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Microbiome data are becoming increasingly available in large health cohorts, yet
metabolomics data are still scant. While many studies generate microbiome data, they
lack matched metabolomics data or have considerable missing proportions of
metabolites. Since metabolomics is key to understanding microbial and general
biological activities, the possibility of imputing individual metabolites or inferring
metabolomics pathways from microbial taxonomy or metagenomics is intriguing.
Importantly, current metabolomics profiling methods such as the HMP Unified
Metabolic Analysis Network (HUMAnN) have unknown accuracy and are limited in their
ability to predict individual metabolites. To address this gap, we developed a novel
metabolite prediction method, and we present its application and evaluation in an oral
microbiome study. The new method for predicting metabolites using microbiome data
(ENVIM) is based on the elastic net model (ENM). ENVIM introduces an extra step to ENM
to consider variable importance (VI) scores, and thus, achieves better prediction power.
We investigate the metabolite prediction performance of ENVIM using metagenomic and
metatranscriptomic data in a supragingival biofilm multi-omics dataset of 289 children
ages 3–5 who were participants of a community-based study of early childhood oral
health (ZOE 2.0) in North Carolina, United States. We further validate ENVIM in two
additional publicly available multi-omics datasets generated from studies of gut health. We
select gene family sets based on variable importance scores and modify the existing ENM
strategy used in the MelonnPan prediction software to accommodate the unique features
of microbiome and metabolome data. We evaluate metagenomic and metatranscriptomic
predictors and compare the prediction performance of ENVIM to the standard ENM
employed in MelonnPan. The newly developed ENVIM method showed superior
metabolite predictive accuracy than MelonnPan when trained with metatranscriptomics
data only, metagenomics data only, or both. Better metabolite prediction is achieved in the
gut microbiome compared with the oral microbiome setting. We report the best-
predictable compounds in all these three datasets from two different body sites.
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For example, the metabolites trehalose, maltose, stachyose, and ribose are all well
predicted by the supragingival microbiome.
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INTRODUCTION

The importance of the human microbiome in health and disease
is undeniable; site-specific microbial communities interact both
with the environment and the host and influence numerous
biological processes (Wilkinson et al., 2021). Aside from the
logical interest in understanding the composition of the
microbiome (Tsilimigras and Fodor, 2016) (i.e., relative
abundance of identified taxa), measuring and understanding its
associated metabolic activities are arguably of utmost biological
relevance. Recent studies have linked the metabolome with
several important health conditions including inflammatory
bowel disease (IBD) (Lloyd-Price et al., 2019), obesity and type
II diabetes (Canfora et al., 2019), cholesterol levels (Kenny et al.,
2020), and early childhood dental caries (ECC) (Heimisdottir
et al., 2021). Despite the rapidly increasing availability of
microbiome data in large health cohorts, metabolomics data
are still scant. This is an important limitation because the lack of,
or considerable missingness of, metabolite information in
microbiome studies can diminish their potential in inferring
functions and important biological targets.

It follows that methods that help fill in the functional
information gaps in microbiome studies are valuable and
necessary. Because “matched” microbiome and metabolome
datasets are extremely scant, most current methods rely on
metabolic pathway inferences from taxonomic and
metagenomic data, such as in the HMP Unified Metabolic
Analysis Network (HUMAnN) (Franzosa et al., 2018). While
the value of this approach is well-documented for the analysis of
some microbial consortia (e.g., the human gut) (Lloyd-Price
et al., 2019; Thomas et al., 2019), HUMAnN cannot make
predictions for individual metabolites. Moreover, its accuracy
has not been benchmarked and its performance in other
microbial communities with distinct ecology and function (e.g.,
the oral cavity) remains unknown. This is important because
metabolomes measured at different body sites may include,
besides the products of microbial metabolism, biochemical
contributions from the host and the environment [e.g., dietary
sugars in the study of dental biofilm (Heimisdottir et al., 2021)].
Although an accurate determination of metabolite sources may
not always be possible, predictions of these biofilm metabolites
using microbiome information are highly desirable.

Along these lines, in 2016, Noecker and colleagues (Noecker
et al., 2016) added to the available analytical toolbox by
leveraging 16S rRNA data. Their method enabled model-based
integration of metabolite observations and species abundances
using taxonomy and paired metabolomics data from ~70 vaginal
samples. More recently, MelonnPan (Mallick et al., 2019) was
developed to obtain metabolomic profiling of microbial
communities using amplicon or metagenomic sequences.
gy | www.frontiersin.org 2
This new method was motivated by and applied in the context
of paired microbiome and metabolome data in the context of an
IBD cohort. The motivation for the present new method
development is to improve existing analytical approaches
available for metabolite prediction and functions using
microbiome data (Sanna et al., 2019). To this end, we leverage
existing microbiome and metabolome data from a study of early
childhood oral health (ECC study) and two IBD studies of the
human gut microbiome. The elastic net model (ENM, used in
MelonnPan), compared to LASSO or ridge regression, benefits
from keeping both the singularities at the vertices, which is
necessary to accommodate data sparsity, and the strict convex
edges for grouping among correlated variables.

Inspired by MelonnPan and MIMOSA, we propose an
improved prediction method for individual metabolites using
microbiome information in the same (i.e., matched or paired)
biological samples, called “elastic net variable importance model
(ENVIM)”. ENVIM improves upon ENM algorithms by
weighting microbial gene family features using random forest
variable importance (VI) to enhance the contribution of most
prediction-informative genes. ENVIM outputs predicted
metabolites from matched microbiome samples, as well as gene
families and their weights informing metabolite prediction.

In this paper, we present the development, application, and
evaluation of ENVIM.We compare it against MelonnPan in three
datasets generated from oral and gut samples, so that we can also
compare metabolite predictive performance between different
body sites. The predictors can be three different gene family
data types: metagenome only, metatranscriptome only, and the
combination of both metagenome and metatranscriptome data.
The top predictable compounds have been reported in these three
datasets from two different body sites. To quantify the taxonomic
and functional relationship of the most prediction-contributing
microbial gene families in ENVIM, an enrichment analysis is
performed and several predictive gene families are detected in
species of the oral biofilm.
MATERIAL AND METHODS

Cohorts and Data Description
In the following section, we describe the microbiome and
metabolome data used for the new method development and
application, alongside the three contributing studies.

