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a b s t r a c t 

Advanced wastewater treatment technologies are effective methods and currently attract growing attention, espe- 
cially in arid and semi-arid areas, for reusing water, reducing water pollution, and explicitly declining, inactivat- 
ing, or removing SARS-CoV-2. Overall, removing organic matter and micropollutants prior to wastewater reuse 
is critical, considering that water reclamation can help provide a crop irrigation system and domestic purified 
water. Advanced wastewater treatment processes are highly recommended for contaminants such as monova- 
lent ions from an abiotic source and SARS-CoV-2 from an abiotic source. This work introduces the fundamental 
knowledge of various methods in advanced water treatment, including membranes, filtration, Ultraviolet (UV) 
irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Following 
that, an analysis of each process for organic matter removal and mitigation or prevention of SARS-CoV-2 con- 
tamination is discussed. Next, a comprehensive overview of recent advances and breakthroughs is provided for 
each technology. Finally, the advantages and disadvantages of each method are discussed. 

I

 

c  

b  

2  

s  

2  

t  

w  

a  

C  

u  

r
 

i  

2  

a
E

e  

s  

m  

(  

(  

o  

T  

t  

a  

o  

a  

p  

C  

s  

6
 

o  

h
R
2

ntroduction 

SARS-CoV-2 is a clear danger today, with many anthropogenic mi-
ropollutants present in wastewater; therefore, they must be removed
efore entering the environment ( Qi et al., 2015 ; Sosa-Hernández et al.,
021 ). Specifically, the SARS-CoV-2 virus has been discovered in stool
amples taken from patients with the COVID-19 disease ( Cheung et al.,
020 ), as well as in wastewater ( Kitajima et al., 2020 ) ( Schema 1 ). In
his regard, some recent publications have focused on SARS-CoV-2 in the
hole environment ( Núñez-Delgado 2020 ; Cela-Dablanca et al., 2021 ),
s well as in soils and liquid samples from soil ( Anand et al., 2021 ;
onde-Cid et al., 2021 ; Conde-Cid et al., 2021 ). In addition, the drugs
sed during the pandemic have polluted water bodies and other envi-
onmental compartments ( Race et al., 2020 ). 

Micropollutants may directly or indirectly impact living organ-
sms due to biomagnification through the food chain ( Bonvin et al.,
016 ; Macku ľ ak et al., 2021 ). Wastewater sources contain a vari-
Abbreviations: TOC, total organic carbon; COD, chemical oxygen demand; BOD, 
dvanced oxidation process; DBP, disinfection by-product; GAC, granular activated ca
PS, extracellular polymeric substances. 
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ty of pollutants that are determined through different parameters,
uch as viruses, total organic carbon (TOC), chemical oxygen de-
and (COD) ( Zahmatkesh et al., 2022 b), biological oxygen demand

BOD), total suspended solids (TSS), nitrogen (N), and phosphorus (P)
 Zahmatkesh et al., 2020 ). The terms associated with the applications
f wastewater treatment and SARS-CoV-2 are summarized in Fig. 1 (a) .
he report was compiled with the use of the VOSViewer software, and
he data was found on the Web of Science using the keywords "wastew-
ter treatment" and "SARS-CoV-2." Fig. 1 (b) shows the co-citation map
f journals where recent research associated with wastewater treatment
nd SARS-CoV-2 has been published. The co-citation map was also com-
osed with the support of VOSViewer. Wastewater treatment and SARS-
oV-2 have been garnering tremendous consideration lately, with a
harp increase in the total number of publications from 5 in 2018 9 to
19 in 2022 1 recorded by Sciencedirect ( Fig. 2 ). 

It is currently impossible via conventional tertiary treatment meth-
ds to remove micropollutants altogether, such as sweeteners, stim-
biological oxygen demand; TSS, total suspended solids; UV, ultraviolet; AOP, 
rbon; PAC, powdered activated carbon; WWTPs, wastewater treatment plants; 
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Schema 1. Monitoring of SARS-CoV-2 RNA has been conducted in municipal wastewater treatment plants (WWTPs). 
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lants, medicines, X-ray contrast media, and industrial chemicals
 Qi et al., 2015 ; van Gijn et al., 2021 ). However, since the outbreak
f SARS-CoV-2, micropollutants and SARS-CoV-2 enter surface waters
hrough WWTPs. This virus has been considered a challenge and a sig-
ificant problem in advanced water treatment decline ( Lesimple et al.,
020 ). Over the past few years, many advanced technologies have been
tudied, including chlorination ( Azuma et al., 2021 ), ultraviolet (UV)
rradiation ( Zeng et al., 2020 ), membrane ( Mishra et al., 2022 ), ozona-
ion ( Völker et al., 2019 ), and advanced oxidation processes ( Khan et al.,
020 ). Although these advanced technologies are being developed, they
re unavailable at municipal WWTPs. 

Over the past few decades, the technological advancements are: First,
embrane technology is considered one of the most advanced wastew-

ter treatment technologies ( Tang et al., 2018 ). Due to its efficiency,
embrane technology has gained popularity in the water and wastew-

ter treatment industry since the 1970s ( Górecki, 2020 ). Wastewater
reatment using membrane technology provides several advantages, in-
luding its small size ( Scholz et al., 2013 ), low energy requirements
 Ali et al., 2018 ), and low capital costs ( Bhattacharjee et al., 2017 ;
udd 2017 ). Water treatment using membrane technology is currently
ore effective than other alternatives to promote water reuse. Never-

heless, as regards SARS-CoV-2, it can be detected in the size range of
00 ± 10 nm ( Goswami et al., 2020 ; Wu et al., 2021 ), making it essential
o choose the membrane’s pore size that will remove viral particles most
ffectively when using membrane-based treatments ( Lesimple et al.,
020 ). 

Secondly, advanced oxidation processes (AOPs) such as photolysis
nd photocatalysis are considered attractive technologies for degrad-
ng organic pollutants in aquatic environments ( Tang et al., 2021 ) and
tmospheric environments ( Gültekin et al., 2007 ; Khan et al., 2020 ).
his process aims to produce hydroxyl radicals (OH 

•) to clean the wa-
er ( Wang et al., 2020 ). Therefore, the hydrogen abstraction process, by
2 
hich hydroxyl radicals oxidize organic compounds, produces organic
adicals, which produce peroxyl radicals upon molecular oxygen. Even-
ually, these intermediates are degraded oxidatively, resulting in carbon
ioxide, water, and salts ( Miklos et al., 2018 ). 

Thirdly, the capability of UV radiation to penetrate deep into radi-
ted liquid is extremely important, particularly in opaque environments
 Köhler et al., 2012 ; Karpova et al., 2013 ). Direct UV radiation can de-
troy microorganisms ( Tran et al., 2021 ). Some microbes (such as bacte-
ia) are destroyed by UV light depending on the wavelength; ultraviolet
 (UVA) generally destroys non-nuclear cellular components, whereas
ltraviolet B (UVB) and ultraviolet C (UVC) generally destroy nuclei
 Parsa et al., 2021 ). Furthermore, UVC is effective against SARS-CoV-2
 da Fonseca Filho et al., 2021 ). 

