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Abstract

Immunocytokines (ICs) are a class of molecules created by linking tumor-reactive monoclonal

antibodies to cytokines that are able to activate immune cells. Tumor selective localization is

provided by the ability of the mAb component to bind to molecules found on the tumor cell

surface or molecules found selectively in the tumor microenvronment. In this way the cytokine

component of the immunocytokine is selectively localized to sites of tumor and can activate

immune cells with appropriate receptors for the cytokine. Immunocytokines have been made and

tested by us, and others, using a variety of tumor-reactive mAbs linked to distinct cytokines. To

date, the majority of clinical progress has been made with ICs that have linked human

interleukin-2 (IL2) to a select number of tumor reactive mAbs that had already been in prior

clinical testing as non-modified mAbs (Figure 1). Here we briefly review the background for the

creation of ICs, summarize current clinical progress, emphasize mechanisms of action for ICs that

are distinct from those of their constituent components, and present some directions for future

development and testing.
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1. Cancer Immunotherapy: Broad Application

Despite over 50 years of compelling preclinical evidence for effective cancer

immunotherapy, as of 2009 there were only 4 widely used, approved, effective clinical

immunotherapies being used broadly to treat cancer. They included: (A) allogeneic bone

marrow transplantation for leukemia, largely successful via the “graft versus leukemia”

effect [1]; (B) tumor reactive monoclonal antibodies (mAbs), effective in part via antibody

dependent cell-mediated cytotoxicity (ADCC) [2]; (C) intravesical BCG for superficial
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bladder cancer, likely active via toll-like receptors on leukocytes [3]; and (D) administration

of IL2 for melanoma and renal cell cancer [4].

Over the past 2 years Phase III trials of 3 distinct forms of immunotherapy demonstrated

clinical benefit. Each was published in the New England Journal of Medicine. Two are now

FDA approved and the 3rd is under FDA review. They are: (1) Vaccination of patients (pts)

with advanced prostate cancer, with a preparation of PAP-loaded autologous dendritic cells

[5]; (2) Augmenting endogenous anti-melanoma immunity via anti-CTLA-4 mAb [6,7]; and

(3) Enhancing ADCC in children with neuroblastoma (NBL) by combining an anti-GD2

mAb with NK activation (via IL2) and neutrophil/monocyte activation (via GM-CSF) [8].

The use of ICs for cancer treatment is, at least in part, based on augmenting ADCC by the

more effective localization of cytokines able to activate ADCC.

2. ADCC and FcRs

Preclinical studies have shown that tumor-reactive mAbs can mediate in vitro tumor

destruction via ADCC [9,10]. While there is a family of FcRs on leukocytes [11], the most

important for ADCC are the FcRγ2a (CD32) FcRs expressed primarily on neutrophils,

monocytes and macrophages, and the FcRγ3a (CD16) FcRs expressed primarily on NK

cells. The affinity of these human FcRs is highest for human IgG1 immunoglobulins [12].

When a sufficient concentration of a tumor-reactive mAb encounters a tumor cell (e.g.,

Rituximab and a CD20+ tumor cell), the mAb binds to the cell, presenting a lattice of

surface bound mAb molecules with exposed Fc epitopes. When an effector expressing FcRs

(such as an NK cell) encounters this mAb-coated tumor cell, the FcRs simultaneously

engage multiple Fc epitopes via multipoint binding. The multipoint binding enables the

effector cell to transiently adhere to the mAb-coated tumor cell (akin to the multipoint

adhesion facilitated by “a Velcro effect”), and then to activate the effector cell via the

signaling pathways induced by the FcRs [13]. This mAb-FcR mediated activation of the

tumor-bound effector cell can result in cytokine and chemokine release by the effector cell,

antigen ingestion/presentation, and “downstream” immune recruitment and activation of

other antitumor effector cells [14]. In addition, this mAb-FcR mediated activation of the

tumor-bound effector cell can result in activation of ADCC, which may involve granule

induced cell death, death-signal induced apoptosis, or biochemical induced toxicity,

depending upon the effector cell type and state of activation [15,16]. For simplicity, we will

refer to these pathways (direct ADCC and FcR induced “downstream” effects) as “in vivo

ADCC”. In mice, antitumor effects induced by mAbs that mediate ADCC are abrogated

when using mAbs without functional Fc components [9], or in mice lacking functional FcRs

[17].

The importance of FcR affinity in the in vivo efficacy of mAbs has been demonstrated in

several clinical studies. The human CD16 FcRγ3a molecule has 2 primary alleles; a lower

affinity allele that bears a phenylalanine (F) at amino acid (a.a.) 158, and a higher affinity

allele that bears a valine (V) at a.a. 158. Analogously, the human CD32 FcRγ2a molecule

also has 2 primary alleles; a lower affinity allele that bears an arginine (R) at a.a. 131, and a

higher affinity allele that bears a histidine (H) at a.a. 131. Landmark studies demonstrated
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that lymphoma patients with high affinity FcR alleles were more likely to benefit from

Rituximab than patients without high affinity FcRs [18,19]. Furthermore, the presence or

absence of complement inactivators [20] (such as CD59) on lymphomas does not seem to

influence Rituximab efficacy [21]. The CD16 FcRγ3a allelic polymorphism affects

rituximab- mediated ADCC of autologous EBV transformed B lymphocytes in vitro [22]. As

expected, this cytotoxicity is attenuated by inhibitory killer-immunoglobulin-like receptors

(KIR) found primarily on NK cells, but to a variable degree in different individuals [22].

