

Received 10 February 2016 Accepted 29 February 2016

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; 1,2,4-triazole; dinuclear copper complex; hydrogen bonds.

CCDC reference: 1456451

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of bis{µ₂-3-(pyridin-2-yl)-5-[(1,2,4-triazol-1-yl)methyl]-1,2,4-triazolato}bis[aqua-nitratocopper(II)] dihydrate

Roman Doroschuk*

Department of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., 01033, Kyiv, Ukraine. *Correspondence e-mail: rdoroschuk@ukr.net

The structure of the dinuclear title complex, $[Cu_2(C_{10}H_8N_7)_2(NO_3)_2(H_2O)_2]$ -2H₂O, consists of centrosymmetric dimeric units with a copper–copper separation of 4.0408 (3) Å. The Cu^{II} ions in the dimer display a distorted octahedral coordination geometry and are bridged by two triazole rings, forming an approximately planar Cu₂N₄ core (r.m.s. deviation = 0.049 Å). In the crystal, O-H···O, O-H···N and C-H···O hydrogen bonds and π - π interactions link the molecules into a three-dimensional network.

1. Chemical context

The presence in the triazole ring, three donor atoms and the possibility of introducing in the heterocycle substituents of a different nature creates the conditions for target synthesis of complexes with interesting structures and properties. The study of this type of coordination compound is promising since, as a result, a compound can be obtained with useful physical properties such as optical, magnetic or catalytic (Soghomonian *et al.*, 1993; Blake *et al.*, 1999). Another interesting aspect of these compounds is the possibility of their use as functional models of enzymes such as catechol oxidase (Moliner *et al.*, 2001; Klingele *et al.*, 2009; Selmeczi *et al.*, 2003).

2. Structural commentary

The structure of the title complex molecule (Fig. 1) has a crystallographically imposed centre of symmetry, and contains two copper(II) metal atoms doubly bridged by the triazole rings of two deprotonated ligands. Each copper(II) ion is coordinated in a distorted elongated octahedral geometry by one pyridine and three triazole nitrogen atoms forming the equatorial plane, and by the O atoms of a water molecule and

CrossMark

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. Dashed lines indicate hydrogen bonds. Unlabelled atoms are related to labelled atoms by (-x, 1 - y, -z).

a monodentate nitrate anion at the apices. The Cu-N bond lengths involving the bridging triazole ring [mean value 1.9722 (15) Å] are slightly, but significantly, shorter than those involving the pyridine and peripheral triazole rings [Cu1-N4 = 2.0386 (16) and Cu1 – N7 = 2.0409 (17) Å]. The inner Cu₂N₄ core is approximately planar [r.m.s. deviation = 0.049 Å; maximum displacement 0.062 (2) Å for atom N2], with a $Cu \cdots Cu$ separation of 4.0408 (3) Å, in good agreement with the values usually observed in μ -triazolyl-bridged complexes (Haasnoot, 2000). The central triazole ring makes dihedral angles of 7.78 (8) and 49.30 (8)°, respectively, with the pyridine and peripheral triazole rings. The six-membered chelate ring Cu1/N5/C7/C8/N6/N7 assumes a boat conformation [puckering parameters: $Q_{\rm T} = 0.619 (2) \text{ Å}; \ \theta 2 = 88.62 (16)^{\circ}$], while the five-membered Cu1/N2/C1/C2/N4 chelate ring adopts a flattened envelope conformation with the Cu atom as flap [puckering parameters: Q = 0.127 (2) Å; $\varphi = -156.8$ (8)°].