Another method used in advanced wastewater treatment is chlori-
ation; chlorine is among the most common methods used to disinfect
astewater effluents before discharge into streams ( Hladik et al., 2014 ),

ivers ( Bellanca et al., 1977 ), or agriculture ( Ferro et al., 2015 ). As a
ell-established disinfection method, chlorine has a broad germicidal

pectrum ( Oppenländer, 2007 ), and its affordability makes it the most
opular disinfection procedure ( Ao et al., 2021 ). In addition, a variety of
issolved organic matter compounds attach easily to chlorine to create
isinfection by-products (DBPs), which include trihalomethanes (THMs)
 Tak et al., 2019 ) and haloacetic acids (HAAs) ( Sillanpää et al., 2018 ). 

Besides destroying organic pollutants in water, ozone can also de-
rade organic pollutants ( Machulek et al., 2013 ; An et al., 2020 ). Ozone
s produced using an electric discharge method ( Anpilov et al., 2001 ).
n water, two reactions occur between dissolved organic substances and
zone: At low pH levels, molecular ozone attacks the organic molecules
n a highly selective manner; ozone-derived free radicals can also attack
he organic molecules in an unselective fashion ( Pocostales et al., 2010 ).
urthermore, during the SARS-CoV-2 pandemic, ozonated nanobubbles
ave been emphasized as an effective method to overcome persistent
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Fig. 1. Visualization network map of the keywords (i.e., “SARS-CoV-2, ” wastewater, and “transmission ”) in the publications surveyed from the Web of Science 
published from 2018 to 2022: (a) Network visualization of terms related to wastewater treatment and SARS-CoV-2; (b) Co-citation map of journals where recent 
wastewater treatment and SARS-CoV-2 research was published; the hot topics of SARS-CoV-2 fouling prediction are mined based on the size of nodes in the co- 
occurrence network mapping, the frequency of keywords, and the distribution of clusters. Each node represents one keyword, and the lines connecting the nodes 
represent co-occurrence relationships. A larger node indicates a closer relationship between the keywords. The color of an element represents the cluster that it 
belongs to, and different colors differentiate different clusters. 
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Fig. 2. Several research publications related 
to wastewater treatment and SARS-CoV-2 from 

2018 to 2022. Source: Sciencedirect. 
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ARS-CoV-2. Also to remark is that by modifying the pH ( Verinda et al.,
021 ) or introducing hydrogen peroxide ( El-Betany et al., 2020 ) or UV
rradiation ( Verinda et al., 2021 ) with a high-pressure mercury lamp,
ree hydroxyl radicals can be produced in aqueous media using ozone
 Du et al., 2019 ). 

Finally, a wide range of micropollutants can be removed from drink-
ng water by means of activated carbon (AC) due to its high specific
urface area ( Ebie et al., 2001 ). Due to the organic matter in wastewa-
er effluent, larger quantities of AC are needed to ensure adequate ad-
orption ( Ebie et al., 2001 ; Nam et al., 2014 ). Micropollutants can be
emoved from wastewater by granular AC filtration ( Quinlivan et al.,
005 ; Guillossou et al., 2021 ), as studied in some WWTPs with varying
utcomes depending on the compound and the frequency of granular
ctivated carbon (GAC) regeneration or replacement ( Genç et al., 2021 ;
u et al., 2021 a). Adsorption using powdered activated carbon (PAC)
t a dosage of 10-20 mg/L ( Ivan čev-Tumbas et al., 2020 ) is more fea-
ible than using GAC ( Yu et al., 2021 ). However, the effectiveness of
AC treatment in removing micropollutants from municipal wastewater
as been examined in very few large-scale studies until now ( Table 1 )
 Boehler et al., 2012 ). 

The latest method is that of using microalgae, which is a symbi-
tic group of microorganisms that feed on light energy ( Blanken et al.,
013 ; Zahmatkesh et al., 2020 ) and inorganic carbon sources (carbon-
te and CO 2 ) to produce biomass ( Zahmatkesh et al., 2020 ), releasing
xygen to the atmosphere ( Show et al., 2017 ). Various types of microal-
ae are used for wastewater treatment ( Hussain et al., 2021 ), and mi-
roalgae and cyanobacteria (blue-green algae) are commonly found in
icroalgal-based systems ( Lu et al., 2021 b). Although a range of com-
ercial applications is are being developed for microalgal biotechnol-

gy ( Olaizola 2003 ; Masojídek et al., 2010 ; Lu et al., 2021 c), algae-
ased wastewater treatment has become more prevalent in recent
ears ( Larsen et al., 2019 ). Due to its ability to process wastewater
ithout aeration ( Holmes et al., 2020 ), producing beneficial biofuels

uch as methane or diesel ( Zaimes et al., 2013 ). Microalgae have also
een shown to have several advantages over biological nutrient re-
oval (BNR) processes in wastewater treatment, including nitrifica-

ion/denitrification without organic carbon (for example, methanol),
4 
imultaneous CO 2 absorption by photosynthesis, and low cost of instal-
ation and operation ( Mallick 2002 ; Molinuevo-Salces et al., 2019 ). 

Advanced wastewater treatment studies have shown the better per-
ormance of AC in declining COD or BOD ( Zahmatkesh et al., 2020 );
oreover, AC is more effective than sludge or algae in wastewater

euse ( Zahmatkesh et al., 2020 ). A study using UV radiation in ad-
anced wastewater treatment showed that this radiation is capable
f removing pathogens and organic matter in wastewater treatment
 Kuzniewski, 2021 ); especially, UVC is essential for eliminating SARS-
oV-2 ( Zahmatkesh et al., 2022 a). Ozone catalysis is commonly referred
o as an advanced oxidation process; furthermore, ozone can be de-
omposed using a catalyst to produce more active free radicals, lead-
ng to the mineralization of organic pollutants ( Schollée et al., 2021 ).
ynthetic polymers are used as membranes in pressure-driven separa-
ion processes, to remove organics, bacteria, oil, etc. Using AOP can
liminate nondegradable organic components from industrial or mu-
icipal wastewater and avoid removing residual deposits ( Kwarciak-
oz ł owska et al., 2021 ). Finally, the chlorination of wastewater caused
 substantial reduction in estrogenic activity and an increase in antie-
trogenic activity. 

