) is the design matrix that includes covariates and o is
the corresponding parameter vector. Between-patient hetero-
geneity is estimated with a random intercept term U;, where
U~N(0, @?). The terms Z; are independent, identically distrib-
uted as Gaussian with N(0, 72) and represent measurement error.
The term Wi(tij) represents realizations from the zero-mean
(which represents change in a patient’s glucose level over time that
cannot be explained by the linear regressions), continuous-
time integrated Brownian motion process such that
Wi(t) = [¢ B;(v)dv, where B;(v) is the rate of change in glucose
level at time v depicted as Brownian motion and B;(0) = 0. The
integrated Brownian motion process is nonstationary and follows
a Gaussian distribution with covariance function for time points
(hours) s and t:

v(s,£) = Cov(Wis), Wi(t))

, [min(s, )]?

e

min(s, t)
5 - 7> . (2)

3

This enables greater flexibility compared to traditional models,
in terms of the shape of realizations that have been used to char-
acterize variation in glucose levels.

We construct the target function to predict real-time risk of
hypo- and hyperglycemic excursions by using model (1). To pre-
dict real-time risk of hypo- and hyperglycemic excursions for i
patient at time f;, we utilize the predicted glucose level Y;(t;)
of that patient at that time point;

We let the covariate history up to a given time ¢ of each patient
be represented as M;(t) = {X;, (t;,y;) : t; < t}. Based on this
history, we can build a predictive probability distribution for
Y;(tx) being below or above given thresholds at time t;;
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PP (th) = P(Yilta) <8 [Hilty)
= P(W;(ty) < 81 — X;(ty)a — Up — ZuHi(ty)), (3)

where 8, is the threshold (in mg/dL) for identifying hypoglycemia
and p?ypo(tik) is the predicted risk of hypoglycemia.

Similarly, the risk of hyperglycemic excursions at time ¢; can be
obtained with the following predictive probability distribution

PP (k) = P(Yi(tw) > 85 [Hi(ty))
= P(Wi(tik) > &, _Xi(tij>a -U - Zik|Hi(tik))7
(4)

where §, is the threshold (in mg/dL) for identifying hyperglycemia
and p?yper(t,-k) is the predicted risk of hyperglycemia.

We implemented the model (1) and obtained parameter esti-
mates of the model for our CGM data by using the ngme package
in R [32]. Prediction performance of model (1) was assessed with
predictive accuracy metrics: root-mean-square-error (RMSE) and
mean absolute error (MAE). Predicted probabilities (3-4) are also
computed by using R and the computer code is available in the
Supplemental file.

Results
FPCA Results

Based on FPCA implementation, we found that the first FPC
explained 48% of the total proportion of the variation in the
CGM readings. The first FPC classifies how each individual
patient’s glucose level trajectory differs from the mean trajectory.
Focusing on the first two FPCs (FPC1-FPC2), which accounted
for 73% of the total variation, we created clusters of the trajectories
(of patients) according to the first and third quartiles (denoted
as Q1 and Q3) of the FPC1 and FPC2 scores. This grouping of
individuals across FPC1 and FPC2 quartiles results in nine clusters
corresponding to CGM tracings. These classifications are pre-
sented in Fig. 2, which illustrates that there are clusters of patients
who tend to exhibit hyperglycemic excursions more frequently
than the overall cohort (top row). Extreme smoothed values were
verified as being similar to the observed CGM values (e.g., top row,
third plot from left: the most extreme profile had a peak value
of 568 mg/dL (31.5 mmol/L)). Clusters of patients tended to
have steadier, normal glucose levels (e.g., middle row, second
plot from left); other clusters had lower glucose levels (e.g., bottom
TOW).

Two-Stage FPCA Results

The observed glucose level for a given day was assumed to corre-
spond to a random process, which quantifies glucose level as a
function of time of the day. This is considered as the first step
of the FPCA. Then we study the subject-specific changes of the
functional relationships as weekly time progresses from the begin-
ning of the week to the end of the week as the second step of
the FPCA.