3. Supramolecular features

In the crystal, the complex molecules and water molecules of crystallization are linked through $O-H\cdots O$, $O-H\cdots N$ and $C-H\cdots O$ hydrogen bonds (Table 1), forming a threedimensional network (Fig. 2). The crystal structure is further stabilized by $\pi-\pi$ stacking interactions with centroid–centroid separations $Cg1\cdots Cg2^{ii} = 3.8296$ (13) Å and $Cg3\cdots Cg3^{iii} = 3.5372$ (10), and perpendicular interplanar distances $Cg1\cdots Cg2^{ii} = 3.5584$ (9) and $Cg3\cdots Cg3^{iii} = 3.3234$ (10) Å

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H41O\cdots O5^{i}$	0.71 (3)	2.03 (3)	2.735 (2)	172 (3)
$O4-H42O\cdots O5^{ii}$	0.79 (3)	1.96 (3)	2.735 (2)	168 (3)
$O5-H51O\cdots O2^{iii}$	0.78 (3)	2.02 (3)	2.773 (2)	163 (3)
$O5-H52O\cdots N3^{iv}$	0.76 (3)	2.08 (3)	2.836 (2)	177 (3)
$C5-H5\cdots O1^i$	0.95	2.43	3.360 (3)	166
$C8-H8A\cdots O4$	0.99	2.56	3.160 (3)	119
$C8-H8B\cdots O2^{iii}$	0.99	2.36	3.319 (3)	162
$C9-H9\cdots O3^{v}$	0.95	2.44	3.205 (3)	137

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 1, -z; (iii) x + 1, y, z; (iv) -x, -y + 1, -z; (v) -x, -y, -z + 1.

[*Cg*1, *Cg*2 and *Cg*3 are the centroids of the N1/C2/N3/C7ⁱ/N5ⁱ, N4/C2–C6 and N6/N7/C9/N8/C10 rings, respectively; symmetry codes: (i) -x, 1 - y, -z; (ii) -x, -y, -z; (iii) 1 - x, -y, 1 - z].

4. Database survey

The Cambridge Structural Database (CSD Version 5.36 with three updates; Groom & Allen, 2014), returned 45 entries with the triazole bridging fragment Cu–(N–N)₂–Cu. The most similar are: diaquabis(μ -3,5-bis(2-pyridyl)-1,2,4-triazolato- N',N^1,N^2,N'')bis(trifluoromethanesulfonato-O)dicopper(II) (Prins *et al.*, 1985), bis[μ -5-(pyridin-2-yl)-3-(1H-1,2,4-triazol-3-yl)-1,2,4-triazolato]diaquadicopper diperchlorate (Zhou *et al.*, 2014), bis[μ_3 -(pyridin-2-yl)-5-([5-(pyridin-2-yl)-1,2,4-triazol-1-id-3-yl]methyl)-1,2,4-triazol-1-ide]triaquatricopper diperchlorate dihydrate (Gusev *et al.*, 2014) and bis(μ -5-(2ethoxy-2-oxoethyl)-3-(pyridin-2-yl)-1H-1,2,4-triazolyl)bis-(acetonitrile)bis(perchlorato-O)dicopper (Khomenko *et al.*, 2012). Only 10 compounds containing a pyridyl and a methylene moiety, as substituents in the 3- and 5-positions of

Figure 2

Packing diagram of the title compound, viewed along the b axis. Intermolecular hydrogen bonds are shown as blue dotted lines.

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$[Cu_2(C_{10}H_8N_7)_2(NO_3)_2(H_2O)_2]$ - 2H ₂ O
M_r	775.63
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	173
a, b, c (Å)	8.8421 (2), 8.8636 (2), 10.5686 (2)
α, β, γ (°)	70.114 (1), 88.6311 (10), 66.765 (1)
$V(\dot{A}^3)$	709.87 (3)
Z	1
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	1.58
Crystal size (mm)	$0.50\times0.50\times0.45$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker,
	2003)
T_{\min}, T_{\max}	0.505, 0.536
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8672, 2945, 2711
Rint	0.025
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.629
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.073, 1.07
No. of reflections	2945
No. of parameters	233
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}$, $\Delta ho_{ m min}$ (e Å ⁻³)	0.26, -0.57

Computer programs: APEX2 and SAINT (Bruker, 2003), SHELXS97 and SHELXTL (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

1,2,4-triazole, were found (Lin *et al.*, 2013; Gusev *et al.*, 2014 and references therein).