In view of all that background, this paper presents a detailed
verview of the recent developments and breakthroughs related to ad-
anced wastewater treatment technologies in removing organics and
norganics. It includes a particular additional focus on the removal of
ARS-CoV-2. Finally, each method is evaluated for its advantages and
isadvantages ( Table 2 ). 

echanism of SARS-CoV-2 entry into host cells 

A virus’ ability to infect and cause disease depends on gaining entry
nto host cells. Moreover, infectious diseases pose significant implica-
ions for host immune surveillance and human intervention strategies.
oronaviruses go through the complex binding process to a cell surface
eceptor for viral attachment, entering endosomes and fusing the endo-
ome membranes with the host cell. Spike proteins on the virus surface
re responsible for the entry of coronaviruses; thus, a virus with mature
pike proteins contains a trimer of three receptor-binding heads atop a
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Table 1 

Wastewater treatment technologies. a 

Using technology to 

treat wastewater Treatment Description 

AOP (advanced 
oxidation processes) 

Chlorine treatment It acts as a selective oxidant, reacting in this way with the capsid protein and 
damaging the Cys, Trp and Tyr, causing the inhibition of replication and injection of 
the genome as well as UV treatment. 

Algae systems Sedimentation, temperature increase, and sunlight degradation are part of these 
systems’ treatment mechanisms. 

UV inactivation 200 to 300 nm is the active UV wavelength range that can damage the bacteria or 
virus, nonetheless; ∼254 nm is recognized as the best one for microbial disinfection. 
Its efficiency depends of the contact time, temperature and the presence of organic 
matter. Usually inactivates the virus by damaging the RNA, so on the replication 
through oxidation processes, altering the permeability and damaging the capsid 
proteins. 

Nanomaterials They include the use of photocatalysts and membranes which incorporate 
nanomaterials. Metal oxide semiconductors utilized are for example TiO2 and ZnO. 

Ozone treatment In order to achieve disinfection, a certain period of contact time is necessary. 
Membrane technologies 
(MTs) 

Reverse Osmosis Usually used as part of pre-treatment systems, in order to remove particles and 
post-treatment in order to complete the removal of emerging contaminants that may 
remain after a water treatment process. 

Nanofiltration Despite their smaller pore sizes, these membranes are still more resistant to water 
contaminants such as viruses. 

Ultrafiltration Usually used as a pre-treatment before reverse osmosis, however; several authors 
have also used it in the removal of bacteria and viruses. 

Microfiltration The purpose of this technology is to remove bacteria and protozoa. 
Ceramic membranes Ozonation and coagulation were used as pre-treatments for filtration to prevent the 

virus’s spread. 

a Adapted with permission from Pacheco et al. (2021) . 

Table 2 

Advantages and disadvantages of different methods for organic contaminant removal from wastewater a . 

Treatment Advantages Disadvantages 

Adsorption 

• Quite easy to use 
• Extremely efficient 
• Economical 
• Eco-friendly 

• It is only possible to separate surfactants from wastewater, 
not to destroy them 

• Need skilled labour 

Advanced Oxidation Processes (AOPs) 

• Having rapid reaction times 
• Minimal footprint 
• Mi ( Sharma and Feng, 2019 ) neralogical transformation of 

organic compounds 

• Removal of residual peroxide may need to be considered. 

Biological treatments 

• Economical 
• The application process is simple 
• It can be improved by combining with membranes 

(membrane bioreactors). 

• Sludge generation during the treatment 
• High retention time 

Coagulation and flocculation 

• The application process is simple 
• High efficiency in removing pollutants 

• Transferring toxic compounds to the solid phase 

a Adapted with permission from ( Teymoorian et al., 2021 ). 
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talk of trimeric membrane fusion heads ( Kokic et al., 2021 ). See details
n Schema 2 . 

Furthermore, coronaviruses are within enveloped viruses, Coron-
viridae, a family of viruses with a positive-sense RNA genome. Several
oVs associated with high pathogenicity are found in the Betacoron-
virus genus, group 2. SARS-CoV-2 is found in this group. In SARS-CoV-
, 80% of the sequences are the same as in SARS-CoV, and 50% are the
ame as in MERS-CoV. Among the genetic sequences of this virus are 14
pen reading frames (ORFs), of which two-thirds encode 16 nonstruc-
ural proteins (nsp 1–16), which are used to make the replicase complex.
side from the nine accessory proteins (ORFs), one-third of the genome
ontains four structural proteins: spikes (S), envelopes (E), membranes
M), and nucleocapsids (N), the latter of which is required for SARS-CoV
5 
ntry into host cells (see in Schema 3 ). Even though SARS-CoV-2 shares
ore than 75% nucleotide identity with SARS-CoV, the S gene is highly

ariable. Angiotensin-converting enzyme 2 (ACE2) and transmembrane
rotease serine 2 (TMPRSS2) can cleave S1/S2 polybasic cleavage sites
n spike proteins’ tightly-packed binding domains. Therefore, SARS-
oV-2 Spike entering cells without TMPRSS2 may gain entry through
athepsin L on the plasma membrane surface. However, SARS-CoV-2
pike is activated by cathepsin L in endosomes, resulting from TMPRSS2
rotein helping viruses enter the plasma membrane. A viral genome has
een released into the host cell cytosol by ORF1a and ORF1b. These
wo proteins are translated into viral replicase proteins, which are then
leaved into individual nucleosomal proteins (PSPs); nsp12 belongs to
he RNA-dependent RNA polymerase group (derived from ORF1b). Due
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Schema 2. An in-depth look into the structure of the SARS-CoV-2 spike protein. 

Schema 3. Mechanism of SARS-CoV-2 Viral Entry. 
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o these actions, the replication factors rearrange the endoplasmic retic-
lum (ER) into double-membrane vesicles (DMVs), which facilitate viral
eplication of genomic and subgenomic RNAs (sgRNAs); the accessory
nd viral structural proteins that result from sgRNA translation provide
irus particle formation ( Harrison et al., 2020 ; Kabinger et al., 2021 ). 

Various advanced wastewater treatments for removing SARS-

oV-2 from sewage 
6 
embrane 

Membranes separate phases by blocking the flow of compo-
ents through them ( Zhao et al., 2020 ). Phase separation is ac-
omplished through the selective movement of component elements
 Ravanchi et al., 2009 ). Their behaviour makes it possible to classify
embranes as anisotropic or isotropic ( Obotey Ezugbe et al., 2020 ).
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n addition, the composition and physical structure of the anisotropic
embrane are uniform, such as in reverse osmosis (RO) ( Sagle et al.,
004 ; Aliyu et al., 2018 ). They can be either microporous or nonporous
dense); thus, their permeation flux is relatively high, while their low
ermeation flux severely limits their application ( Obotey Ezugbe et al.,
020 ). Microfiltration membranes frequently use isotropic microporous
embranes ( Sagle et al., 2004 ; Obotey Ezugbe et al., 2020 ). Mem-

ranes can be classified based on their material makeup as either or-
anic or inorganic ( Moore et al., 2005 ; Aliyu et al., 2018 ). Synthetic or-
anic polymers are used for manufacturing organic membranes. Based
n their membrane type, membrane treatment processes that elimi-
ate suspended solids and total dissolved compounds can be divided
nto low-pressure membrane filtration (microfiltration, ultrafiltration)
nd high-pressure membrane filtration (nanofiltration, reverse osmo-
is). Polyethylene, polytetrafluoroethylene (PTFE), polypropylene, and
ellulose acetate, among others, fall into this category. Among the in-
rganic membrane, materials are ceramics, metals, zeolites, and silica
 Mallada et al., 2008 ; Baker, 2012 ; Aliyu et al., 2018 ; Obotey Ezugbe
t al., 2020 ). 