ZOE 2.0 Study Data
ZOE 2.0 is a community-based molecular epidemiologic study of
early childhood oral health in North Carolina (Divaris et al., 2020;
Divaris and Joshi, 2020). The study collected clinical information on
preschool-age children’s (ages 3–5) dental cavities (referred to as
October 2021 | Volume 11 | Article 734416
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early childhood caries or ECC) (Ginnis et al., 2019) and
supragingival biofilm samples from a sample of over 6,000
children (Divaris et al., 2019). A subset of participants’ biofilm
samples underwent metagenomics, metatranscriptomics, and
metabolomics analyses, under the umbrella Trans-Omics for
Precision Dentistry and Early Childhood Caries or TOPDECC
(accession: phs002232.v1.p1) (Divaris et al., 2020). As such,
metagenomics (i.e., shotgun whole-genome sequencing or WGS),
metatranscriptomics (i.e., RNA-seq), and global metabolomics data
(i.e., ultra-performance liquid chromatography-tandem mass
spectrometry) (Evans et al., 2009; Evans et al., 2014; Heimisdottir
et al., 2021) from supragingival biofilm samples of ~300 children,
paired with clinical information on ECC, are available. After
exclusions due to phenotype and metabolite missingness
described in a previous publication (Heimisdottir et al., 2021), the
joint microbiome–metabolome data include 289 participants. There
are 503 known metabolites included in the ZOE 2.0 dataset.
Metagenomics and metatranscriptomics data in reads per kilobase
(RPK) were generated using HUMAnN 2.0. Here, we use species-
level (205 species), gene family (403k gene families), pathway (397
pathways), and metabolome (503 metabolites) data.

Lloyd-Price Study Data
The Lloyd-Price dataset (Lloyd-Price et al., 2019) was obtained
from the IBD multi-omics database (https://ibdmdb.org). It is
derived from a longitudinal study that sought to generate profiles
of multiple types of omics data among 132 participants for 1 year
and up to 24 time points. Several different types of omics data of
the study include WGS shotgun metagenomics, RNA-seq
metatranscriptomics, and metabolomics. The corresponding
metadata include demographic information such as
occupation, education level, and age. These gut microbiome
data are in counts per million (CPM) and were derived using
functional profiles 3.0 in HUMAnN 3.0. For this study, we
merged data of individual gene families for 1,638 samples for
130 subjects and individual metatranscriptomics gene families
for 817 samples for 109 subjects, respectively. The merged
metagenomics gene family data include about 2,741k gene
families and 1,580 samples. Merged metatranscriptomics gene
family data include about 1,079k gene families and 795 samples.
The metabolomics data were generated using four liquid
chromatography tandem mass spectrometry (LC-MS) methods
including polar compounds in the positive and negative ion
modes, lipids, and free fatty acids and bile acids and include
81,867 metabolites in 546 samples for 106 subjects. Most
metabolites have not been annotated into known biochemicals
and, thus, were excluded from prediction. After limiting the
dataset to known metabolites and removing “redundant ions” in
“HMDB” ID, there remained 526 metabolites to be predicted.

Mallick Study Data
The Mallick data comprised the main real-life dataset used in the
development of theMelonnPanmethod (Mallick et al., 2019). These
gut microbial data (WGS shotgun sequencing and metabolomics)
were collected from two cross-sectional IBD cohort studies, namely,
the Prospective Registry cohort for IBD Studies at theMassachusetts
General Hospital (PRISM, with 155 subjects) and the Netherlands
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
IBD cohort (NLIBD, with 65 subjects). Therefore, they comprise
two independent cohorts of subjects. The raw data were obtained
through a combination of shotgun metagenomic sequencing and
the same four LC-MS methods (Franzosa et al., 2019) as in the
Lloyd-Price study. Gene family data in RPK units were derived
using HUMAnN 2.0 and normalized to reads per kilobase per
million sample reads (RPKM). The raw metagenomics gene family
dataset includes one million gene families. The investigators
(Mallick et al., 2019) filtered out genes with low abundance and
prevalence resulting in a processed dataset of 811 gene families
available in the R package MelonnPan (melonnpan.training.data
and melonnpan.test.data) for 222 total subjects. The microbiome
data have been preprocessed and normalized into relative
abundance. The metabolite abundance data (8,848 metabolites
and 220 subjects) have been made available by Franzosa et al.
(2019). Those authors used 466 metabolites for analyses, a subset
that was confirmed experimentally against laboratory standards
prior to application in MelonnPan. In the present study, we use
information from these 466 metabolites to compare the power of
the new ENVIM method against MelonnPan. To accomplish this,
we normalized the metabolite abundance data for all 8,848
metabolites into relative abundance (compositional format,
obtained via dividing the normalized abundance by the sample-
level total normalized abundance). Among them, we used the same
466 metabolites with laboratory standards as selected in the paper of
MelonnPan (Mallick et al., 2019). Datamissingness is not an issue in
the Mallick metabolome data.

Metabolomics Data Preprocessing
and Normalization
An overview of the approach for metabolome data is presented in
Figure 1 and elaborated in detail below.

Metabolomics Missing Data Imputation: ZOE 2.0 and
Lloyd-Price Studies
In ZOE 2.0, 87% of metabolites have some missing data, whereas
58% have missing values in Lloyd-Price. To address missingness
in these two cohorts, we applied a rigorous feature-wise quantile
regression imputation of left-censored data (QRILC) (Wei et al.,
2018) to impute missing metabolite values and avoid
underestimated metabolite-level variance, as in a previous
publication (Heimisdottir et al., 2021). Each of the 289
included participants has <90% missing data across the 503
metabolites in ZOE 2.0. We applied a similar preprocessing
filter for the Lloyd-Price data (i.e., removing outlier subjects,
Supplemental Figure 1), resulting in the exclusion of 15 outlier
subjects with the largest numbers of missing metabolite values, as
well as outlier metabolites with >90% missing values.
Consequently, we proceeded to analyze 522 metabolites in 531
samples from the Lloyd-Price data.

The QRILC imputation method was applied after a natural
log data transformation, and the imputed data were
exponentiated to back transform the data to RPK (in ZOE 2.0)
or CPM (in Lloyd-Price) scales. Because MelonnPan requires
metabolite data to be inputted as compositional, we converted
RPK and CPM imputed data to a compositional format before
predictive modeling.
October 2021 | Volume 11 | Article 734416
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Metabolites Filtered by Metabolic Pathways
(ZOE 2.0, Lloyd-Price, and Mallick)
We used the MetaCyc database to retain only “reactive”
metabolites (Caspi et al., 2014). To achieve this, we considered
the membership of the metabolites in any MetaCyc metabolic
pathway, reflecting reactions between bacteria and metabolites,
and carried out the following steps:

1. In the MetaCyc database, we identify metabolites in each of
the pathways predicted by both metagenomics and
metatranscriptomics data in Functional Profile 2.0
generated by HUMAnN 2.0 (ZOE 2.0) and Functional
Profile 3.0 generated by HUMAnN 3.0 (Lloyd-Price data).
Of note, no pathway information exists in the available
Mallick metagenomics and metatranscriptomics data.