Together, these observations indicate that the in vivo efficacy of Rituximab is likely

dependent on in vivo ADCC rather than complement activation [23] and that the degree of

cytotoxicity may also be regulated by KIR.

Herceptin and Erbitux are FDA-approved anti-tumor-receptor (HER2 and EGFR) mAbs that

inhibit the natural ligands for these receptors from stimulating tumor cell growth [24]. In

addition, both these mAbs mediate ADCC in vitro. Clinical studies for these mAbs have

demonstrated greater benefit in individuals with high affinity alleles for FcRγ2a and FcRγ3a

[25,26], analogous to that seen for Rituximab. These results suggest that at least some of the

antitumor benefits of Herceptin and Erbitux come from in vivo ADCC, although increased

signal inhibition and apoptosis resulting from the cross- linking of cell-bound antibody by

FcR-expressing cells cannot be ruled out [27]. While not all analyses of Rituximab,

Herceptin and Erbitux have shown identical results, most have demonstrated benefit for

individuals with high affinity FcR alleles [28]. In addition, there is still controversy

regarding the “gene dose” effect for these alleles. Namely the high affinity genotypes (VV

for FcRγ3a and HH for FcRγ2a) show better antitumor effects than the lowest affinity

genotypes (FF and RR respectively). However it is not clear whether the heterozygotes (i.e.,

VF and HR) show effects that are similar to the low affinity homozygotes (FF and RR), or

potentially function somewhere in between the homozygotes (i.e., VF functioning between

VV and FF, and HR functioning between HH and RR) [26].

In addition, FcR affinity influences the antitumor efficacy of antitumor antibodies induced

by vaccination regimens. Having high affinity FcRγ2a and FcRγ3a genotypes is associated

with beneficial antitumor effects for immunization to idiotypic antigens on B cell tumors

[29] and to antigens on colon cancer [30].

3. Augmenting ADCC with Effector Activation, Ch 14.18 + cytokines

IL2 is a potent activator of NK cells [31,32], which have FcRs and mediate ADCC [13]. In

vitro treatment of NK cells with IL2 augments NK ADCC [33]. We demonstrated that in

vivo administration of IL2 to patients augmented the ability of their circulating NK cells to

mediate ADCC in vitro [34]. We proposed that activating NK cells in vivo with IL2 would

thus enhance in vivo ADCC from concomitant mAb treatment [35,36]. Our studies utilized

mAbs that recognize the GD2 disialoganglioside on melanoma and NBL [37]. Our

preclinical data suggested efficacy would be most apparent when this approach was used to

treat individuals with smaller amounts of cancer (non-bulky disease) [38,39]. We performed

a series of pilot and phase I/II trials of this approach for patients with neuroblastoma (NBL)

or melanoma using the 14.G2a murine antibody and its derivative, the ch14.18 chimeric

mAb [40–42]. We worked with the Children’s Oncology Group (COG) to test this approach
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clinically in the minimal disease setting in a pilot COG Phase I trial for children with high-

risk NBL that were in remission after autologous HSCT (ASCT) but likely to relapse [43].

To augment ADCC we incorporated IL2 to activate NK cells and GM-CSF to activate

neutrophils/macrophages [44–46]. The regimen was tolerated acceptably, and clinical results

appeared better than historical controls [43]. We then moved this same regimen into a large

Children’s Oncology Group (COG) phase III trial [8]. With only 61% of anticipated accrual,

our biostatisticians stopped and “unblinded” the study, since the immunotherapy treatment

was statistically superior to the control treatment for both event-free survival (66% vs. 46%

p = 0.01), and for overall survival (86% vs. 75% p = 0.02). A separate German study of this

same ch14.18 mAb, in a similar dose and regimen, but without the use of IL2 and GM-CSF

initially reported no immunotherapeutic advantage for the ch14.18 mAb [47]. This suggests,

although does not prove, that adding the IL2 and GM-CSF (to augment ADCC) to the

ch14.18 treatment was responsible for the clinical benefit. Furthermore, these data from this

COG study [8] suggest that other ADCC-inducing mAbs (i.e., Rituximab, Herceptin and

Erbitux) might be considered for trials in which high risk patients likely to relapse receive

these mAbs in combination with agents known to activate ADCC (like IL2 + GM-CSF).