Pressure-driven membranes among wastewater treatment systems
re the most commonly used before and after treatment. Hydraulic pres-
ure is used in these processes to achieve separation ( Van der Bruggen
t al., 2003 ). The four main types of these processes are microfiltra-
ion (MF), ultrafiltration (UF), nanofiltration, and reverse osmosis. The
ain characteristics of these processes are: The pressure required for

he MF membrane is 1-3 bar, and it is porous, asymmetric or symmet-
ic, with a particle size range of 0.15 m to 0.15 m ( Anis et al., 2019 a),
hereas in UF pressure required is 2-5 bar, and the type of this mem-
rane is microporous, asymmetric and with a particle size range of 0.15
m to 5 × 10 − 2 𝜇m ( Masoudnia et al., 2015 ); in the case of NF, pressure

s 5-15 bar, and the type of membrane use is tight-porous, asymmetric,
hin-film composite and a particle size range of 5 × 10 − 2 𝜇m to 5 × 10 − 3 

m ( Abdel-Fatah, 2018 ), while for RO pressure required is 15-75 bar,
nd semi-porous, asymmetric, thin-film composites are used, and the
article size range is of 5 × 10 − 3 𝜇m to 10 − 4 𝜇m ( Tang et al., 2013 ).
ompared with other membrane processes based on pressure. In addi-
ion to separating small particles, such as bacteria, RO is able to separate
onovalent ions, such as sodium and chloride ions, up to 99.5% of the

ime ( Wenten, 2016 ). 
In addition, membrane bioreactors (MBRs) are considered an ad-

anced technology for the treatment of wastewater, mainly to produce
igh-quality effluent suitable for reuse ( Sengupta et al., 2021 ), includ-
ng for the treatment of emerging contaminants ( Nguyen et al., 2022 ).
he technology has matured and has been widely implemented with a
rowing market share at about a 15% rate, mainly when aiming for ef-
uent reuse ( Hoinkis et al., 2012 ) and sustainability ( Holloway et al.,
016 ). However, membrane fouling is still the major obstacle to boost-
ng the widespread acceptance of MBRs. The need to manage membrane
ouling led to inflated operational expenditure, enhanced energy foot-
rint, complicated operation, and eventually reduced confidence in the
echnology. The complexity of MBRs operation in response to control-
ing fouling has become the downside compared to other simpler tech-
ologies ( Hamedi et al., 2019 ). A high energy input associated with
embrane cleaning via coarse bubble aeration is still a critical obstacle

 Xiao et al., 2019 ). 

everse osmosis 

One of the most critical alternatives for water treatment is reverse
smosis membrane technology ( Lee et al., 2011 ), which is currently the
eading desalination technology ( Lee et al., 2011 ; Qasim et al., 2019 ).
O is the most energy-efficient desalination technology, requiring only
bout 1.8 kWh/m ( Jamaly et al., 2014 , Park et al., 2020 ), much lower
han other alternatives. Likewise, significant advances have occurred
hroughout the development of RO technology in materials science, pro-
ess improvement, membrane synthesis, and modification ( Anis et al.,
7 
019 b). In addition, RO is mainly used to treat large volumes of brack-
sh groundwater ( Afonso et al., 2004 ) and is an effective method for re-
oving heavy metals without requiring secondary chemical treatment,

s shown in Schema 4 ( Thaçi et al., 2019 ). In addition, these techniques
emove most of the suspended particles, leading to heavy fouling of lead
lements ( Pandey et al., 2012 ). The best example of RO’s efficiency in
emoving ions is dissolved salts ( Yoon et al., 2009 ; Kheriji et al., 2015 ).
t has been widely used in aerospace ( Cadotte et al., 1981 ; Cabrera et al.,
014 ), food ( Hafiz et al., 2020 ), oil ( Bastos et al., 2020 ), gas ( Tang et al.,
020 ), galvanic ( Makisha et al., 2017 , Innocenzi et al., 2020 ), dairy
 Balannec et al., 2005 ), pulp and paper ( Mänttäri et al., 2007 ), and
ower plants ( Emamdoost et al., 2020 ). 

The RO process separates ions from water by applying hydrostatic
ressure against the osmotic pressure across a semipermeable mem-
rane ( Shi et al., 2020 ). The advantages of this technology include pro-
ucing high-quality water with low fouling potential ( Jiang et al., 2018 ),
ltra or microfiltration pretreatment, regardless of the characteristics
f the source water, minimizing the need for frequent chemical clean-
ng, extending the membrane lifespan, and minimizing overall treat-
ent costs ( Khedr 2013 ; Wenten 2016 ). However, higher costs and the

dverse effects of concentrating on the environment are potential dis-
dvantages ( Ghernaout et al., 2017 ). Further drawbacks for RO mem-
ranes include organic fouling caused by dissolved organics and scaling
ue to an overabundance of marginally soluble salts ( Valavala et al.,
011 ). 

In water treatment, RO is a pressure-driven technology that is widely
sed ( Peters et al., 2019 ). Firstly, RO is controlled by two major factors:
embrane characteristics and pore size ( Yang et al., 2019 ; Zhang et al.,
019 ); moreover, RO systems need pretreatment, including filtering and
hemical addition, to avoid membrane biofouling ( Anis et al., 2019 a).
inally, RO membranes can be classified into aromatic polyamide, thin-
lm composite (TFC) ( Liu et al., 2018 ; Kasongo et al., 2019 ), and cel-

ulose ( Asempour et al., 2018 ). Polyamide thin-film composite (PA-
FC) is the most commonly used material in the production of RO
embranes because of its excellent water permeability, high salt re-

ection, and stability, as well as the ability to tolerate low pH or high
H ( Liu et al., 2018 ; Aziz et al., 2021 ). In RO, cellulose and polyamide
erivatives are used as membranes with a 50–100 Da molecular weight
ut-off ( Hu et al., 2021 ). According to the USA Environmental Protec-
ion Agency, RO is the best technology to remove inorganic contami-
ants such as radionuclides (alpha and beta emitters) and heavy metals
such as arsenic and antimony) from contaminated groundwater. Thus,
romoform and iodoform in disinfected water can be controlled effec-
ively with RO treatment ( Table 3 ) ( Wang et al., 2019 ; Samaei et al.,
020 ). 