2. We used metabolite labels (KEGG ID, HMDB, PubChem,
and metabolite name, provided in Metabolome data
annotation, provided by the manufacturer) in each of the
three datasets, as the mapping IDs for each metabolite.

3. In MetaCyc, regardless of the metabolite label, only one unique
MetaCyc “weblink” or universal mapping id is returned if the
metabolite is in the database. This way, reactive metabolites
identified in step 1 can bematched withmetabolites identified in
step 2. 3) Therefore, we identify metabolites that are in the
observed pathways. Finally, we filter out metabolites with low
abundance (metabolites with mean relative abundance <10−4)
and low prevalence (metabolites with percentage of zeros in
>90% of the samples). Consequently, there were 149 metabolites
in pathways in ZOE 2.0, 125 in Lloyd-Price, and 251 in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Mallick data. Metabolites in Mallick data only have been filtered
by the abundance, without being filtered by metabolic pathways.
To compare the prediction of metabolites in pathways with the
prediction of all metabolites, we considered both sets of
metabolites in our analyses.
Microbiome Data Preprocessing
and Normalization
An overview of the approach for microbiome data is presented in
Figure 1 and elaborated in detail below. First, we matched gene
family-level microbiome data with metabolome data by participant
or sample unique identifier. Then, the scaled (RPK, RPKM, or
CPM) gene family abundances were converted to compositional
data, relative to the total scaled gene family abundances within a
sample. Then, we filtered out gene family features with low relative
abundance (mean relative abundance <5 × 10−5) and low prevalence
(percentage of zeros in >90% of the samples) and thus kept 0.5%–
5% of gene family features. The same procedures were performed
for both metatranscriptomics (briefly referred to as “RNA”
thereafter) and metagenomics data (briefly referred to as “DNA”
hereafter). When both DNA and RNA data (briefly as “Both”
hereafter) are considered predictors, a gene name may correspond
to two “gene features,” one for each data type. The same data
preprocessing and normalization procedures were followed for the
three cohorts, with sample sizes and feature numbers presented in
Table 1. To prevent overfitting when evaluating ENM and ENVIM,
we divided samples into training (75% of subjects) and testing
datasets (25% of subjects).
TABLE 1 | Sample size and number of selected gene family features.

Training genes Testing genes Genes in both Subjects Metabolites Metabolites (in pathways)

ZOE 2.0 DNA (total 403k genes) 1,355 1,276 1,214 289 503 149
RNA (total 403k genes) 1,805 1,826 1,667 287 503 149
Both (total 806k genes) 3,158 3,183 2,948 287 503 149

Lloyd-Price DNA (total 2,741k genes) 726 712 633 359 522 125
RNA (total 1,079k genes) 726 704 600 282 522 125
Both (total 3,820k genes) 1,424 1,508 1,211 269 522 125

Mallick DNA (total 1,000k genes) 811 811 811 220 466 251 (filter only)
October 2021 |
Testing genes: genes that can be used in the testing set. Training genes: genes that can be used in the training set. Genes in both: genes that are in both training and testing sets.
FIGURE 1 | Flowchart of data preprocessing in microbiome and metabolome. QRILC was not used for the Mallick data, but was used for the ZOE 2.0 and Llloyd-
Price data. Metabolites that have percentage of NA > 90% will also be removed before handling missing data.
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The Existing ENM Method for Microbiome
Data-Based Metabolite Prediction
As mentioned previously, the existing method available for
predicting metabolite abundance using metagenomics data is
MelonnPan (Mallick et al., 2019) (Model-based Genomically
Informed High-dimensional Predictor of Microbial Community
Metabolic Profiles). In this study, in MelonnPan, we used all
filtered metagenomic gene family features in the 10-fold cross-
validated elastic net model (ENM) (Zou and Hastie, 2005) to
predict metabolite abundance (Equation 1).

However, using all filtered metagenomic gene family features in
the model may dilute the effect of some important gene family
features contributing to the prediction of metabolite abundance.
This limitation can be improved upon, and therefore, in this paper,
we set out to improve the ENM and develop a new algorithm.

The MelonnPan software was downloaded from GitHub (https://
github.com/biobakery/melonnpan) or in MelonnPan package in R,
and the CSV output files “Predicted_Metabolites.txt” (Train) and
“MelonnPan_Predicted_Metabolites.txt” (Test) are used as the
prediction results of MelonnPan.

The ENM assumes the model,

yi = x
0
i  b + ei,

where b = (b0, b1, … , bp)' and b̂ , the ENM estimator of b, is
found by minimizing the objective function of ENM,

LENM =
1
2No

N

i=1
(yi − x

0
ib)

2 + lo
p

j=1

1 − a
2

b2
j + a bj

�� ��� �
: Equation 1

Evaluation Methods
Following Cohen’s criterion (Cohen, 1988), by which a
correlation coefficient of 0.3 is considered to be the median
size, we define well-predicted (WP) metabolites as those with

Equation 1
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Spearman correlation ≥0.3, and those with correlation <0.3 as
poorly predicted. This criterion has also been used in the
development of MelonnPan (Noecker et al., 2016). We
evaluated the predictive performance of the new method
ENVIM by comparing it against MelonnPan. Additionally, we
compared Spearman correlations and mean square error (MSE)
between the predicted and observed metabolites in both the
training stage and the testing stage for all three datasets and
both methods.
RESULTS

The Improved ENM Based on Variable
Importance Score (ENVIM)
Algorithm and Procedure in ENVIM
The new algorithm ENVIM (Equation 2) was developed by
extending the existing ENM with the random forest-derived
variable importance to enhance the weights of important features
in the prediction. ENM was previously used in the MelonnPan
framework for microbiome-based metabolome prediction. The
procedure in ENVIM and the comparison between ENM and
ENVIM are shown in Figure 2. Because ENM assumes the
normality of the error term, and there are typically excess
zeros, skewness, and extreme values in metagenomics and
metatranscriptomics data, we rank-transform gene family
features in each sample to a normal distribution by using the
rntransform (Aulchenko et al., 2007) function in the R package
GENABEL for training data and testing data separately. The
training metabolite abundance data are transformed to a normal
distribution using a Box–Cox transformation. After fitting the
model in the training data, predicted metabolite abundances are
transformed back to relative abundances with g determined by
the training metabolite abundance data.
FIGURE 2 | Flowchart of MelonnPan and the elastic net variable importance model (ENVIM). The three differences between them include (red text) 1) transformation
of metabolite data, 2) gene family weights, and 3) penalty score. The predictable metabolites are defined as the metabolites that have a significant Spearman
correlation with the adjusted q-value (testing whether the correlation is zero) below the default threshold in the training set.
October 2021 | Volume 11 | Article 734416
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Including all gene families into the model could make the
cross-validated MSE larger, whereas including only a small part
could make the error larger. Therefore, to identify a model with
minimum cross-validated error, one needs to iterate different
numbers of gene families. Because we prioritize gene families
with high importance relative to metabolites, we use a non-linear
regression model to determine the importance of gene families
for each metabolite. We train a cross-validated random forest
model (Breiman, 2001) by using the training data and use the
varImp function in the caret package (Kuhn, 2008) in R to find
the scaled importance score (0–100) between each independent
feature and the metabolite abundance. We introduce a unique
step that uses the scaled variable importance scores to define sets
of the top gene families according to a predefined set of
thresholds, for example, 90, 80, 70, etc. We use the glmnet
(Friedman et al., 2010) package in R to run cross-validated
ENM and choose penalty parameters for each model.