4. Immunocytokines: Linking IL2 to anti-GD2 mAb; Preclinical Development

Despite the efficacy of anti-GD2 mAb + cytokines in our recent NBL trial (Figure 1) [8],

only 66% are NBL-free at 2 years. We aim to further enhance the clinical potency of ADCC,

in order to obtain even better clinical results. Preclinical data with the hu14.18-IL2 IC

indicate that this should be possible. ADCC depends, in part, upon the number and function

of FcRs on the effector cells [25–30]. When NK cells are stimulated with IL2 in vivo, they

mediate augmented ADCC [34]. However, we have shown that up to 50% of the activated

NK cells circulating in cancer patients following in vivo treatment with IL2 do not have

FcRs, in contrast to most resting NK cells [48]. These FcR− activated NK cells are more

lytic to tumor cells in direct assays not dependent on mAb and FcRs. We also found that NK

cells activated in vivo by IL2 show augmented expression of the IL2Rβ [49] and enhanced in

vitro responses to IL2 [50]. Furthermore, IL2R-bearing T cells that may not be able to

specifically recognize tumors (with their TCRs) should still be responsive to IL2. It may be

beneficial to activate these IL2R+ effector cells with a molecule that bridges them to tumor

cells and then activates them. These are some of the functions of the anti-GD2 IC hu14.18-

IL2 (Figure 1) and its preclinical predecessor ch14.18-IL2. These ICs were constructed by

fusing the human IL2 gene to the ch14.18 or hu14.18 IgG1 genes [51]. The Gillies, Reisfeld,

and Sondel labs have shown that these ICs activate GD2-specific tumor cell lysis by IL2R+

T cells and NK cells [51,52]. Ch14.18-IL2 induces anti-melanoma activity in a SCID –

xenograft model [53] and in conventional mice bearing syngeneic tumors expressing GD2

(B78 melanoma) [54,55], and anti-NBL activity in conventional mice bearing the GD2+

NXS2 NBL [56,57].

Ch14.18-IL2 IC causes dramatically better antitumor effects against localized or metastatic

NXS2 NBL than comparable amounts of ch14.18 mAb and IL2 in combination (Table 1)

[56,57]. Under these conditions, IC-treated mice show no metastases. The in vivo

destruction of NXS2 in mice receiving ch14.18-IL2 is largely NK mediated [56,57], while

the antitumor effect against the B78 melanoma involves T cells [54]. This T cell effect
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demonstrates epitope spread, as ch14.18-IL2 enables C57Bl/6 mice to destroy GD2− B16

melanoma cells, but only if they are a component of mixed tumors, created by co-injection

with the GD2+ B78 melanoma cells (Table 1) [55]. Thus ch14.18-IL2 induces far more

potent antitumor effects in melanoma or NBL-bearing mice than the combination of ch14.18

mAb + IL2, and functions both as a T cell inducing vaccine and a potent activator of NK-

mediated ADCC. More potent tumor eradication is seen in mice with smaller tumor burdens

(Figure 2) [39]. Similar results are seen in murine models using the hu14.18-IL2 IC [58]. As

a nearly “pure” human protein it is predicted to be less immunogenic in patients than would

ch14.18-IL2.

4.1. Phase I Clinical Testing of hu14.18-IL2

These results supported the FDA-IND for our “first in human” Phase I study in adults with

melanoma at the UWCCC [59], and enabled our team to conduct a Phase I trial of hu14.18-

IL2 in children [60], using the same schedule used in our melanoma trial.

Our Phase I trials in melanoma [59], and NBL [60], identified the MTD and immune effects

of 3 daily IV doses of hu14.18-IL2. Of the 28 patients with measurable NBL, 3 showed

isolated marrow improvement, and 1 showed a non-confirmed CR that was not completely

attributable to the IC. Of the 28 melanoma patients with measurable disease, none showed a

response. Of the 5 melanoma patients that entered with no evidence of disease (NED)

following recent surgical resection of progressive metastases, 3 patients recurred at 1, 6 and

92 months, and 2 remain in remission > 74 and >117 months following treatment. Based on

the suggestion of IC activity in melanoma patients with NED, the BM-activity seen in our

NBL study, and our preclinical murine data documenting better antitumor efficacy for

smaller tumors (Figure 2) [39], we proposed that greater antitumor activity would be

detected when using hu14.18-IL2 to treat patients with less “bulky” tumors.

4.2. Phase II Clinical Testing of hu14.18-IL2

We thus worked with the COG to conduct A Phase II study of hu14.18-IL2 in Children with

Recurrent or Refractory NBL. This Phase II protocol was designed to evaluate the clinical

antitumor activity and in vivo biological-immunological effects of hu14.18-IL2, in children

with refractory or recurrent NBL, and separately assess patients with bulky disease and

patients with minimal evaluable NBL. Patients received 3 daily IV doses of 12.0 mg/M2/d

IC in each of 4 monthly courses. Patients with CR or PR could receive 2 more courses [61].

Fifteen patients had disease measurable by standard radiographical criteria (stratum 1) and

24 patients had disease evaluable only by MIBG and/or BM histology (stratum 2).

Responses were confirmed by independent radiological review and immunocytochemistry

(ICC) evaluation of BM. No responses were seen in the 15 stratum 1 pts. In the 24 stratum 2

pts, 5 showed CR (complete resolution of MIBG avid disease and complete resolution of

BM disease both by standard morphology and ICC). Of these 5 pts, 4 relapsed after 8, 12, 18

and 30 months, while 1 remains in CR after 35+ mo. At study entry, all 5 had recurrent-

refractory disease following ASCT [61].
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Two other stratum-2 patients showed disease improvement suggesting efficacy, but did not

quite meet protocol criteria for PR or CR. One pt had BM-CR and a decrease in MIBG-avid

disease that was read as a PR by the treating center but not by independent review. A 2nd pt

had resolution of MIBG+ disease and BM improvement, but not clearing.