anofiltration 

Since the 1970s, NF has been the newest pressure-driven filtration
echnology; and the membrane has properties similar to RO and UF
 Mohammad et al., 2015 ). NF membranes are used for various appli-
ations, including food ( Salehi, 2014 ; Mallakpour et al., 2021 ), phar-
aceuticals ( Zaviska et al., 2013 ; Mallakpour et al., 2021 ), wastewa-

er treatment ( Bethi et al., 2021 ; Zhao et al., 2021 ), and desalination
 Mi et al., 2020 ). Moreover, the separation method removes sparingly
oluble salts ( Hao et al., 2016 ) and large organic molecules from flu-
ds ( Gao et al., 2020 ). Calcium and magnesium are two multivalent
ons that NF membranes are highly efficient at removing ( Cheng et al.,
018 ). In addition, partially monovalent salts such as sodium and chlo-
ide may also be removed depending on the NF membrane cut-off size
 Cheng et al., 2018 ; Li et al., 2021 ). Note that NF has a 150–1000 Da
 Schmidt et al., 2020 ). 

One of the first characteristics to remark is that synthetic polymers,
hich are thin and spiral, form the membrane elements in the manu-

acturing of NF membrane separation surfaces. Next, a membrane mod-
le filters pressurized source water; finally, sodium ions and organic
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Schema 4. A practical method for removing organic, inorganic matter, and microorganisms. 

m  

p  

t  

s  

2

 

(  

v  

r  

D  
olecules are rejected from the membrane, and all the water molecules
ass through and are reabsorbed in the water that passes through
he membrane. This process is accomplished by bypassing pressurized
ource water along the membrane’s surface ( Oatley-Radcliffe et al.,
017 ; Tul Muntha et al., 2017 ). 
8 
The advantages of the NF process include low operation pressure
 Li et al., 2019 ), high flux ( Moradi et al., 2020 ), high retention of multi-
alent anion salts ( Kramer et al., 2019 ), a molecular weight above 300,
elatively low investment, and low operation and maintenance costs.
ue to these advantages, NF has become increasingly popular world-
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Table 3 

Removing micropollutants in various wastewater treatments by RO/NF. 

Technology 

Removal 
micropollutants Type of micropollutants Description Refs. 

RO 45-98% Gemfibrozil, Ketoprofen, Carbamazepine, Diclofenac, 
Mefenamic acid, Acetaminophen, Sulfamethoxazole, 
Propyphenazone, Hydrochlorothiazide, Metoprolol, Sotalol, 
Glibenclamide 

• Polyamide Thin 
Film Composite 

• Spiral Wound 
• Type of sewage: 

groundwater 

( Radjenovi ć et al., 
2008 ) 

NF/RO 82-100% Acetaminophen, Alachlor (Lasso), Atraton, Bisphenol A, 
Caffeine, Carbadox, Carbamazepine, DEET, Diethylstilbestero, 
Equilin, 17_-Estradiol, 17_-Estradiol, Estriol, Estrone, 
17-Ethynyl Estradiol, Gemfibrozil, Metolachlor, Oxybenzone, 
Sulfachloropyridazine, Sulfamerazine, Sulfamethizole, 
Sulfamethoxazole 

• Polyamide Thin 
Film Composite 

• Flat sheet 
• Type of sewage: 

lake water 

( Comerton et al., 
2008 ) 

RO 25-95% N-nitrosodimethylamine (NDMA), Nnitrosomethylethylamine 
(NMEA), Nnitrosopyrrolidine (NPYR), N-nitrosodiethylamine 
(NDEA), N-nitrosopiperidine (NPIR), Nnitrosomorpholine 
(NMOR), N-nitrosodipropylamine (NDPA), Caffeine, Simazine, 
Atrazine, Primidone, Meprobamate, Triamterene, Tris(2- 
chloroethyl)phosphate (TCEP), Trimethoprim, 
Nnitrosodi-n-butylamine (NDBA), N,N-Diethyl-metatoluamide 
(DEET), Bisphenol A, Diuron, Carbamazepine, Linuron, 
Diazepam, Triclocarban, Clozapine, Omeprazole, Hydroxyzine, 
Paracetamo, buprofen, Naproxen, Gemfibrozil, Dilantin, 
Sulfamethoxazole, Ketoprofen. Triclosan, Diclofenac, Enalapril, 
Simvastatin hydroxy acid, Atenolol, Amitriptyline, Fluoxetine, 
Verapamil 

• Cellulose 
Triacetate Thin 
Film Composite 

• Hollow Fibre 
• Type of sewage: 

Synthetic 
wastewater 

( Fujioka et al., 2015 ) 

NF/RO 87-99% Acetaminophen, Bisphenol A, Caffeine, Carbamazepine, 
Cotinine, Ethinyl Estradiol-17 𝛼, Gemfibrozil, Ibuprofen, 
Progesterone, Sulfamethoxazole, Triclosan, Trimethoprim 

• Polyamide Thin 
Film Composite 

• Flat Sheet 
• Type of sewage: 

Synthetic 
wastewater 

( Huang et al., 2011 ) 

RO 57-91% 2-Naphthol, 4-Phenylphenol, Phenacetine, Caffeine, NAC 
standard, Primidone, Bisphenol A, Isopropylantipyrine, 
Carbamazepine, Sulfamethoxazole, 17-Estradiol 

• Polyamide Thin 
Film Composite 

• Flat Sheet 
• Type of sewage: 

Synthetic 
wastewater 

( Kimura et al., 2004 ) 

RO 0-85% 2-Naphthol, 4-Phenylphenol, Phenacetine, Caffeine, NAC 
standard, Primidone, Bisphenol A, Isopropylantipyrine, 
Carbamazepine, Sulfamethoxazole, 17-Estradiol 

• Cellulose 
Acetate Thin 
Film Composite 

• Flat Sheet 
• Type of sewage: 

Synthetic 
wastewater 

( Kimura et al., 2004 ) 

RO 76.5 N-nitrosodimethylamine • Polyamide Thin 
Film Composite 

• Flat Sheet 
• Type of sewage: 

Synthetic 
wastewater 

( Croll et al., 2019 ) 

w  

c  

c  

t  

t  

o  

1  

b

U

 

t  

s  

p  

t  

c  

T  

t  

m  

p  

m  

p  

t  

b  

a  

l  

l  

R
 

a  

t  

t  

fl  

r  

c  
ide. Furthermore, NF is widely used for decontaminating and recy-
ling wastewater from diverse industries, including oil and gas, chemi-
als, and foods and beverages. Finally, water reuse became possible due
o the reduction of organic load in the wastewater treated with NF par-
ial desalination. However, Water recovery from wastewater treatment,
n the other hand, is an important issue because it should be close to
00%; several researchers studied the feasibility of an integrated mem-
rane system to achieve this goal ( Mohammad et al., 2015 ). 