In the training stage, we assign the importance score from 0 to
100 in 10 cumulative intervals (90–100, 80–100,…, 10–100, 0–
100) and remove the intervals without gene families. In the
ENM, we consider gene families as the independent variables and
metabolite abundances as the dependent variables. We consider
different sets of gene families with different importance scores.
For each set of gene families, we conduct a 10-fold cross-
validated ENM and build 10 models with different values of
the tuning parameter g, ranging from 0 to 1. For each model, we
measure the MSE between the measured metabolite abundance
and the predicted values to determine the best model (i.e., the
model with the lowest MSE). To maintain reproducibility, we
maintain the same random seed and permute the same fold
index number in the ENM. The matrix of regression coefficients
of gene families from the best model identified in the training set
will be output as a weight matrix.

In the testing stage, for the prediction of each metabolite, we
use the weight matrix output from the training stage for
prediction, if the gene families are also detected in the testing
set. Because we have transformed the compositional metabolite
abundance to a normal distribution using a Box–Cox
transformation in the training stage, we transform the
predicted metabolite abundance data back to the original
compositional scale based on g calculated in the training step.

ENVIM assumes the following model:

yi = x
0
i  b + ei,

where b = (b0, b1,… , bp)', and b̂ ENVIM = argminb min
k∈K

LENVIM(k),
the ENVIM estimator ofb, is found byminimizing over k and b the
objective function,

LENVIM(k) =
1
2No

N

i=1
(yi − x

0
iMkb)

2 + lo
p

j=1
sk,j

1 − a
2

b2
j + a bj

�� ��� �
: Equation 2

Here we define VIj as the variable importance score for the jth
variable given by a random forest; Sk = fSk,jgpj = IfVIj ≥ kgpj=1 is
the variable selection indicator vector, which is 1 if the importance
score for the jth variable is larger than the threshold k; Mk =
diagf(1, S0

k)g is the corresponding diagonal variable selection

Equation 2
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matrix that includes the intercept term; and K is a set of the
candidate k values. K is defined adaptively so that it covers the
range of the variable importance scores reasonably. In our analysis,
we set K = {0, 10, 20,…, 90}.

Three Key Differences Between MelonnPan and ENVIM
for Predicting Individual Metabolites

1. Transformation of metabolite abundance data into a normal
distribution

MelonnPan transforms relative metabolite abundances with
the arcsine square root operator, whereas we use a Box–Cox
transformation in ENVIM. To test the normality of the
transformed data, we compare the p-values of the Shapiro–
Wilk test statistics for both the Box–Cox (Equation 3) and the
arcsine square root transformations of metabolite relative
abundances. The Shapiro–Wilk test is typically used for
examining distribution normality for a continuous variable.
The smaller the p-values, equivalently, the larger the −log10(p-
values) are, the more evidence the data are not normally
distributed. Overall, the −log10(p-values) from the Box–Cox
transformation in ENVIM are smaller than those from the
arcsine square root transformation (Figure 3A), which
indicates that the Box–Cox-transformed data are more
normally distributed. In addition, the Box–Cox transformation
yields better normal approximation than the arcsine square root
transformation for most of the metabolites (Figure 3B).

Box–Cox transformation

y0 =
yw−1
w ,w ≠ 0

log (y),w = 0
,

(

where y is the relative abundance, and y′ is the transformed abundance.

2. Different sets of gene families are carried forward to the
prediction model

MelonnPan uses all gene families in the training data in the
ENM and ultimately predicts metabolites in the testing stage
using the same features. However, regressing against all gene
families may dilute the effect of important gene families. Thus,
unlike MelonnPan, we use a variable importance criterion to
select different sets of gene families and include them in the
prediction models.

3. The range of a values in ENM

Alpha (a) is the weight between the L1 and L2 penalty terms
in the ENM, and in combination with g values, the set of values
that minimizes the 10-fold cross-validated MSE (Equation 1) is
chosen. When a is 0, the model reduces to a Ridge regression
model which has the advantage of dealing with highly correlated
independent variables; when a is 1, the model becomes a Lasso
regression model which has a variable selection capacity; when a
is between 0 and 1, the model includes the advantages of both
Ridge regression and Lasso regression. In MelonnPan, the range
of a values does not include 0 and 1, which excludes either the

Equation 3
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Ridge or Lasso regression models, and it may not consider
variables with high importance. The range of a in our ENVIM
includes 0 and 1. By allowing a larger range of a, we can include
the Ridge regression model as the potential final model, which
does not unduly exclude variables with high importance.

The ENVIM software written in R statistical language is
available in GitHub (https://github.com/jialiux22/ENVIM). The
ENVIM_predict function is for metabolite prediction only, and
the ENVIM function for both the metabolite prediction and the
evaluation of the observed metabolomics dataset in the testing set
is also available. Both R functions will output the weight matrix
between gene families and metabolites. The weight matrix in
testing has the same values as in training if they have the same
number of gene families. Some contributing gene families in the
weight matrix of the training set may not be measured in the
testing set, so the weight matrix used by the testing set includes
only the gene families that are shared by both the training and
the testing sets.
Method Comparison for Prediction
of Individual Metabolites in the
Three Datasets
Correlation-Based Method Comparison
for All Metabolites
We used microbial gene family data to predict individual
metabolites in the matched samples (that are from the same
biological sample in that one proportion is for microbiome and
the other is for metabolome). We compared the prediction results
between ENVIM and MelonnPan, in terms of Spearman
correlation and MSE between predicted and observed values of
each of the metabolites, in three datasets (ZOE 2.0, Mallick data,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
and Lloyd-Price data) at each of the three data modalities of
microbial gene families, i.e., DNA-seq, RNA-seq, and Both (RNA
and DNA). The MSE in the testing set is used for comparison
between the methods (Supplemental Figure 2).