The spectrum and degree of toxicities were similar to that seen in our Phase I studies. Of the

38 patients evaluable for toxicity, 10 did not receive cycle 2 of therapy [2 patients due to

protocol defined DLT, 7 because of progressive disease (PD) and 1 due to parental choice].

Of the 28 patients receiving cycle 2, 3 patients had toxicity in cycle 1 (pain, hypotension and

hyperbilirubinemia) requiring a reduction in dose for cycle 2 [61].

The clinical response data support the conclusion that this agent and regimen have clinical

activity in stratum-2 but not in stratum-1 pts. Although this study was not powered to

address whether response may be predicted by entry status, identifying 5 CRs and 2 patients

with clear improvement in the 24 patients in stratum-2 vs. 0 responses of 15 patients in

stratum-1 suggests there may be a real difference (p = 0.03). As all patients in this study had

recurrent/refractory disease following extremely aggressive prior multi-modality therapy,

these responses are of interest to pediatric oncologists. COG is currently performing a

follow-up feasibility-Phase II trial with this IC in combination with GM-CSF and cis-

retinoic acid, focused on high risk NBL patients with non-bulky (stratum-2) disease to

confirm/extend these response data to potentially support licensing of this agent.

Furthermore, in order to evaluate potential mechanisms of anti-tumor response, we

investigated whether the inhibitory NK Killer Immunoglobulin-like receptors (KIR) may be

involved in regulating this clinical antitumor activity in patients receiving hu14.18-IL2.

5. The Roles of KIR/KIR-Ligand (KIR-L) and FcR Genotypes in the

Responses Induced by hu14.18-IL2

The Killer Immunoglobulin-like Receptor (KIR) genes encode receptors that recognize

MHC class I molecules. On a cellular level the expression of KIR and HLA defines the

repertoire and responsiveness of NK cells. While there are both activating and inhibitory

KIR gene products, most (but not all) clinical attention has been focused on the inhibitory

KIR molecules. The inhibitory KIR receptors transmit inhibitory signals to NK cells when

they encounter their cognate MHC class I molecules [62–70]. The ligand specificity is

focused on amino acid position 80 of the HLA class I. As presented in Table 1, HLA-C

alleles with Lys80 constitute ligands for KIR2DL1 and those with Asp80 interact with

KIR2DL2 and KIR2DL3. Exceptions to this rule have recently been reported

[129,13071,72]. KIR3DL1 recognizes HLA-B alleles with the so-called Bw4 motif, also

conferred by amino acid positions 77–80. As recently shown, HLA-A alleles with the Bw4

motif can serve as ligands for KIR3DL1 [73]. Ruggeri et al. first reported on the

phenomenon of KIR-L incompatibility and response to HLA-haploidentical HSCT,

primarily in adult patients with acute myeloid leukemia (AML) [74,75]. According to this

analysis, improved leukemia control is seen when there is a difference in HLA between the

donor and recipient such that the recipient’s cells lack the ligand specific for the donor KIR,

creating a “missing KIR ligand” situation. Leung et al. proposed the principle of missing

KIR ligand analysis (designated here as KIR/KIR-L mismatch), in which the HSCT
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recipient lacks one or greater HLA class-I ligands for the HSCT donor’s inhibitory KIRs

(regardless of whether or not the donor’s own HLA provides such ligands) [76]. They found

that the response of pediatric patients with AML and acute lymphoid leukemia (ALL) to

haploidentical HSCT could be predicted by the presence of this KIR/KIR-ligand mismatch.

The KIR/KIR-L mismatch principle also posits that a difference in HLA between the donor

and recipient is not necessary for the benefit of KIR-HLA mismatching. This was confirmed

when an analysis of results of HLA-identical T cell depleted sibling HSCT also revealed a

benefit of KIR/KIR-ligand mismatch [77].

The genes encoding for KIR and HLA class I KIR ligands are polymorphic and inherited

independently [78]. As such, individuals differ with respect to the number of KIR genes

present in the genome and frequently express KIR receptors that have no corresponding

HLA ligands on autologous cells, thus displaying an “autologous” KIR-KIR ligand

mismatch. This scenario of autologous KIR/KIR-L mismatch occurs in approximately 60%

of the US population and has been implicated as a favorable prognostic factor in pediatric

solid tumor patients following ASCT [78,79].

Until 2010 the analyses of KIR/KIR-L mismatch in the setting of cancer treatment had been

confined to the clinical setting of allogeneic HSCT [70,71,77], allogeneic adoptive NK

infusions [80–82] and autologous HSCT [78,79]. We hypothesized that this KIR/KIR-L

relationship pertains more to the cellular function of NK cells, independent of allogeneic

relationships [83] or autologous HSCT. We also hypothesized that individuals that were

KIR/KIR-L mismatched would be more likely to respond favorably to cancer

immunotherapy that is NK-mediated. Our preclinical data with the hu14.18-IL2 IC

demonstrated that antitumor effects in mice could be mediated by NK cells, in the absence

of T cells [39]. Furthermore, we showed that murine NBLs that escape from suboptimal

hu14.18-IL2 regimens do so by up-regulating MHC class I, a mechanism that apparently

turns off NK cells via the MHC-specific inhibitory Ly 49 receptors on murine NK cells [58].