5. Synthesis and crystallization

A water solution of $Cu(NO_3)_2 \cdot 3H_2O$ (0.25 mmol, 0.0605 g) was added to a hot solution of 2-[5-(1,2,4,)-triazol-1-yl-methyl-1*H*-(1,2,4)-triazol-3yl]pyridine (0.25 mmol, 0.059 g) in water

(7 ml). The transparent blue solution was left to evaporate slowly in the air and after few hours, blue single crystals suitable for X-ray analysis were obtained (yield: 67%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms of water molecules were located from a difference Fourier map and refined freely. All other H atoms were constrained to ride on their parent atoms, with C-H = 0.95–0.99 Å and with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$.

References

- Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.
- Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Gusev, A. N., Nemec, I., Herchel, R., Bayjyyev, E., Nyshchimenko, G. A., Alexandrov, G. G., Eremenko, I. L., Trávníček, Z., Hasegawa, M. & Linert, W. (2014). *Dalton Trans.* 43, 7153–7165.
- Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.
- Khomenko, D. N., Doroshchuk, R. A., Egorov, O. A. & Lampeka, R. D. (2012). Ukr. Khim. Zh. 78, 22–27.
- Klingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698–2741.
- Lin, W.-Q., Liao, X.-F., Jia, J.-H., Leng, J.-D., Liu, J.-L., Guo, F.-S. & Tong, M.-L. (2013). Chem. Eur. J. 19, 12254–12258.
- Moliner, N., Gaspar, A. B., Muñoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). *Inorg. Chem.* 40, 3986–3991.
- Prins, R., Birker, P. J. M. W. L., Haasnoot, J. G., Verschoor, G. C. & Reedijk, J. (1985). *Inorg. Chem.* 24, 4128–4133.
- Selmeczi, K., Réglier, M., Giorgi, M. & Speier, G. (2003). Coord. Chem. Rev. 245, 191–201.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Soghomonian, V., Chen, Q., Haushalter, R. C., Zubieta, J. & O'Connor, C. J. (1993). *Science*, **259**, 1596–1599.
- Zhou, Y.-H., Wan, W.-Q., Sun, D.-L., Tao, J., Zhang, L. & Wei, X. (2014). Z. Anorg. Allg. Chem. 640, 249–253.

Acta Cryst. (2016). E72, 486-488 [doi:10.1107/S2056989016003479]

Crystal structure of bis{ μ_2 -3-(pyridin-2-yl)-5-[(1,2,4-triazol-1-yl)methyl]-1,2,4-triazolato}bis[aquanitratocopper(II)] dihydrate

Roman Doroschuk

Computing details

Data collection: *APEX2* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT* (Bruker, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Bis{µ2-3-(pyridin-2-yl)-5-[(1,2,4-triazol-1-yl)methyl]-1,2,4-triazolato}bis[aquanitratocopper(II)] dihydrate