We have summarized the prediction results (Table 2 and
Figure 4A) for all metabolites in terms of Spearman correlation
(r = 0.3) according to three aspects: method comparison, data
modality comparison, and microbial community (i.e., body site)
comparison. Overall, in method comparison, ENVIM produces
higher percentages of well-predicted metabolites than
MelonnPan in all three datasets, in both testing and training
sets, and for DNA, RNA, and Both when available (Table 2).

Generally, in data modality comparison, RNA gene family
data produce higher percentages of well-predicted metabolites
than DNA data. In the Lloyd-Price study, RNA-only data
typically give higher percentages of well-predicted metabolites.
In the ZOE 2.0 and Lloyd-Price data, both DNA and RNA
predictors produce similar percentages but are not always
superior to the DNA-only or RNA-only data-based predictors.
However, results from both DNA and RNA predictors are never
the worst. Unsurprisingly, the well-predicted percentage of
metabolites in testing sets is lower than in the training set
(Table 2). The boxplots of Spearman correlations between the
predicted and observed metabolites for all metabolites
(Figure 4A) suggest that the correlations between the ENVIM-
predicted and the observed metabolites are higher in RNA than
in DNA, but are comparable to correlations in both DNA and
RNA. We are aware that in the testing sets, MelonnPan only
outputs the predictable metabolites (defined as well-predicted
metabolites in the training set, the last columns in Table 2), so it
is not as appropriate for MelonnPan, as compared with ENVIM,
to calculate the Spearman correlation distribution for all
A B

FIGURE 3 | (A) Boxplot of −log10 of Shapiro–Wilk test p-values to test the normality of transformed relative metabolite abundances in all three data applied with
Box–Cox transformation (ENVIM used) and arcsine square root transformation (MelonnPan used). (B) Scatter plot for comparing −log10 of p-values from the
Shapiro–Wilk test (normality) between Box–Cox transformation (x-axis) and arcsine sqrt (y-axis) transformation. Almost all of the points are above the y = x line, which
indicates that the −log10 of p-value after Box–Cox transformation is smaller than after arcsine sqrt transformation and normality after Box–Cox transformation is
better. Each point is one metabolite.
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metabolites in Figure 4A. It must also be noted that the highest
proportion of well-predicted metabolites is found in the two gut
microbiome studies (Lloyd-Price study and Mallick study), and
the lowest is in the supragingival dental biofilm (ZOE 2.0 study)
(Table 2). Since Spearman correlation in both the Lloyd-Price
andMallick datasets is higher than that in ZOE 2.0 (Figure 4A), it is
reasonable to suggest that metabolite prediction is better in gut
microbial communities than in the oral microbial communities.

Besides comparing MelonnPan and ENVIM in terms of
percentages of well-predicted metabolites, one can directly
compare the Spearman correlations of each predictable
metabolite that is predicted by both methods (Figures 5, 6).
In the training set (Figure 5), for all three gene family data
modalities and in all three datasets, we find that the majority of
these metabolites have higher correlations in ENVIM compared
withMelonnPan. The same holds in the testing set (Figure 6). We
also observe that most points are along but slightly above the
diagonal line in the testing sets (Figure 6). This suggests that the
metabolites predicted by ENVIM have higher correlations with
the observed ones compared with those predicted by MelonnPan.
We also find that there are more metabolites in the “ENVIM
≥0.3” category (blue) than in the “MelonnPan ≥0.3” category
(red). This is a reflection of more well-predicted metabolites
found using ENVIM than using MelonnPan prediction.

To give a more realistic view of the improvement of the
ENVIM over MelonnPan, as a tool to predict metabolites in
practice, we use one of the two independent cross-sectional
cohorts in Mallick data as training to predict the other. The
PRISM cohort has 155 subjects and the NLIBD cohort has 65
subjects. For both ENVIM and MelonnPan, we use the
microbiome and metabolome data in PRISM as the training set
to predict the metabolites in NLIBD (Table 3). Among the 466
metabolites, ENVIM has 34% (160/466) in the testing set, while
MelonnPan only has 26% (123/466) in the testing set. These
percentages are very similar to 37% and 28%, respectively, in
ENVIM and MelonnPan from random split of samples in the
Mallick study, so that the same conclusion was drawn that better
prediction power is in ENVIM than in MelonnPan.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
To investigate the sample size effects, we further cut the
sample size of the training set by half, or from 155 PRISM
subjects to 77 or 78 subjects randomly for 10 times and find that
with even half of the samples, ENVIM nearly maintains the well-
predicted rates (Table 4). ENVIM is less sensitive to the
decreased sample size than MelonnPan.

Correlation-Based Method Comparison for
Metabolites Within Metabolic Pathways
Metabolites may be associated with the microbiome in the
context of metabolic pathways that involve interactions
between the host, microbiome, and environment. We further
investigate the predictive capability of the two methods for
metabolites in MetaCyc metabolic pathways. HUMAnN 2.0 or
3.0 software provides information whether a MetaCyc metabolic
pathway has been associated with microbiome data. In the
MetaCyc database, we identify metabolites in each of these
microbiome-associated pathways. All conclusions regarding
method comparison, modality comparison, and body site
comparison in the prediction of all metabolites still hold in the
context of predicting metabolic-pathway-only metabolites.
Additionally, when comparing the percentages of well-
predicted metabolites among all metabolites (first four columns
of Table 2) and those in the metabolic pathways (Table 5), we
find higher predicted percentages for the latter.

MSE-Based Method Comparison
We use boxplots to compare MSE between measured and
predicted metabolite abundances between ENVIM and
MelonnPan both for training and testing models, with
application to training and testing data for all three studies.
We only compare well-predicted metabolites identified by
MelonnPan in training, since MelonnPan only generates
results for these metabolites. The boxplot demonstrates that
the distribution of MSE in the MelonnPan model is
approximately the same as the distribution of MSE in ENVIM
(Supplemental Figure 2). We find no significant difference in
MSE between ENVIM and MelonnPan, which suggests that both
TABLE 2 | Prediction results (first four columns of numbers) in terms of Spearman correlation for all metabolites to be predicted.