These observations suggested that circumventing KIR mediated inhibition of NK cells may

be helpful in the in vivo efficacy of this form of immunotherapy. Thus we hypothesized that

individuals that were “autologous KIR/KIR-L mismatched” would have better NK function

against their autologous tumor when treated with the hu14.18-IL2 reagent. Our phase II trial

of hu14.18-IL2 treated 38 pts [61]. Five patients showed CR and 2 showed clear clinical

benefit, that did not quite meet PR/CR criteria [61]. This provided the opportunity to look at

the role of KIR/KIR-L.

We performed KIR and KIR-L genotyping on the 38 pts. All 7 patients that showed

improvement were in the cohort of patients that were KIR/KIR-L mismatched; none of the

patients in the KIR/KIR-L matched group showed response or benefit (Figure 3p = 0.03).

Even though our report [84] reflects a study of only 38 pts, this is the first demonstration (to

our knowledge) that an individual’s KIR/KIR-L status may predict response to an

immunotherapy that does not involve adoptive allogeneic cellular transfer or autologous

HSCT. These results suggest that NK cells may have a significant role in the observed

clinical anti-tumor activity.
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In this same study we also evaluated FcR genotypes. We did find a trend (p = 0.06) for

improved likelihood of benefit for thos patients that inherited the high affinity genotype

(HH) for the FcRγ2a receptors on neutrophils and monocytes/macrophages [84]. This

suggests that treatment with the hu14.18-IL2 may have been activating these FcRγ2a-

bearing effector cells to mediate ADCC in vivo. It is notable that there was no correlation

between response and FcRγ3a genotype [84]. A possible explanation for this is suggested by

more recent pre-clinical studies with hu14.18-IL2 and ICs targeting other tumor types.

One such immunocytokine, DI-Leu16-IL2, targets CD20 using the de-immunized form of

the murine mAb, Leu16, as the targeting agent. Mouse efficacy studies in SCID mice

engrafted with disseminated lymphoma showed very high anti-tumor activity that was more

than 50-fold more potent than that of rituximab, or the combination of rituximab and IL2

[85]. This activity was only partly attributable to the standard effector functions of ADCC

and CDC because a de-glycosylated form of DI-Leu16-IL2 that lost both of these activities

retained most of the anti-tumor activity. Since the primary effector cells in SCID mouse

models are expected to be NK cells, and the de-glycosylated form of DI-Leu16-IL2 is not

able to bind FcRs, we tested whether other mechanisms were responsible for activating NK

killing. The first of these studies were performed with both hu14.18-IL2 and the anti-

EpCAM IC, huKS-IL2, and showed that both agents induced target cell conjugation

between NK cell lines lacking FcR but constitutively expressing CD25, and the tumor cell

expressing the appropriate tumor target (GD2 or EPCAM, respectively) [86]. Furthermore,

this conjugate formation led a polarization of CD25 to the immunological synapse and to

enhanced target cell lysis [87]. We have named this novel effector function IFCC

(immunocytokine-facilitated cellular cytotoxicity). Further studies are needed to assess

whether other cell types expressing CD25, besides NK cells, are capable of this novel

effector function but in the case of relapsed neuroblastoma, a strong correlation between

KIR/KIR-L mismatch certainly implicates NK cells as the primary effectors in this clinical

setting.

6. Augmenting Local Antitumor Activity by IT Injection of IC

Hu14.18-IL2 administered IV has shown antitumor effects, particularly in mice with MRD,

and preliminarily in patients with non-bulky disease [61] However, its effect against

established “bulky” disease in both preclinical and clinical studies has been minimal or

transient [39,61,88]. One potential explanation is that following IV injection of IC an

inadequate amount of the IC is getting to measurable sites of disease to achieve a clinically

significant effect. This is likely due to two major factors. The first is that more than 90% of

ICs such as hu14.18-IL2 are lost on first pass clearance by the liver following IV injection

[89]. The second is the interstitial pressure of solid tumors that makes it difficult for large

proteins to enterfrom the circulation [90]. We tested this hypothesis by administering

hu14.18-IL2 directly into subcutaneously (s.c.) established NXS2 tumors [91]. This IT IC

(IT-IC) approach demonstrated significantly greater antitumor effects than IV administration

of IC (IV-IC). Only 3 out of 17 mice treated with IV-IC cleared the tumor, while 12 of 17

mice treated with IT-IC cleared tumor (p = 0.002, IT vs. IV groups). IT treatment of a single

s.c. tumor (Figure 4A) also prevented the growth of a separate s.c. tumor at a distant site