Crystal data $[Cu_2(C_{10}H_8N_7)_2(NO_3)_2(H_2O)_2] \cdot 2H_2O$ Z = 1 $M_r = 775.63$ F(000) = 394Triclinic, $P\overline{1}$ $D_{\rm x} = 1.814 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å a = 8.8421 (2) Å b = 8.8636(2) Å Cell parameters from 6116 reflections c = 10.5686 (2) Å $\theta = 2.5 - 26.5^{\circ}$ $\mu = 1.58 \text{ mm}^{-1}$ $\alpha = 70.114 \ (1)^{\circ}$ $\beta = 88.6311 (10)^{\circ}$ T = 173 K $\gamma = 66.765 (1)^{\circ}$ Prism, blue V = 709.87 (3) Å³ $0.50 \times 0.50 \times 0.45 \text{ mm}$ Data collection Bruker APEXII CCD 2945 independent reflections diffractometer 2711 reflections with $I > 2\sigma(I)$ φ and ω scans $R_{\rm int} = 0.025$ Absorption correction: multi-scan $\theta_{\rm max} = 26.6^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$ (SADABS; Bruker, 2003) $h = -8 \rightarrow 11$ $T_{\min} = 0.505, T_{\max} = 0.536$ $k = -11 \rightarrow 11$ 8672 measured reflections $l = -13 \rightarrow 13$ Refinement Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.027$ and constrained refinement $wR(F^2) = 0.073$ $w = 1/[\sigma^2(F_0^2) + (0.0387P)^2 + 0.4452P]$ *S* = 1.07 where $P = (F_0^2 + 2F_c^2)/3$ 2945 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$ 233 parameters 0 restraints $\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.11824 (3)	0.26915 (3)	0.15525 (2)	0.01617 (9)
N1	-0.2107 (2)	0.3725 (2)	0.34951 (17)	0.0208 (4)
N2	-0.0714 (2)	0.3636 (2)	0.01433 (17)	0.0166 (3)
N3	-0.3010 (2)	0.3463 (2)	-0.04965 (17)	0.0185 (3)
N4	0.0614 (2)	0.0562 (2)	0.20396 (16)	0.0169 (3)
N5	0.1657 (2)	0.4800 (2)	0.08348 (17)	0.0169 (3)
N6	0.3708 (2)	0.2657 (2)	0.34195 (17)	0.0184 (3)
N7	0.2554 (2)	0.2013 (2)	0.33410 (17)	0.0185 (3)
N8	0.3280 (2)	0.1530 (3)	0.55105 (19)	0.0291 (4)
01	-0.1224 (2)	0.4373 (2)	0.27750 (19)	0.0352 (4)
O2	-0.34096 (19)	0.4721 (2)	0.38151 (16)	0.0281 (3)
O3	-0.1751 (2)	0.2133 (2)	0.38786 (18)	0.0361 (4)
O4	0.3491 (2)	0.1266 (2)	0.07991 (19)	0.0289 (4)
H41O	0.388 (3)	0.033 (4)	0.104 (3)	0.029 (8)*
H42O	0.376 (3)	0.168 (4)	0.010 (3)	0.032 (8)*
05	0.5124 (2)	0.7700 (2)	0.15015 (19)	0.0254 (3)
H51O	0.563 (4)	0.698 (4)	0.219 (3)	0.042 (9)*
H52O	0.458 (4)	0.736 (4)	0.125 (3)	0.041 (9)*
C1	-0.1560 (2)	0.2649 (2)	0.03218 (19)	0.0165 (4)
C2	-0.0792 (2)	0.0862 (2)	0.13281 (19)	0.0172 (4)
C3	0.1479 (3)	-0.1054 (3)	0.2939 (2)	0.0207 (4)
H3	0.2474	-0.1283	0.3438	0.025*
C4	0.0969 (3)	-0.2412 (3)	0.3170 (2)	0.0237 (4)
H4	0.1614	-0.3551	0.3810	0.028*
C5	-0.0481 (3)	-0.2088 (3)	0.2461 (2)	0.0239 (4)
Н5	-0.0858	-0.2994	0.2614	0.029*
C6	-0.1384 (3)	-0.0411 (3)	0.1517 (2)	0.0221 (4)
H6	-0.2389	-0.0149	0.1013	0.027*
C7	0.3006 (2)	0.4957 (2)	0.1186 (2)	0.0173 (4)
C8	0.4370 (2)	0.3469 (3)	0.2234 (2)	0.0204 (4)