Training
(ENVIM)

Training
(MelonnPan)

Testing
(ENVIM)

Testing
(MelonnPan)

Predictable metabolites
(defined by MelonnPan)

ZOE 2.0 (NM = 503)
DNA only 356 (71%) 63 (13%) 124 (25%) 47 (9%) 70
RNA only 409 (81%) 157 (31%) 106 (21%) 68 (14%) 163
Both DNA and RNA 423 (84%) 146 (29%) 110 (22%) 73 (15%) 154

Mallick cohort (NM = 466)
DNA only 408 (88%) 239 (51%) 225 (48%) 178 (38%) 249

Lloyd-Price cohort (NM = 522)
DNA only 501 (96%) 271 (52%) 322 (62%) 193 (37%) 305
RNA only 521 (100%) 298 (57%) 393 (75%) 236 (45%) 318
Both DNA and RNA 518 (99%) 306 (59%) 381 (73%) 232 (44%) 323
October 2021
Based on the “well-prediction” criterion, defined as Spearman correlation ≥0.3 between the observed and the predicted metabolites, the numbers of well-predicted metabolites with different
prediction methods, datasets, and modality levels (DNA, RNA, and Both) are presented for comparing MelonnPan and ENVIM. NM is the number of metabolites to be predicted.
Percentages in parentheses (%) represent the number of well-predicted metabolites divided by the total number of metabolites (NM) to be predicted in each study. The Mallick cohort has
only metagenomics data available. The last column presents numbers of “predictable metabolites,” defined by MelonnPan, also seen in the Figure 2 legend. Bold in the column of in testing
results represents the highest number of well-predicted metabolites among the three modalities (DNA, RNA, both DNA and RNA) in the ZOE2.0 cohort and the Lloyd-Price cohort.
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methods predict these metabolites well in terms of MSE. The
advantage of ENVIM is that we can predict substantially more
well-predicted metabolites than MelonnPan—a consequence of
MelonnPan’s inability to build a well-performing model in the
training step. When using PRISM as the training set and NLIBD
as the testing set in the Mallick study, the above conclusion about
MSE remains the same (Supplemental Figure 3).

ENVIM Outputs Including Predicted
Individual Metabolites and Contributing
Gene Family Weights
Top Well-Predicted Metabolite Compounds From
ENVIM
For simplicity, we present one modality from each of the three
studies. For Lloyd-Price and ZOE 2.0, we choose one of the gene
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
family data modalities that has the best ENVIM prediction power to
show their top predicted metabolites, that is, the DNA gene family
data (124 metabolites as 25% among NM, Table 2) in ZOE 2.0 and
the RNA gene family data (393 metabolites as 75% among NM,
Table 2) in Lloyd-Price. Since the Mallick study only has DNA data
available, the DNA gene family data are used. To note, both the
Lloyd-Price study and the Mallick study have measured metabolites
in four metabolome LC-MS platforms (see the Cohorts and Data
Description section) so that one metabolite may appear multiple
times in the top list (for example, urobilin). The top 50 best
predicted metabolites for each study are presented in Figure 7.

The summarized prediction results are presented in
Supplemental Table 1. To interpret the results, we take the
carbohydrate pathway as an example of a pathway that may
provide bacteria with nutrition, which includes a few compounds
A

B

FIGURE 4 | (A) Evaluation using Spearman correlation r in training stage and testing stage between predicted values and the observed values by using DNA-seq
data only, RNA-seq data only, and both for ZOE 2.0 data, Lloyd-Price data, and Mallick data. (B) R-square in the training stage, as the percentage of variance
explained by prediction models to demonstrate the lack of overfitting.
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that have been well-predicted by the RNA gene family data. We are
aware that the prediction in this paper is not about longitudinal
causal relation, but rather, for mathematical prediction. Here, we
also show four examples (trehalose, maltose, ribose, and stachyose)
that have high Spearman correlation on the log10 scale of the
compositional data (Figure 8A).

Comparison of Gene Family Lists (With Weight
Matrix) Across Three Datasets in ENVIM
We extract gene family names that have non-zero entries in the
weight matrix for each metabolite, dataset, and gene family
modality (Supplemental Table 2) in ZOE 2.0. We compare
the contributing gene family names across the ZOE 2.0 and
Lloyd-Price to find the number of common contributing genes
the different body sites share for predicting metabolites. We find
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
that there are not many overlapping genes (n < 10) between ZOE
2.0 data and Lloyd-Price data (data not shown).

Gene Set Enrichment Analysis of Contributing Genes
Within Species in ZOE 2.0
We perform gene set enrichment analysis to find the over-
represented species of the contributing gene families to predict
metabolites in ZOE 2.0. To test that, we start with the weight
matrix of gene families and metabolites in the testing set. We
identify the contributing gene families that have non-zero values
with any well-predicted metabolites.

We obtain the rank of each gene family in the weight matrix
based on the absolute value of the regression coefficients (“weights”)
for each gene family. We use the information of correspondence
between gene families and the species level (generated in HUMAnN
FIGURE 5 | For DNA, RNA, and both in each study and the training set, this shows the scatter plot of Spearman correlation in ENVIM (y-axis) and MelonnPan (x-
axis). Spearman correlation is based on observed metabolite abundance and predicted values. If our calculated correlation is NA, the metabolites will be not included
in this figure.
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2.0.) to identify the species corresponding to those contributing gene
families. For each species, we compare the difference in the
cumulative distributions of gene family rank scores between the
species and the background species using the Kolmogorov–Smirnov
(KS) test that was also used in the original gene set enrichment
analysis (GSEA) paper (Subramanian et al., 2005). We use the
Benjamini–Hochberg false discovery rate (FDR) approach to
correct the KS p-values and get q-values. There are 36 species in
ZOE 2.0 DNA data and 73 species in ZOE 2.0 RNA data found to be
significantly (q < 0.05) over-represented in the gene set enrichment
analysis (Figure 9).
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Here, we used a different procedure for the gene set enrichment
tests compared to what was used in the MelonnPan (Mallick et al.,
2019) paper, in that the gene families in genera instead of species
were summarized as a gene set, due to the small number of gene
families in each species in their prediction procedure. In fact,
ENVIM keeps many more genes than MelonnPan (because
ENVIM allows larger range of a) so that ENVIM can address the
ranks of all contributing gene families instead of the binary
prediction power of genes (i.e., whether a gene is used for
prediction or not) used in MelonnPan and, furthermore, can
perform GSEA at the species level for higher resolution of
FIGURE 6 | For DNA, RNA, and both in each study and the testing set, this shows the scatter plot of Spearman correlation in ENVIM (y-axis) and MelonnPan (x-
axis). Spearman correlation is based on observed metabolite abundance and predicted values. Here, “Both ≥0.3” refers to the category of metabolites that have
Spearman correlation ≥0.3 in both ENVIM- and MelonnPan-predicted results. “ENVIM ≥0.3” refers to the category of metabolites that have Spearman correlation
≥0.3 only between ENVIM-predicted and observed values.
TABLE 3 | Prediction results in Mallick data, when using all samples in the PRISM study as the training set and the data in NLIBD study as the testing set.