(Figure 4B). Better antitumor effects were seen at distant tumor sites when the IC was
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injected into the primary tumor, than when the IC was injected s.c. into non-involved skin at

an equidistant site (Figure 4C). This argues that injecting IC into the tumor induces a

systemic immunologic effect, seen at distant tumor sites. There was also a memory response

after IT-IC: most mice that became NXS2-free after IT-IC were able to reject subsequent re-

challenges with NXS2 tumor cells, but didn’t reject an unrelated tumor (YAC-1). Preclinical

studies have shown antitumor effects of IT injections of IL2, leading to clinical testing of IT

injections of IL2, especially in melanoma [92,93]. IT administration of the IC was

significantly more potent at tumor eradication than was IT administration of soluble IL2 (not

shown) [91], or of IT injection of a non-specific IC, KS-IL2 (not shown) [91]. Far greater

levels of IC are achieved and remain in the tumor site after 24 h following IT vs. IV delivery

(25% vs. 4% of injected dose at the tumor, Figure 5) [91].

Recent data show that IT administration of IC can also enhance localization of NK cells in

the tumor site [87]. CFSE (Carboxyfluorescein succinimidyl ester, a fluorescent stain)

labeled human NKL cells were injected IV (5 × 106) into SCID mice bearing human GD2+

M21 melanoma tumors (~1 cm diameter) [87]. After 24 h, the tumors were harvested,

disaggregated and evaluated by flow cytometry to determine what % of viable cells

represented the CFSE-labeled NKL cells (Figure 6). In PBS treated NXS2 tumors, only

0.06% of the viable cells were CFSE labeled; in contrast, 24 h after IT-IC, 6.9% of the

viable cells in the tumor were the CFSE labeled NKL cells [87]. IHC analyses of NXS2

tumors immediately following IT-IC show direct staining by IC and demonstrate NK

infiltration 24 h later (data not shown).

As the localized injection of IC at a tumor site may not only induce ADCC and IFCC, but

also serve as an endogenous, autologous tumor, vaccine, we have capitalized on the ability

of apoptotic tumor cells to facilitate antigen uptake and presentation for vaccination

purposes. In that regard, we have used radio-frequency ablation (RFA) to induce localized

tumor cell damage (via thermal tissue injury) in combination with IT-IC treatment [94]. In

many of these studies we investigated this in mouse models with the KS-IL2 IC directed

against the Epithelial Cell adhesion molecule (EpCam). Dramatic synergy was seen when

IT-IC was combined with RFA (Figure 7) [94]. Using a separate IC, synergy has been

observed by combining IC treatment with localized radiotherapy, likely inducing similar

synergistic mechanisms as the combination of IC + RFA in Figure 7. In this case, an IC

targeting necrotic DNA and containing a form of IL2 specific for the high affinity IL2R was

administered IV following radiation of s.c. Lewis Lung Carcinoma tumors. This resulted in

the rapid regression of tumors in all mice that was preceded by cytotoxic T cell infiltration

and followed by the ability of these mice to resist a subsequent tumor challenge (S.Gillies

unpublished data).

These data support the following hypotheses: (a) IT-IC causes much higher and longer

lasting levels of IC in the injected tumor than IV-IC; (b) Greater IC levels in the tumor

enhance NK infiltration into the tumor (via FcRs and IL2Rs), leading to greater ADCC and

greater tumor destruction, even of larger macroscopic lesions that are unresponsive to IV IC

delivery; (c) Some of the IC injected IT circulates systemically (via lymphatics and blood

vessels), enabling IC delivery to distant sites as effectively as when IC is given IV (possibly

with a better PK profile); (d) The IC-facilitated response within the tumor may attract other
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effector cells (T cells and macrophages) to the site of necrotic tumor (or to draining lymph

nodes), leading to T cell sensitization; (e) The vaccine-like effect resulting in tumor-specific

T cell reactivity may impact on distant sites of micrometastatic disease (and prevent

subsequent growth upon experimental tumor rechallenge); (f) Combining IC with other

treatments that cause localized tumor damage (without local immune suppression), should

synergistically augment the antitumor activity of the IC. All data in hand, which were

generated with first-generation ICs, hu14.18- IL2 and huKS-IL2, are consistent with, but do

not prove, all these hypotheses. Thus, while continued preclinical studies need to better

understand the cellular and immune mechanisms of these antitumor effects, the antitumor

efficacy of this approach and the relative ease for translating it to the clinical setting justify

initial Phase I/II clinical testing of this IT-IC strategy, especially for melanoma.