ltrafiltration 

UF, a membrane separation process, is usually applied after conven-
ional treatment as a method for removing particles from solutions. Be-
ides, the separation of macromolecules (103 to 106 Da) from solutions,
articularly proteins present in solutions, is usually performed in indus-
ry and research ( Ahmad et al., 2020 ). Ultrafiltration membranes are
lassified based on their molecular weight cut-offs ( Kadel et al., 2019 ).
hey can be used in cross-flow or dead-end modes in different applica-
9 
ions ( Ohanessian et al., 2020 ). Likewise, when the system is in dead-end
ode, all source water passes through the membrane and is discharged
eriodically in batches based on the concentration of solids around the
embranes ( Roslan et al., 2018 ). Although a cross-flow system is used, a
ortion of the source water is discharged or recycled continuously back
o the system’s inlet ( Saeki et al., 2017 ). Therefore, ultrafiltration mem-
ranes can filter only small molecules, such as water, inorganic salts,
nd micromolecular organics, rather than macromolecules like SS, col-
oids, proteins, and bacteria. Prior to NF, UF is always used to pretreat
eachate with a lower organic concentration ( Luo et al., 2013 ; Oatley-
adcliffe et al., 2017 ). 

Due to its low energy cost and high-water flux compared with NF
nd RO, UF is widely used to produce drinking water. Moreover, due
o a pressure difference between 0.1 and 0.5 MPa, UF uses less energy
han traditional pretreatment processes; likewise, pretreatment of ef-
uents and wastewater can be accomplished with UF. In addition, UF
ecovery processes require far less energy than RO and NF recovery pro-
esses. However, they cannot frequently recover DS with lower molecu-
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Table 4 

Removing micropollutants in various wastewater treatments by UF. 

Technology 

Removal 
micropollutants Type of micropollutants Description Refs. 

UF 20-80% Sulfamethoxaz, Carbamazepin, 
Diclofenac, Ibuprofen 

• Flat sheet 
• Regenerated Cellulose 
• Type of sewage: Synthetic wastewater 

( Burba et al., 2005 ) 

NF/UF 10-75% Amoxicillin, Naproxen, Metoprolol, 
Phenacetin 

• PES 
• Flat sheet 
• Type of sewage: Synthetic 

wastewater, Secondary wastewater 

( Javier Benitez et al., 2011 ) 

UF 11-65% Estrone, Estradiol, Progesterone, 
Testosterone 

• Cellulose/PP 
• Flat sheet 
• Type of sewage: Synthetic wastewater 

( Neale et al., 2012 ) 

UF 25-39% Perfluorooctanoic acid, 
Perfluorooctanesulfonic acid 

• Type of sewage: Synthetic wastewater 
Lake water 

• PVDF 
• Hollow fibre 

( Pramanik et al., 2017 ) 

UF 17-76% Bisphenol A, 17 𝛼-ethynyl, Estrone 
17 𝛽-estradiol, Estriol 

• Flat sheet 
• PVDF 
• Type of sewage: Synthetic secondary 

effluent 

( Hu et al., 2014 ) 

UF 47-60% Ibuprofen, Sulfamethoxazole • Alumina/TiO2/ 
• Flat sheet 
• Type of sewage: Synthetic wastewater 

( Chu et al., 2017 ) 

UF 99.61% Bisphenol A • PES/Silica dioxide 
• Hollow fiber 
• Type of sewage: Synthetic wastewater 

( Muhamad et al., 2018 ) 

UF 80-84% Bisphenol A, 4-Nonylphenol • PES / SWCNT 
• Flat sheet 
• Type of sewage: Synthetic wastewater 

( Kaminska et al., 2015 ) 

UF 88.97-99.92% Carbamazepine, Galaxolide, Caffeine, 
Tonalide, 4-nonylphenol, Bisphenol A 

• PES/N-doped CNTs 
• Flat sheet 
• Type of sewage: Drinking water 

Wastewater sources 

( Wanda et al., 2017 ) 

UF 23-65% Bisphenol A, Norfloxacin • Flat sheet 
• PVC/ MWCNTs/Fe3O 

• Type of sewage: Synthetic wastewater 

( Wu et al., 2016 ) 
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ar weight because UF processes have huge pore sizes ( Shon et al., 2013 ;
ang et al., 2019 ) ( Table 4 ). 

icrofiltration 

MF is essential in the food ( Utoro et al., 2019 ) and beverage indus-
ries ( Manni et al., 2020 ). MF membrane is usually possible following
onventional treatment methods, and MF technology is commonly used
o remove coarse particles or microbes. In addition, MF technology can
emove suspended matter from water, including bacteria, paint, pig-
ent, yeast cells, etc. It is also possible to run such MF either in cross-
ow mode or dead-end mode ( El Rayess et al., 2011 ). 

Hydrophilic polymers are typically used to manufacture MF mem-
ranes, such as polyvinylidene fluoride (PVDF), polysulfone, PTFE,
olypropylene, and nylon. Teflon membranes have recently been intro-
uced to the market in their newer version. PP is the only membrane
hat is not resistant to oxidants such as chlorine. During the manufactur-
ng process, special agents are usually added to membranes in order to
educe fouling caused by dissolved organics. As a result, special agents
re often applied to the membranes during fabrication to prevent foul-
ng issues. Finally, note that water treatment systems commonly use the
F and UF processes (Anis et al., 2019) 

ffect of membrane on SARS-CoV-2 

MF and UF, two kinds of low-pressure membrane filtration used in
dvanced wastewater treatment, have the potential to provide a com-
lete barrier to SARS-CoV-2 transmission. Moreover, a modular mem-
rane system structure can facilitate upgrading existing WWTPs in or-
er to reduce the concentration of SARS-CoV-2 in the effluent. MF >
10 
0 nm and UF 2–50 nm membranes can effectively remove SARS-CoV-
, although this is highly dependent on the pore diameter distribution
n relation to the target virus. Thus, UF can effectively remove SARS-
oV-2 with a diameter of 10-100 nm ( Kitajima et al., 2020 ). SARS-
oVs may also be removed depending on membrane surface charac-
eristics based on electrostatic and hydrophobic interactions. UF can be
pplied in membrane bioreactors (MBRs) to enhance viral removal (not
ust SARS-CoV) and steric removal, adsorption, and inactivation during
iological treatment. Due to this, MBRs have been shown to be more
ffective at removing enteric viruses (removing up to 6.8 logs) than con-
entional WWTPs (removing up to 3.6 logs). SARS-CoVs could also be
ntirely removed by high-pressure membrane systems using tighter and
enser membranes (pore size < 2 nm) such as NF and RO ( Lv et al., 2006 ;
endergast et al., 2011 ; Chaudhry et al., 2015 ; Bodzek et al., 2019 ). 