H8A	0.5019	0.2577	0.1842	0.025*
H8B	0.5126	0.3913	0.2508	0.025*
C9	0.2342 (3)	0.1361 (3)	0.4624 (2)	0.0227 (4)
H9	0.1591	0.0820	0.4898	0.027*
C10	0.4109 (3)	0.2351 (3)	0.4713 (2)	0.0249 (4)
H10	0.4888	0.2679	0.5026	0.030*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cu1	0.01744 (14)	0.01210 (13)	0.01794 (14)	-0.00721 (9)	-0.00253 (9)	-0.00253 (10)
N1	0.0217 (9)	0.0206 (8)	0.0188 (8)	-0.0079 (7)	-0.0028 (7)	-0.0063 (7)
N2	0.0175 (8)	0.0123 (7)	0.0186 (8)	-0.0065 (6)	-0.0017 (6)	-0.0031 (6)
N3	0.0192 (8)	0.0183 (8)	0.0192 (8)	-0.0098 (7)	0.0007 (7)	-0.0052 (7)
N4	0.0192 (8)	0.0149 (7)	0.0165 (8)	-0.0071 (6)	0.0009 (6)	-0.0054 (6)
N5	0.0165 (8)	0.0132 (7)	0.0183 (8)	-0.0058 (6)	-0.0029 (6)	-0.0027 (6)
N6	0.0178 (8)	0.0149 (7)	0.0209 (9)	-0.0071 (6)	-0.0037 (6)	-0.0038 (7)
N7	0.0168 (8)	0.0169 (8)	0.0211 (9)	-0.0079 (6)	-0.0007 (6)	-0.0047 (7)
N8	0.0331 (10)	0.0328 (10)	0.0214 (9)	-0.0139 (8)	0.0005 (8)	-0.0090 (8)
01	0.0337 (9)	0.0291 (8)	0.0463 (11)	-0.0184 (7)	0.0147 (8)	-0.0121 (8)
O2	0.0240 (8)	0.0294 (8)	0.0283 (8)	-0.0063 (6)	0.0038 (6)	-0.0128 (7)
03	0.0486 (11)	0.0177 (8)	0.0398 (10)	-0.0139 (7)	0.0086 (8)	-0.0074 (7)
O4	0.0316 (9)	0.0164 (8)	0.0332 (10)	-0.0058 (7)	0.0129 (7)	-0.0079 (7)
05	0.0245 (8)	0.0180 (7)	0.0312 (9)	-0.0098 (7)	-0.0023 (7)	-0.0045 (7)
C1	0.0187 (9)	0.0154 (9)	0.0170 (9)	-0.0089 (7)	0.0013 (7)	-0.0053 (7)
C2	0.0197 (9)	0.0165 (9)	0.0164 (9)	-0.0077 (7)	0.0031 (7)	-0.0067 (8)
C3	0.0219 (10)	0.0172 (9)	0.0195 (10)	-0.0059 (8)	0.0000 (8)	-0.0049 (8)
C4	0.0341 (12)	0.0143 (9)	0.0185 (10)	-0.0087 (8)	0.0023 (8)	-0.0025 (8)
C5	0.0361 (12)	0.0179 (9)	0.0226 (11)	-0.0162 (9)	0.0069 (9)	-0.0073 (8)
C6	0.0265 (11)	0.0212 (10)	0.0221 (10)	-0.0140 (8)	0.0015 (8)	-0.0069 (8)
C7	0.0167 (9)	0.0177 (9)	0.0179 (10)	-0.0082 (7)	0.0007 (7)	-0.0056 (8)
C8	0.0168 (9)	0.0196 (9)	0.0225 (10)	-0.0090 (8)	-0.0020 (8)	-0.0027 (8)
C9	0.0244 (10)	0.0204 (10)	0.0214 (10)	-0.0087 (8)	0.0019 (8)	-0.0058 (8)
C10	0.0281 (11)	0.0234 (10)	0.0226 (11)	-0.0101 (9)	-0.0038 (8)	-0.0079 (9)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cu1—N5	1.9709 (15)	N8—C9	1.349 (3)
Cu1—N2	1.9732 (16)	O4—H41O	0.71 (3)
Cu1—N4	2.0386 (16)	O4—H42O	0.79 (3)
Cu1—N7	2.0409 (17)	O5—H51O	0.78 (3)
Cu1—O4	2.2293 (16)	O5—H52O	0.76 (3)
N1—O3	1.234 (2)	C1—C2	1.463 (3)
N1-01	1.244 (2)	C2—C6	1.376 (3)
N1—O2	1.266 (2)	C3—C4	1.391 (3)
N2—C1	1.326 (2)	С3—Н3	0.9500
N2—N5 ⁱ	1.356 (2)	C4—C5	1.377 (3)
N3—C7 ⁱ	1.342 (2)	C4—H4	0.9500
N3—C1	1.346 (3)	C5—C6	1.391 (3)
N4—C3	1.335 (3)	С5—Н5	0.9500
N4—C2	1.352 (3)	С6—Н6	0.9500
N5—C7	1.329 (2)	C7—N3 ⁱ	1.342 (2)
N5—N2 ⁱ	1.356 (2)	C7—C8	1.496 (3)
N6—C10	1.328 (3)	C8—H8A	0.9900
N6—N7	1.368 (2)	C8—H8B	0.9900