The fitted mean surface is visualized in Fig. 3A, which reflects
the smoothed CGM tracings (glucose levels) for 10 representative
patients from the data, noting higher glucose levels on weekends,
compared to weekdays. A sharp increase is seen around Saturday.
Fig. 3B provides the first harmonic which provides the “modes of

variation” of the repeated functions sampled on a specific day,
is seen to be quite heterogeneous across days of the week. The
values below zero in Fig. 3B suggests that profiles tended to be
lower, compared to the overall mean CGM profile, during noctur-
nal hours and on weekends. The second harmonic (Fig. 3C) illus-
trates higher order variation in the CGM profiles occurred at
nighttime throughout the week, although variation was higher
on weekends.

Real-Time Prediction Modeling Results

By performing our dynamic FD model, we model the glucose level
trajectories in CGM data and provide real-time risk of glycemic
excursions. In this part, for illustration, we only consider the data
observed on the second day (randomly selected) of first week of the
CGM data since the proposed prediction model cannot accommo-
date nested random effects. We discuss this as a potential extension
in concluding remarks. We included time (hours) and group var-
iable related to the clinical trial (1 if subject is from the control
group; 0 otherwise) as covariates in model (1), since we do not have
information on other features that can be included in the model as
covariate such as meals, exercise, insulin regimen. Although the
main goal is prediction, the coefficient estimates of intercept, hour,
and group variables are 170, —0.632, and —6.663, respectively.
Additionally, the maximum likelihood estimates of the covariance
parameters indicated large between-patient heterogeneity
(@* = 2984) and residual variance (72 = 11.14); estimated vari-
ance for the integrated Brownian motion process was 62 = 0.0052.

Graphs on the left panel of Fig. 4 provide observed and pre-
dicted glucose levels with 95% CI for a 62-year-old White female
from the control group with height 160 cm and weight 68 kg, an 8-
year-old White female from the control group with height 140 cm
and weight 32.8 kg, and a 41-year-old White male from the RT-
CGM group with height 168 cm and weight 79 kg, (respectively,
from top to bottom). Our prediction model is capable of capturing
the observed glucose curves (Fig. 4, left panel). The predicted glu-
cose trajectories are quite similar to the observed
glucose trajectories of these patients with small mean predictor
of MAE and RMSE: 48 (SD=045) and 7.2 (SD=2); 4
(SD=0.33) and 64 (SD=29); 431 (SD=04) and 59
(SD =1.7), respectively (SD: standard deviation; units of both
MAE and RMSE are mg/dL). We additionally report overall
RMSE and MAE to compare the predictive performance of our
model with the traditional random intercept-and-slopes model
[17]. Overall RMSE and MAE for our model were 6.3 and 4.1.
By contrast, overall RMSE and MAE are 46.4 and 34.8 for the tradi-
tional model, which exceeds estimated values from our predic-
tion model.

The graphs on the right panel of Fig. 4 present the predicted risk
of hypo- and hyperglycemic excursions for the same three subjects
mentioned above. We used §; = 60 mg/dL (3.33 mmol/L) and
8, =200 mg/dL (11.1 mmol/L) for identifying hypoglycemia
and hyperglycemia, respectively. The first patient was at high risk
of hyperglycemia for the whole day except 6-8 am and 4-12 am.
Her risk of hypoglycemia was relatively low except for around 9-12
am in the evening. The second patient was at high risk of hyper-
glycemia in the afternoon, followed by decreased risk between
6 and 10 pm. Her risk of hypoglycemia was quite high around
9 am in the morning. The third patient was at high risk of hyper-
glycemia in the afternoon from 1 to 530 pm and right before
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Fig. 2. Phenotypes (clusters) of patients according to glycemic variability over time. Smoothed CGM sensor tracings (gray lines) categorized by quartiles (Q1, Q3) and medians of
each of the first two FPCs (FPC1, FPC2) scores in the functional principal components analysis for sparse longitudinal data (FPCA). The solid red line is the mean function of glucose
(y-axis) over clock time (x-axis); the dashed black line is the mean function for the specific groups.

midnight from 11 to 12 am. His risk of hypoglycemia was quite low
except between 9 and 10 pm in the evening.