V irradiation 

UV irradiation comprises electromagnetic waves invisible to humans
ut visible to many insects and birds. Also, UV irradiation is a form of
lectromagnetic energy, having a wavelength shorter than visible light
ut longer than x-rays ( Lu et al., 2019 ; Milov et al., 2020 ). Commonly,
lack lights and mercury lamps are specific lights in UV ( Hinds et al.,
019 ). Frequently, this system is associated with electromagnetic en-
rgy with a wavelength of 10 nm to 400 nm. UV is crucial in phys-
cal operations for water disinfection ( Sommer et al., 2008 ). In addi-
ion, UV light harms and hinders microorganisms’ growth. Therefore,
V radiation is capable of removing pathogens and organic matter in
astewater treatment. Advantages of UV include: a) No chemicals were
dded, b) Cost-effective, c) Fast-acting, d) Effective against a range of
rganisms broader than chlorine, and g) UV water purifier kills bacteria



S. Zahmatkesh, K.T.T. Amesho and M. Sillanpää Journal of Hazardous Materials Advances 7 (2022) 100121 

Table 5 

Removing micropollutants in various wastewater treatments by UV. 

Technology 

Removal 
micropollutants 

Type of microp- 

ollutants Refs. 

UV 12-64% Estrogen, 
17 𝛼-estradiol, 
17 𝛽-estradiol, 
ethinylestradiol, 
estriol, 
carbamazepine, 
naproxen, 
clarithromycin, 
diclofenac, 
ibuprofen, 
bisphenol A, 
indomethacin 

( Wols et al., 
2012 ; 
Wang et al., 
2016 ; 
Yang et al., 
2016 ) 

UV–chlorine 50-99.80% Estrogen, 
17 𝛼-estradiol, 
17 𝛽-estradiol, 
ethinylestradiol, 
estriol, 
carbamazepine, 
naproxen, 
clarithromycin, 
diclofenac, 
ibuprofen, 
bisphenol A, 
indomethacin 

chlorine 5-65% Estrogen, 
17 𝛼-estradiol, 
17 𝛽-estradiol, 
ethinylestradiol, 
estriol, 
carbamazepine, 
naproxen, 
clarithromycin, 
diclofenac, 
ibuprofen, 
bisphenol A, 
indomethacin 
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nd viruses. UV disadvantages are: a) incapable of removing dissolved
mpurities (such as pesticides, rust, arsenic, fluoride, etc.), b) Requires
lectricity, c) UV light shutoff ( Espid et al., 2017 ; Lei et al., 2021 ). 

Furthermore, UV is typically used for photoreactions. UV radiation
alls into four categories: UVC, UVB, and UVA. It is also common to
se far, mid, and near UV instead of VUV (10 - 200)/UVC (100–280
m), UVB (280-315 nm), and UVA (315–400 nm) ( Collivignarelli et al.,
021 ). 

The direct irradiation of UV can destroy microorganisms
 Vasilyak, 2021 ). Using UV radiation as an alternative to chlori-
ation is a standard disinfection method because the usage of Cl 2 ,
aClO, and similar Cl compounds generates substances that pro-
ote cancer ( Table 5 ) ( Tak et al., 2017 ). Usually, UV disinfection

s accomplished by irradiating with 253.7 nm ( Sommer et al., 2001 ;
ervero-Aragó et al., 2014 ); however, bacterial cells are generally
esistant to irradiation under longer wavelengths due to the majority
f organic components inside them ( Pradhan et al., 2015 ). Bacteria are
emoved through photon absorption by DNA (263-275 nm wavelength),
esulting in hydrogen bond splitting and thus causing a break in DNA
or other irreversible changes to DNA) that prevents transcription of its
enetic material. The shorter wavelengths, which are more energetic,
ay be absorbed by the cell membrane, preventing osmotic pressure

egulation. Depending on the wavelength, bacteria are deactivated
ifferently, with UVA usually destroying non-nuclear components,
hereas UVB and UVC usually destroy nuclei ( Sharrer et al., 2007 ). 

In UV irradiation, pathogens’ DNA nucleotides are inactivated by UV
ight ( Kumar et al., 2004 ; Nyangaresi et al., 2019 ). The National Wa-
er Research Institute (NRWI) recommends a fluence of N20 mJ/cm 

2 

o eliminate MS 2 phages successfully and a fluence of 180 mJ/cm 

2 

o successfully inactivate Adenoviruses in drinking water. According to
11 
he German water directive, disinfection must be performed using a UV
uence of 40 mJ/cm 

2 ( Hiller et al., 2019 ). Nevertheless, UV disinfec-
ion in water reuse applications is recommended to contain equivalent
oses of up to 100 mJ/cm 

2 , though this depends on the pretreatment
e.g., granular media filtration, membrane filtration). Finally, for efflu-
nt disinfection at WWTPs, UV fluences are typically applied at 60 to
00 mJ/cm 

2 ( Bourrouet et al., 2001 ; Hiller et al., 2019 ). 
Specifically regarding COVID-19, since December 2019 the SARS-

oV-2 virus caused the disease, and according to World Health Orga-
ization (WHO), by January 30, 2020 this crisis must be considered
f public health and international concern. COVID-19 was detected in
any countries at the beginning of March 2020, suggesting it could be a
andemic ( Lopez Bernal et al., 2021 ). Coronaviruses and other respira-
ory viruses are less resistant to sterilization methods; hence, sufficient
evels of disinfection can be achieved for the reprocessing of personal
rotective equipment and supplies, and ultraviolet C (UV-C) irradiation
an be effective for this purpose. Many health services have been shown
o reduce bacterial and viral contamination by UV-C, which disinfects
he air, water, and surfaces ( Barnewall et al., 2021 ; Carleton et al.,
021 ). 

ffect of UV on SARS-CoV-2 

Various viruses, including SARS-CoV, are inactivated by UV radia-
ion, especially UV-C (200-280 nm). Specifically, several studies have
hown that UV-C (254 nm) easily inactivates SARS-CoV-2, as indicated
n Schema 5 ; UV-C radiation is directly absorbed by nucleic acid bases
nd capsid proteins ( Zahmatkesh et al., 2022 c), leading to the produc-
ion of photoproducts that inactivate the virus. Also, UV light from sun-
ight effectively inactivates the virus ( Parsa et al., 2021 ). 

zonation 

France was the first to use ozone for water treatment in 1886
 Kong et al., 2021 ). As a result of its remarkable properties, such as
ts strong ability to oxidize, producing fewer by-products of disinfection
han other chemical disinfectants, and removing colour and odour from
ater, ozone has expanded its influence worldwide. Furthermore, some
uropean countries use ozone for taste and color removal. Ozone oxi-
ation and disinfection functions are gaining much attention in water
nd wastewater treatment. When ozone reacts with water, it produces
everal ions and free radicals, such as HO ⋅, HO 2 ⋅, O, O 2 , etc. Oxidation
s a swift reaction. The residual ozone concentration is typically halved
ithin 30 s and reaches an inactivation level of at least 1-log ( Wen et al.,
020 ). According to the water directives in Germany, 10 mg/L of ozone
s the maximum amount that can be used for disinfection ( Tyrrell et al.,
995 ; Shin et al., 2003 ; Edwards-Brandt et al., 2007 ; Kong et al., 2021 ).