Mallick cohort (NM = 466)
PRISM (training, n = 155)
NLIBD (testing, n = 65)

Training (ENVIM) Training (MelonnPan) Testing (ENVIM) Testing (MelonnPan)

DNA only 387 (83%) 205 (44%) 160 (34%) 123 (26%)
October 2021 | Volum
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contributing species. Our GSEA strategy also can help avoid the bias
of selecting for species that have larger numbers of genes.

Computational Speed
ENVIMwas implemented in R statistical language. It can accurately
predict metabolites using matched microbiome gene family data.
The mean running time in ENVIM of each metabolite using DNA
gene family data is 5.2 min for ZOE 2.0 data (6.1 min for Lloyd-
Price data, 2 min for Mallick data). The mean running time in
ENVIM using RNA gene family data is 4.2 min for ZOE 2.0 data
(3.7 min for Lloyd-Price data); the mean running time in ENVIM
for both DNA and RNA gene family data is 4.5 min for ZOE 2.0
data (3.6 min for Lloyd-Price data) with MacOS Big Sur Version
11.4 and the desktop iMac Pro 2020.
DISCUSSION

We propose a new computational method for metabolite prediction
using microbiome data-based improved elastic net models. We
chose different gene family sets based on random-forest-based
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
variable importance scores and modified the existing ENM to
accommodate the unique features of microbiome and
metabolome data. The newly developed method ENVIM predicts
metabolites using metagenomics, metatranscriptomics, or both data
types. We apply the algorithm in three datasets, i.e., the ZOE 2.0,
Mallick, and Lloyd-Price studies. These three studies have both
microbiome and metabolome data in the same matched samples,
with reasonably large sample sizes. We are the first to use
microbiome data to predict metabolites in more than one study
and different body sites. In addition, the ZOE 2.0 and Lloyd-Price
studies have both metagenomics and metatranscriptomics, so that
we can, for the first time, compare prediction performance using the
different gene family modalities (or called data types).

We evaluated metagenomic and metatranscriptomic predictors
and compared the prediction performance between the previously
developed MelonnPan and ENVIM, among DNA, RNA, and both
DNA and RNA gene family data using 1) the proportion of “well-
predicted” metabolites defined as those with Spearman correlation
between measured and predicted metabolite values ≥0.3, 2)
distribution of Spearman correlation, and 3) MSE. The correlation
suggests that Both (of DNA and RNA) provides robust prediction
TABLE 4 | Prediction results in Mallick data, when using half of the sample size in the PRISM study as the training set for 10 times and the data in NLIBD study as the
testing set.

Mallick cohort (NM = 466)
PRISM (training, n = 77 or 78)
NLIBD (testing, n = 65)

Training
(ENVIM)

Training
(MelonnPan)

Testing
(ENVIM)

Testing
(MelonnPan)

Seed1 429 (92%) 161 (35%) 147 (32%) 96 (21%)
Seed2 402 (86%) 202 (43%) 162 (35%) 104 (22%)
Seed3 427 (92%) 164 (35%) 140 (30%) 92 (20%)
Seed4 428 (92%) 199 (43%) 148 (32%) 97 (21%)
Seed5 439 (94%) 211 (45%) 160 (34%) 111 (24%)
Seed6 427 (92%) 180 (39%) 157 (34%) 113 (24%)
Seed7 424 (91%) 178 (38%) 143 (31%) 98 (21%)
Seed8 424 (91%) 150 (32%) 142 (30%) 98 (21%)
Seed9 425 (91%) 159 (34%) 150 (32%) 101 (22%)
Seed10 419 (90%) 181 (39%) 152 (33%) 105 (23%)
Mean 424 (91%) 179 (38%) 150 (32%) 102 (22%)
October 2021 | Volume 11 |
TABLE 5 | Prediction results via Spearman correlation for metabolites that are found in metabolic pathways.

Training
(ENVIM)

Training
(MelonnPan)

Testing
(ENVIM)

Testing
(MelonnPan)

ZOE 2.0 (NM = 149)
DNA only 129 (87%) 35 (23%) 57 (38%) 28 (19%)
RNA only 139 (93%) 73 (49%) 57 (38%) 40 (27%)
Both DNA and RNA 142 (95%) 73 (50%) 60 (40%) 46 (31%)

Mallick cohort (NM = 251)
DNA only 231 (92%) 132 (53%) 94 (37%) 71 (28%)

Lloyd-Price cohort (NM = 125)
DNA only 121 (97%) 71 (57%) 70 (56%) 40 (32%)
RNA only 125 (100%) 86 (69%) 103 (82%) 68 (54%)
Both DNA and RNA 124 (99%) 92 (74%) 105 (84%) 79 (63%)
Based on the criterion of Spearman correlation ≥0.3 between observed and predicted metabolites, we present the numbers of well-predicted metabolites with different prediction
methods, datasets, and modality levels (DNA, RNA, and Both) and made a comparison between MelonnPan and ENVIM. NM is the number of metabolites to be predicted. Percentages in
parentheses (%) represent the numbers of well-predicted metabolites divided by the total number of metabolites (NM) to be predicted in each study. The Mallick cohort has only
metagenomics (DNA) data available and no pathway RNA data. The results from the Mallick cohort here are only based on filters (filtering out metabolites with mean relative abundance
<10−4) and low prevalence (metabolites with >10% non-zero). In ZOE 2.0 and Lloyd-Price, metabolite data presented in this table have been selected according to membership in
pathways and also satisfy the abovementioned filtering criteria.
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results that are never the worst among the three data types. Whether
DNA or RNA has better prediction performance depends on the
study. The percentage of well-predicted metabolites is higher for
metabolites that are in a metabolic pathway observed in the
microbiome data. Such enrichment of well-predicted metabolites
in metabolic pathways supports the strong interaction between
microbiome and metabolome. Across all datasets and data types,
with or without the pathway filter, we find that ENVIM always
outperforms MelonnPan. We also find that prediction performance
is better in Lloyd-Price andMallick than in ZOE 2.0, which suggests
that the association betweenmicrobiome andmetabolites is stronger
in the gut than in the oral cavity, since oral metabolites may bemore
affected by environmental factors like food intake. More microbial
omics studies are needed to compare the prediction power across
different body sites and to understand how themicrobiome interacts
with the metabolome differently at different body sites.
Acknowledging that the reported findings are not to infer
causality but are demonstrative of mathematical prediction, we
show four well-predicted metabolites in ZOE 2.0 (Figure 8), as
examples of compounds thatmay play roles in bacterial metabolism.