Conclusions

Some studies have shown that having glycemic fluctuations is a
deterministic factor for hypo- and hyperglycemic excursions.
Recently, CGM systems have emerged as an effective technology
with an ability to monitor glucose trends over time. Involving large
amounts of irregularly observed data, CGM systems provide infor-
mation, every 5 min, enabling the capture of frequency of fluctua-
tions regarding blood glucose levels [34], so that efficiently utilizing

CGM data would shed light on variation in blood glucose trends
over time, which is frequently more difficult to measure. Hence,
advanced statistical tools, as we have proposed here, are needed
to efficiently study CGM data.

We first presented FD analysis tools for sparse longitudinal pat-
terns of medical-monitoring data to classify glucose curves to iden-
tify phenotypes of type 1 diabetes. We considered the temporal
information from the CGM FD, and have classified the fitted glu-
cose curves into different clusters. The scores provided by this
analysis can be used to examine a range of phenotypes as shown
in Fig. 2. The limitation of this method was that it is not accounting
for the nested design of the CGM data that was based on daily
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Fig. 3. Two-stage functional principal components analysis for sparse longitudinal data (FPCA) shows poorer glycemic control at nighttime and on weekends (three-dimensional
manifold plots of FPCA on the CGM cohort). In each plot, the hour of CGM (0-24 h represents 12-12 am) is on the lower left axis; day of week is on the lower right axis; magnitude is
on the upper axis. The vertical axes represent (A) glucose level (mg/dL); (B-C) degree of oscillatory variability in the first and second FPCs, respectively, which are unitless quan-
tities. The vertical heatmap bars depict values ranging from lower magnitudes (blue) to higher magnitudes (red). (A) Smoothed CGM tracings for 10 representative patients, (B) the

first harmonic, and (C) the second harmonic.

CGM data observed within a 24-h period. Hence, we then per-
formed two-stage FPCA which incorporates the nested design of
the CGM data and enables classification of the GM curves that
were repeatedly measured over a week. Performing two-stage
FPCA allowed us to compare the glucose curves observed on differ-
ent days of a week; it was observed that the glucose levels are higher
on weekends, compared to weekdays. Further, the glucose profiles
tended to be lower, compared to the overall mean CGM profile,
during nighttime and on weekends. Moreover, higher order fluc-
tuation in the CGM profiles occurred at nighttime during the week,
although variation was higher on weekends which agrees with pre-
vious findings [35, 36].

Although the two-stage FPCA has clear advantages over the tra-
ditional FPCA approach, we illustrate the utility of each method in
CGM analysis for our clustering goal. Our rationale is that,
although both approaches have made important but limited
appearances in the diabetes literature, the traditional approach
has been more frequently applied. However, CGM studies tend
to consist of multiple days for a given subject; therefore, our study
examined the findings and utility of both traditional FPCA and the

two-stage approach. Further, regular FPCA can be used when one
is interested in analyzing only one-day data to cluster daily trajec-
tories (or one week if one is clustering the weekly trajectories).
However, the two-stage approach assumes CGM recordings follow
a nested design. Although our study goals did not involve compar-
ing the FPCA-based clustering method with other approaches, it
may be a worthwhile empirical study to examine our chosen
approach alongside the aforementioned statistical and machine
learning techniques for clustering.