N6—C8	1.455 (3)	С9—Н9	0.9500
N7—C9	1.321 (3)	C10—H10	0.9500
N8—C10	1.323 (3)		
N5—Cu1—N2	93.75 (6)	N2—C1—N3	113.40 (17)
N5—Cu1—N4	172.58 (6)	N2—C1—C2	116.86 (17)
N2—Cu1—N4	80.29 (6)	N3—C1—C2	129.72 (17)
N5—Cu1—N7	88.59 (6)	N4—C2—C6	122.81 (18)
N2-Cu1-N7	161.96 (7)	N4—C2—C1	112.59 (16)
N4—Cu1—N7	98 45 (6)	C6-C2-C1	124 57 (18)
N5-Cu1-O4	87 79 (7)	N4-C3-C4	122.16(19)
N_2 —Cu1—O4	108.72(7)	N4—C3—H3	118.9
N4—Cu1—O4	89.95 (6)	C4-C3-H3	118.9
N7-Cu1-O4	89 23 (7)	$C_{5} - C_{4} - C_{3}$	119.35 (19)
03 - N1 - 01	120.96 (18)	$C_5 - C_4 - H_4$	120.3
03 - N1 - 02	119 57 (17)	C3 - C4 - H4	120.3
01 - N1 - 02	119.57(17) 119.45(17)	C4 - C5 - C6	118 81 (18)
$C1_{N2}_{N2}_{N5^{i}}$	105.92(15)	C4 - C5 - H5	120.6
C1 = N2 = Cu1	105.92(13) 114 60(13)	C6-C5-H5	120.0
$N5^{i}$ $N2$ $Cu1$	137.73(12)	C_{2} C_{5} C_{5}	118 65 (19)
$C7^{i}$ N3 $C1$	101.45(15)	$C_2 = C_6 = H_6$	120.7
$C_3 = N_4 = C_2$	118 20 (16)	C5-C6-H6	120.7
$C_3 = N_4 = C_2$	127 56 (14)	$N5-C7-N3^{i}$	120.7 113.47(17)
$C_2 = N_4 = C_{11}$	127.30(14) 114.23(13)	N5-C7-C8	121.54(17)
$C_2 = N_4 = C_{11}$	114.25(15) 105.75(15)	$N3^{i}$ C7 C8	121.34(17) 124.08(17)
C7 N5 Cu1	105.75 (13)	$N_{3} = C_{7} = C_{8}$	124.98(17) 111.03(16)
$N2^{i}$ N5 Cul	120.00(13) 127.56(12)	N6 C8 H8A	100 4
$\Gamma_{10} = \Gamma_{10} = C_{11}$	127.30(12) 108 72 (16)	C7 C8 H8A	109.4
$C_{10} = N_0 = N_7$	108.72(10) 128.56(17)	N6 C8 H8P	109.4
N7 N6 C8	120.30(17) 122.68(16)	C7 C8 H8P	109.4
$N = N = C \delta$	122.08 (10)		109.4
C_{9} N7 C_{11}	102.09(10) 132.81(14)	N7 C0 N8	108.0
$V_{\rm M} = V_{\rm M} = V_{\rm M}$	152.01(14) 122.02(12)	N/-C9-N8	114.40 (19)
NO - N / - Cul	122.03(12)	N/-C9-H9	122.8
$C_{10} = N_{8} = C_{9}$	102.87 (18)	N8 - C9 - H9	122.8
$C_{1} = 04 = H410$	121(2) 122(2)	N8 = C10 = 110	111.12 (18)
Cui—04—H420	123 (2)	N8-C10-H10	124.4
H410-04-H420	112 (3)	No-C10-H10	124.4
H510—05—H520	107 (3)		
	0.2 (2)		0 ((2)
$C10 N_0 N_7 C_9$	0.2(2)	N4 - C3 - C4 - C3	-0.6(3)
$C_{0} = N_{0} = N_{1} = C_{1}$	1/8.21(1/) 165.14(14)	C_{3} C_{4} C_{5} C_{6} C_{5}	0.9(3)
C10 NO N7 C-1	103.14(14)	N4 - C2 - C6 - C3	-1.5(5)
$C_{0} = N_{0} = N_{0} = C_{1} = N_{0}^{2}$	-16.9(2)	C1 = C2 = C6 = C3	1/0.55(18)
$N_3 = N_2 = U_1 = N_3$	0.8(2)	$\begin{array}{c} \mathbf{U}_{4} \\ \mathbf{U}_{5} \\ \mathbf{U}$	0.0(3)
$U_{II} = N_2 = U_{I} = N_3$	108.39 (13)	$\frac{1}{1}$	0.0(2)
$N_3 - N_2 - C_1 - C_2$	1/9.30 (16)	$\begin{array}{c} \text{Ull} -\text{NS} -\text{U} /-\text{NS}^{\prime} \\ \text{NS} -\text{Ull} -\text{NS}^{\prime} \\ \text{NS} -\text{Ull} -\text{NS}^{\prime} \\ \text{NS} -\text{Ull} \\ \text{S} -\text{S}^{\prime} \\ \text{S} \\ $	1/8.11 (12)
$Cu_1 - N_2 - C_1 - C_2$	-13.1(2)	N2 - N5 - C7 - C8	-1/8.85 (1/)
C/-N3-CI-N2	-0.8 (2)	Cu1—N5—C7—C8	-0.8(3)