As a result, the numbers of the measured metabolites and the
numbers of the to-be predicted metabolites in each of the three
studies are very different due to differences in technology platforms,
data processing steps, and available data at different body sites.
Besides body sites, the data collection and processing stepsmay have
large effects on the prediction performance. The distributional
assumption, normalization, transformation, outlier filtering, and
missing data handling are important considerations before training
themodel.We have touched on that, but further explorationmay be
needed. According to what we observed, the ideal usage of these
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
types of prediction methods is in studies that contain paired
microbiome and metabolome data in one batch of samples but
lack metabolome data in other batches of samples. In that case, all
microbiome samples are sequenced, aligned, and processed
comparably, and the uncollected metabolome samples are also
assumed to be from the same technical metabolome platform and
similar data processing steps (for example, as what we demonstrated
in Tables 2, 5). However, the usage of these methods is not limited
only to this ideal case. The suitable usage scope has the assumptions
of 1) the same population distribution of microbiome data in the
training model and in the cohort to be predicted, 2) the same
population distributions between the metabolome data in the
training model and in the cohort to be predicted, and 3) similar
connection between microbiome and metabolome due to, for
example, similar ethnicities, clinical characteristics, age groups,
and body sites (as shown in Table 3). Usage of the IBD Lloyd
data to predict metabolites in the IBD Mallick study via ENVIM
and MelonnPan has been considered. Although these two studies
have been generated from the same body sites and similar LC-MS
metabolome techniques, their microbiome data have been
processed in different versions of HUMAnN software (3.0 vs. 2.0),
and in different data scales (CPM vs. RPKM), their metabolome
data have been processed using different algorithms in different
software, and different filtering criteria have been used in the two
studies. These differences suggest that the first and the second
assumptions are not held well, and the prediction results are not
encouraging (data not shown). Furthermore, the assumptions of
similar population distributions depend on the measuring technical
platforms, the data processing steps, and proper normalization
methods. The questions of what the best normalization method is
FIGURE 7 | The best predicted 50 metabolite compounds (x-axis) in the three studies by ENVIM in the testing set. For Lloyd-Price and ZOE 2.0, we choose the
gene family data types that have the best ENVIM prediction power to show their top predicted metabolites, based on Table 2.
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A B

FIGURE 8 | (A) Scatter plots of examples of four well-predicted metabolites in ZOE 2.0 by ENVIM, in the testing set. r is for Spearman correlation for method
evaluation. (B) Scatter plots of the same four well-predicted metabolites in ZOE 2.0 by ENVIM, in the training set, where R-square (Pearson Correlation) was shown
for the percentage of variance explained by prediction models to demonstrate that overfitting is not a big concern. The x-axis is the observed metabolites; the y-axis
is the predicted metabolites. Both x and y are in log10 scale of the compositional data for normality. ECC stands for early childhood caries, ECC = 0 (about 50% of
total samples in ZOE 2.0) is for the healthy group, and ECC = 1 (about 50% of total samples in ZOE 2.0) is for the ECC case group.
FIGURE 9 | Taxonomic enrichment of metabolite predictive species for the most contributing species to metabolite prediction, based on ZOE 2.0 DNA or RNA by
ENVIM. The top 20 significant over-represented bacteria with the smallest Q-values (Q < 0.05) for ZOE 2.0 data. The Q-value is based on the Kolmogorov–Smirnov
(KS) test p-values after FDR correction. Upper, DNA data; Lower, RNA data.
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and which integration procedure best allows assumptions of similar
population distributions to overcome the difference across cohorts/
technique/data processing are out of the scope of this paper but are
very important for further data harmonization of microbiome-
related large datasets.

Because higher well-predicted metabolite rates were observe in
the training compared to the testing datasets, overfitting of the
machine learning model can be a concern; however, overfitting is
not a great concern around ENVIM for the following reasons: 1)
similar observed mean square error in the training set and the
testing set (Supplemental Figures 2–4) and 2) small squared
Spearman correlation (R-square) between fitted and observed
metabolites in the training sets (Figure 4B). Four well-predicted
metabolites in ZOE 2.0 have no large R-square in the training set,
and similar patterns in the scatter plots between measured and
predicted metabolites are observed in both the training set and
testing set (Figure 8B), and 3) the penalty terms in ENM, cross-
validation in tuning the penalty terms, and the use of
bootstrapping in random forest relax the potential overfitting
problem. Although the overfitting concern is reasonably
mitigated, it should be acknowledged that it may not be
perfectly avoided. With that in mind, the method performance
in the testing set is the most important. We observe that ENVIM
has a higher well-predicted metabolite percentage (Tables 2, 3, 5)
and comparable MSE (Supplemental Figures 2, 3) when
compared with MelonnPan.

A limitation in the framework for ENVIM, as well as in the
framework for MelonnPan, is that the experimental design in
studies, including time course or disease statuses, has yet to be
considered. However, since the purpose of ENVIM is prediction,
the prediction does not need to be conditional on the
experimental design. Instead, different disease statuses may
have different microbiome profiles and, correspondingly, have
different metabolome profiles. Therefore, the non-inclusion of a
design matrix in ENVIM is a limitation but not a drawback of the
prediction performance.

In summary, we illustrate that the newly developed ENVIM
method for microbiome-based metabolite prediction provides
good prediction performance and can be used to predict
individual metabolites when only microbiome data are
available if the same technical microbiome/metabolome
platform, similar data processing steps, and the same body site
and covariate values can be assumed, or when a proportion of
samples in a study have no metabolome data.
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Supplementary Figure 1 | Diagnosis for outlier samples in metabolome data.
The x-axis is the cumulative proportion of samples, and the y-axis is number of non-
missing values. The left lower tail dots that are far from the rest may be considered
as sample outliers. For ZOE 2.0 data and Lloyd-Price data, we need to remove the
10 outliers subjects from ZOE 2.0 data and 15 outliers from Lloyd-Price data to
ensure the distribution of non-missing values is continuous.

Supplementary Figure 2 | Boxplot of -log10 of MSE for DNA, RNA, and BOTH in
each of the three studies to compare ENVIM and MelonnPan.

Supplementary Figure 3 | Boxplot of -log10 of MSE for DNA, RNA, and BOTH in
Mallick study when PRISM data was used as training to predict metabolites in
NLIBD data. This is to compare ENVIM and MelonnPan.

Supplementary Figure 4 | Boxplot of -log10 of MSE for DNA, RNA, and BOTH in
each of the three studies, for all metabolites predicted by ENVIM.

Supplementary Table 1 | Overall prediction results, for all gene family data types,
all three datasets, and both methods, in Spearman correlation and MSE.
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Supplementary Table 2 | The gene lists in DNA or RNA, based on the highest
rank or the average rank among metabolites, that contribute to prediction of well-
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predicted metabolites in ZOE 2.0 by ENVIM. Rank is based on the weight matrix in
ENVIM. A larger number of ranks suggests more important gene families.
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