7. Future Directions for IC Development and Treatment

The data, discussed above, have shown how more effective IT dosing can be for ICs with

suboptimal pharmacokinetic properties. While the IT approach can be useful for cancers

with easily accessible tumors, the treatment of disseminated, systemic disease might benefit

from ICs that have been optimized for tumor targeting and reduced liver clearance. In this

regard we reported technical approaches that greatly improved the PK properties of ICs –

the genetic removal of the N-linked glycan in the CH2 domain of the H chain (that abrogates

FcR binding) and alterations in the fusion junction between the H chain and IL2 that reduce

intracellular proteolysis [95,96]. In the first case, blood levels are increased following IV

administration, tumor targeting of radio-labeled IC is enhanced, and liver uptake is

significantly reduced. In the second case, blood levels are also increased despite retaining

FcR binding (and CDC activity), presumably due to more efficient re-cycling of the IC out

of cells that have taken it up. In both cases, relatively low doses of the ICs were completely

effective at causing the regression of s.c. colon carcinoma tumors in all mice, while the

equivalent dose of the first-generation IC (huKS-IL2 in this case) showed only a short

growth delay. This improved form of huKS-IL2 is not in clinical development so translation

of these results to human therapy is currently not possible. Fortunately, the IC discussed

above, DI-Leu16-IL2, was constructed using one of these optimization strategies and is in

early clinical trials. In this case, the CH2 domain N-linked glycan was retained (preserving

ADCC and CDC activity) but the H chain/IL2 fusion junction was modified for superior PK

properties [85]. These changes have created an IC with very potent anti-lymphoma activity,

even in the absence of T cells (since data was generated in SCID mice), and that has all

effector functions (including IFCC). We are hopeful that DI-Leu16-IL2 studies in

lymphoma patients will demonstrate T cell responses as well, since it is known that a high

proportion of lymphoma patients have infiltrating T cells in the tumor microenvironment,

and that they can be associated with better clinical outcome [97].

Another aspect of these ICs with improved PK properties is their potential for vascular

toxicity. It is well known that IL2 toxicity, in large part, is related to Cmax levels in the

blood and that this, in turn, is related to the activation of immune cells expressing the

intermediate IL2 receptor, CD122 [98]. We have found two ways of greatly reducing the

vascular toxicity of ICs based on this hypothesis. The first is through the genetic

modification of IL2 at position D20 that interacts with the β chain of CD122 and thereby
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prevents activation of this receptor. This D20T mutation still allows the high affinity

receptor to be activated when the α chain forms the trimeric complex with the β and γ chains

[99]. This IC, called NHS-IL2LT (for low toxicity - also called Selectikine) preferentially

activates cells expressing CD25, such as effector T cells, over CD122 expressing cells

generally associated with vascular toxicity. Studies in both monkeys and cancer patients

have shown a dramatic reduction in the IL2 toxicities normally seen with IL2-based ICs

administered IV. The second approach to reducing vascular toxicity of IL2 based ICs is to

administer them by the s.c. route instead of IV. This avoids the initially high Cmax obtained

by IV administration and instead, the IC is taken up by the lymphatics and then slowly

released into the bloodstream over a longer period of time. In this way cells expressing

CD25 are preferentially activated without the overstimulation of cells expressing CD122.

One possible advantage of this approach is that there is still some degree of CD122

activation that can up-regulate the expression of CD25 to increase the effector T cell pool,

but still does so in a way that is well tolerated. The first IC that will be compared clinically

using IV or s.c. dosing is the anti-CD20 IC, DI- Leu-16-IL2. Pre-clinical studies in monkeys

have already confirmed the increased tolerability of s.c. dosing compared to the same doses

given IV and studies in patients are underway. Since these studies will be done with patients

with CD20-expressing cancers, such as non-Hodgkin’s Lymphoma (NHL), there may be an

additional advantage of using s.c. dosing, since the drug is taken up by the compartment in

which lymphoma generally resides and thereby enhances tumor targeting. For other cancer

types that are not in the lymphatic system, further optimization of ICs may help increase the

efficiency of s.c. uptake through the lymphatics and into the blood so that it can effectively

target these tumors. We are currently developing such molecules that have longer circulating

half lives, better uptake into the blood using s.c. injection and in this way benefit from this

well tolerated and convenient route of administration. Further modifications also include

modifications that alter the balance between the activation of CD25 and CD122-expressing

cells. In this way we hope to find the optimal balance between the effector functions

provided by the antibody component of the IC and the potent cytokine activity.
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Figure 1.
Monoclonal Antibodies and Immunocytokines. (A) A chimeric monoclonal antibody (mAb)

combines the constant region of a human antibody with the variable domain of a murine

antibody. The antigen specificity is conferred by the murine variable domain. (B) In the

humanized mAb, the murine framework determinants of both the heavy and light chains are

replaced with human framework determinants, but the antigen specificity of the original

murine mAb is retained. (C, D) Immunocytokines combine the mAb with covalently linked
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cytokines, such as molecules of interleukin 2 (IL-2), in this case to the end of each of the

heavy chains at the C-terminus.