C7 ⁱ —N3—C1—C2	-179.06 (19)	C10—N6—C8—C7	-127.1 (2)
C3—N4—C2—C6	1.6 (3)	N7—N6—C8—C7	55.3 (2)
Cu1—N4—C2—C6	-179.68 (15)	N5-C7-C8-N6	-46.0 (2)
C3—N4—C2—C1	-176.44 (16)	N3 ⁱ —C7—C8—N6	135.26 (19)
Cu1—N4—C2—C1	2.2 (2)	N6—N7—C9—N8	-0.5 (2)
N2-C1-C2-N4	7.0 (2)	Cu1—N7—C9—N8	-162.96 (15)
N3—C1—C2—N4	-174.73 (18)	C10—N8—C9—N7	0.5 (2)
N2-C1-C2-C6	-171.04 (18)	C9—N8—C10—N6	-0.3 (2)
N3—C1—C2—C6	7.2 (3)	N7—N6—C10—N8	0.1 (2)
C2—N4—C3—C4	-0.7 (3)	C8—N6—C10—N8	-177.76 (18)
Cu1—N4—C3—C4	-179.13 (14)		

Symmetry code: (i) -x, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
04—H41 <i>O</i> …O5 ⁱⁱ	0.71 (3)	2.03 (3)	2.735 (2)	172 (3)
O4—H42 <i>O</i> ···O5 ⁱⁱⁱ	0.79 (3)	1.96 (3)	2.735 (2)	168 (3)
O5—H51 <i>O</i> ···O2 ^{iv}	0.78 (3)	2.02 (3)	2.773 (2)	163 (3)
O5—H52 <i>O</i> ···N3 ⁱ	0.76 (3)	2.08 (3)	2.836 (2)	177 (3)
C5—H5…O1 ⁱⁱ	0.95	2.43	3.360 (3)	166
C8—H8A····O4	0.99	2.56	3.160 (3)	119
C8—H8 B ···O2 ^{iv}	0.99	2.36	3.319 (3)	162
С9—Н9…О3 ^v	0.95	2.44	3.205 (3)	137

Symmetry codes: (i) -x, -y+1, -z; (ii) x, y-1, z; (iii) -x+1, -y+1, -z; (iv) x+1, y, z; (v) -x, -y, -z+1.