We addressed our second goal by utilizing a statistical method
for predicting and detecting real-time risk of hypo- and hypergly-
cemic excursions by using long, irregularly observed time series,
tailoring the approach to type 1 diabetes. Based on the results in
Sect. 4.3, we see that the prediction model that we implemented
has very low prediction errors (e.g., low RMSE and MAE), espe-
cially compared to the errors obtained with the traditional random
intercepts-and-slopes model. The predictive performance of our
model is not compared with other previously employed techniques
in literature; however, this also represents an important area for
future empirical investigation. Additionally, by visually inspecting
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Fig. 4. Observed glucose tracings and model fit/prediction for three different study subjects (one per row). The first row is for a 62-year-old White female from the control group;
height: 160 cm; weight: 68 kg. The second row is for a 8-year-old White female from the control group; height: 140 cm; weight: 32.8 kg. The third row is for a 41-year-old White male
from the RT-CGM group; height: 168 cm; weight: 79 kg. Left panel: Observed glucose readings (y-axis) from CGM (black dots) over clock time (x-axis) are shown with FD prediction
(dashed line) and 95% CI (gray band with red dashed lines); Right panel: real-time risk for glycemic excursions (black line is the probability of hypoglycemia; blue line is the
probability of hyperglycemic: gray band is the area where probabilities > 0.80 or 80%).

the excursion plots, we can conclude that the predicted real-time > 0.80 or 80%) when the glucose level is over 200 mg/dL

risks of hypo-hyperglycemic are highly accurate (the predicted  (11.1 mmol/L) and below 60 mg/dL (3.33 mmol/L) for hypergly-
probabilities are in gray band (the area where probabilities cemia and hypoglycemia, respectively, in the graphs presented in
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the right panel of Fig. 4). This paper also shows how estimated
change/variability in an individual’s glucose trajectory can be used
to establish both clinically meaningful and patient-specific thresh-
olds that, when coupled with probabilistic predictive inference pro-
vide a useful medical-monitoring tool. Therefore, increasing
patients’ and clinicians’ abilities to take timely actions in a more
accurate manner.

This is the first study to apply the two-stage FPCA method to
CGM data to identify the daily specific glucose curves and their
evolution over a week. Similarly, this is the first study to propose
different target functions based on glucose thresholds, tailored to
hypo and hyperglycemic. Our novel applications have particular
relevance to pregnancy outcome. Specifically, our group has
recently published using self-glucose-monitoring data to predict
premature delivery in women with type 1 diabetes using a joint
modeling approach. Using CGM data would most likely yield even
better prediction to a very important obstetrical problem [37].

There are several limitations to the methods provided in our
work. Although the original experiment collected daily measure-
ments of glucose over multiple weeks, we only used part of the data
for our analysis due to lack of ability to account for the nested
design of the whole data (as explained in the previous sections,
we considered only 1 day’s data for the procedures provided in
Sects. 3.1 and 3.3 and used just one week of data for the method
provided in Sect. 3.2). Our analyses did not include covariate
adjustment since these additional features of the study cohort were
not accessible. As aforementioned, we acquired these data from a
previously completed study in which there are limited details on
the reasons for missing data. However, missingness in CGM data
is common and can occur due to various reasons, such as intermit-
tent sensor errors, sensor compression, and user errors [38]. The
most common reason for missing data, however, is patient non-
compliance in wearing the monitor. Most trials require a minimum
number of days to wear the CGM sensor and a minimum number
of hours of glucose values, including night-time values. Thus, miss-
ing data is inherent in any analysis of CGM data [39].

There are various new developments that could be undertaken
based on our application and findings. An important advancement
could be extending the prediction model to incorporate the typi-
cally nested design of the CGM data measured over weeks/months
to improve the prediction accuracy of glucose levels and real-time
risk of hypo-hyperglycemic excursions; which would help in better
understanding and interpretation of variability in glucose tracings.
Although other longitudinal models can accommodate nested
designs, the stochastic processes being used in these models typi-
cally do not produce the same degree of predictive accuracy [26].
Further, improved accuracy of prediction of real-time risk would
provide a timely warning of severe hyperglycemia or hypoglyce-
mia. Additional future work could be adjusting the FPCA and
the prediction models presented in Sect. 3 to incorporate covari-
ates, when available.
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