Sondel and Gillies Page 19

Antibodies (Basel). Author manuscript; available in PMC 2014 March 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Efficacy of hu14.18-IL2 therapy is influenced by the timing of its initiation. Groups of 4

mice were treated IV with 5µg/d X 5d of hu14.18-IL2 beginning on d 5, 7, 9 or 11 following

IV injection of 5 × 105 NXS2 NB cells (or IV PBS). Mice were sacrificed on d28 and the

liver metastases were enumerated. Data are mean ± SE (adapted from Neal et al, 2004 [39]).
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Figure 3.
Importance of KIR/KIR-Ligand mismatch in clinical response to hu14.18-IL2. Of 38

individuals treated with hu14.18-IL2 in a phase II protocol [61] all of the 7 individuals that

showed clinical benefit were from the group of 24 that were KIR/KIR-Ligand mismatched

(p = 0.033) [84].
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Figure 4.
IT Immunocytokine effects agains primary (injected) and distant tumors. A/J mice (5 per

group) received NXS2 (106 s.c. on day 0) in the abdomen (primary tumor). A 2nd NXS2

injection (106 s.c.) was placed on the flank on d4 (distant tumor). The primary tumor

received 50 µL PBS or 15 µg hu14.18-IL2 IT on d7-11, while the distant tumor was not

treated. A: Tumor volume of primary tumors (p = 0.001, day 16). Day 0 = implantation of

the primary tumor. B: Tumor volume of distant tumors (p = 0.007, day 16). Day 0 =

implantation of the distant tumor. C: A/J mice (3 per group) received 106 NXS2 cells on d0

in the abdomen. Mice were treated with 15 µg hu14.18-IL2 IT or s.c. into the flank at a site

away from the tumor (p = 0.04, days 13–16). (Adapted from Johnson et al, 2008 [91]).
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Figure 5.
IT vs. IV delivery results in increased tumor retention of IC. CEA-transgenic C57BL/6 mice

bearing d10 s.c. MC-38.CEA tumors were treated with 111In-GcT84.66-IL2 anti-CEA IC.

Animals received 25 µg IV (5/grp) or 2.3 µg IT (2/grp). Tumors were harvested serially from

the IV-treated mice and the % injected dose (shown on the Y-axis) determined by a γamma

counter. IT-treated mice were imaged with a amma-camera, acquiring % injected dose by

gating on the tumor. (Adapted from Johnson et al, 2008 [91]).
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Figure 6.
IT-IC facilitates migration of NK cells into tumor. SCID mice bearing s.c. M21 received IT-

PBS (50 µl) or IT-IC (10 µg in 50 µL) on day 27–29. (PBSx3) = PBS on d 27, 28, 29; (PBS

× 2/IC × 1) = PBS on d 27, 28, and IC on d 29; (IC × 3)= IC on d 27, 28, 29. On d 29, right

after the last IT- PBS or IC, all mice received 5 × 106 BODIPY-labeled NKL cells IV. 24 hr

after the NKL cell injection, tumors were harvested, processed, stained and tested by flow

for mouse Ly49b+ NK cells and BODIPY+ NKL cells. A: Representative pattern from a (IC

× 3) mouse; numbers are for the 3 (ICx3) mice (Mean % ± SEM). B: Data for all groups

(represents 2 independent experiments). * p = 0.06; ** p = 0.046; @ p = 0.02; # p = 0.007.

(Adapted from Buhtoiarov et al 201187).
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Figure 7.
RFA and huKS-IL2 IC synergize in induction of antitumor effects. Balb/c mice (7–8 mice

per group) received 5 × 105 CT26-KS cells s.c. in the abdomen on d0. Mice were treated

with partial RFA (25 seconds, d11), KS-IL2 IC (15 µg, d11–15), or both RFA and KS-IL2.

Data shown are mean tumor volume ± SEM (A) or survival (B). The results are

representative of 3 experiments. (Adapted from Johnson et al, 2008 [91]).
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TABLE 1

Efficacy of ch14.18-IL2 exceeds ch14.18 + IL2

Treatment Tumor Number of Tumor Foci

PBS
IL2+ch14.18
**ch14.18-
IL2

*NXS2
*NXS2
*NXS2

>250, >250, >250, >250, 240, 115
174, 134, 105, 102, 91, 83
0, 0, 0, 0, 0, 0,

ch14.18-IL2
PBS
IL2+ch14.18
ch14.18-IL2

#B16
#B78 +B16
#B78 + B16
#B78 + B16

>500, >500, >500, >500, >500, 138, 97
>500, >500, >500, >500, >500, >500, >500,>500
>500, >500, >500, >500, 189, 179, 104
##0, 0, 2, 7, 9, 12, 21, 43

*
Hepatic metastases (mets) were induced with 106 NXS2 cells IV into AJ mice. On day 1 mice received PBS, 10 mcg ch14.18 mAb + 30,000 IU

IL2/d, or 10 mcg of ch14.18-IL2 daily×6d. Mets were scored for each of 6 mice on d21, and were less in the IC group

**
than the other 2 groups (p < 0.001) [57];

#
Pulmonary mets in C57Bl mice were induced by IV injection of 1x106 B16 cells (GD2-) alone, or combined with 5x106 B78 cells (GD2+). One

week post-inoculation, 7d of PBS, 8 µg ch14.18 + 24,000 IU IL-2, or 8 µg ch14.18-IL2 was initiated, and mets were scored 4 wks later.

##
Mice with mixed tumors treated with IC had fewer mets than all other groups (p ≤ 0.002) [55].
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TABLE-2

KIR/KIR-L Match-Mismatch Algorithm

Receptor Ligand

KIR2DL1 (CD158a) HLA-C2 (Lys80)

KIR2DL2/KIR2DL3 (CD158b) HLA-C1 (Asp80)

KIR3DL1 (CD158e) HLA-Bw4, HLA-ABw4
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