Furthermore, the oxidation of trace organic compounds is another
otential use of ozone, where hydroxyl radical reactions simultane-
usly occur ( Remucal et al., 2020 ). In order to remove trace organic
ompounds, ozone dosages typically range from 0.4 to 1.0 mg O 3 /mg
OC, depending on the removal objectives and the target compounds
 Zhang et al., 2018 ). 

Recent studies indicate that ozone’s germicidal effects depend on
he type of microbiota ( Garcia-Costa et al., 2021 ). Several water qual-
ty parameters can negatively affect ozone stability, including alkalin-
ty, dissolved organic carbon, and particle density (TSS/turbidity), pro-
ecting the surface-attached microorganisms ( Yan et al., 2007 a, 2007 b).
he effectiveness of ozone disinfection is influenced by exposure to it,
pecifically by the time-integrated characteristic of ozone concentra-
ion applied over contact time. The specific water quality significantly
mpacts this factor. Wastewater matrices containing DOC, suspended
olids, residual nitrite, or particulate matter from activated sludge treat-
ent can deplete ozone, reducing disinfection effectiveness. Increasing

zone doses to improve disinfection is often associated with the forma-
ion of carcinogenic bromate ( Loeb et al., 2012 ; Rekhate et al., 2020 ). 
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Schema 5. Effectiveness of UVC on SARS-CoV-2 inactivation. 
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In wastewater treatment, ozone is used in a process called ozonation.
he ozonation process involves the dissolution of ozone in wastewa-
er, but this mechanism has resulted in low concentrations of ozone
n water, so using ozone to treat wastewater is ineffective. Micro and
anobubble technologies have increased ozone solubility and lifetime
 Agustina et al., 2005 ). 

Dry air or pure oxygen generates ozone, a gas with a pungent smell.
ecause ozone is formed endothermically, it is thermodynamically un-
table and rapidly returns to oxygen (3O 2 ↔ 2O 3 ) ( Prabha et al., 2015 ;
limohammadi et al., 2021 ). In addition, ozone is a powerful oxidiz-

ng agent and can be used in water and wastewater treatment, bleach-
ng ( Kaur et al., 2019 ), and synthesis ( Mashayekhi et al., 2018 ). This
ethod is used in water and wastewater treatment for four main rea-

ons: oxidation of bio-recalcitrant pollutants, disinfection, as a way to
emove taste and odour, and colour, to reduce the turbidity of water.
zone has several advantages: (1) it can be produced quickly by elec-

ric discharge from air or oxygen on-site; (2) it can react efficiently with
rganic and inorganic compounds; and (3) it can be used for several
urposes, such as disinfection, reducing chemical oxygen demand, and
mproving colour, and odour. Turbidity of water ozone excess rapidly
ecomposes into oxygen in water, leaving no residue behind. It should
e noted that ozone oxidation generates radicals. This indirect mecha-
ism is highly reactive and unselective. Radicals such as ∗ OH are potent
xidants that play an essential role in the disinfection and oxidation of
ontaminants ( Hussain et al., 2020 ; Rekhate et al., 2020 ). 

ffect of ozonation on SARS-CoV-2 

Virus inactivation can be accomplished by destroying the envelope
tructure since viruses rely on the specific proteins on their envelopes to
nvade host cells. According to a study conducted with ozonized water
 Martins et al., 2021 ), the SARS-CoV-2 virus is no longer viable after
he envelope is destroyed, although its nucleic acids are still detectable.
n some cases, the nucleic acids of non-enveloped viruses become more
12 
ensitive due to changes in the capsid proteins, which are very stable,
ut envelope proteins are much more delicate. Using low doses of ozone,
oy and colleagues found that the capsid protein of poliovirus 1 (PV1)
hanged; however, the virus’s ability to attach to host cells was unaf-
ected ( Schema 6 ). Nevertheless, due to RNA destruction, the virus was
nactivated ( Roy et al., 1981 ; Jiang et al., 2019 ; Martins et al., 2021 ) 

hlorination 

The most common method for disinfecting water and wastewater is
hlorination, a critical step in reclaiming water. However, it also pro-
uces numerous disinfection by-products (DBPs) when chlorine reacts
ith dissolved organic matter ( Mazhar et al., 2020 ). Many DBPs have
een proven to have carcinogenic, genotoxic, and mutagenic potential,
aking them toxic to humans and aquatic organisms in chlorinated wa-

er ( Kali et al., 2021 ). Likewise, drinking water should be governed by
he DBPs Rule ( Liu et al., 2020 ), because of the large production vol-
me and genotoxicity of two influential groups of DBPs: trihalomethanes
THMs) and haloacetic acids (HAAs). However, chemical disinfectants
nd inactivating agents are two of the many disinfection methods cur-
ently used in full-scale WWTPs. Bear in mind that upon chlorine ad-
ition to water, a portion of the chlorine reacts immediately with inor-
anic materials and metals present, and cannot be eliminated; chlorine
n water is called total chlorine, while the rest is called chloride demand
 Ghernaout, 2017 ). 

Gaseous chlorine is converted to the oxidative species hypochlorous
cid (HOCl) as it is injected into wastewater. As part of its oxidation
eactions, hypochlorous acid attacks organic molecules at electrophilic
ites and adds to unsaturated bonds. Chemical structure plays a crucial
ole in hypochlorous acid’s ability to oxidize organic pollutants since
t is highly selective for attacking nucleophilic sites or reducing them
 Du et al., 2017 ). 

Following the German water directive, calcium hypochlorite
Ca(OCl) ) and sodium hypochlorite (NaOCl) can be treated with a max-
2 
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Schema 6. Effect of Ozonation on SARS-CoV-2. 

Schema 7. Inactivation of some microorganisms when using chlorination in water. 
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mum of 4.7 mg/L free Cl 2 and 6 mg/L free Cl 2 , respectively ( Dong et al.,
022 ). The typical chlorine dosage used to disinfect WWTP effluents is
–10 mg/L with a 30 min contact time ( Mazhar et al., 2020 ). 

ffect of chlorination on SARS-CoV-2 

As chloride dismutases in water, hypochlorous acid and chloride ions
re formed. Further ionization of hypochlorous acid produces hypochlo-
ite. The primary disinfectant is typically regarded as hypochlorous acid.
13 
n Schema 7 , it was shown that the inactivation of viruses occurs when
he chlorinated water damages the capsid and destroys the exposed nu-
leic acids ( Fuzawa et al., 2019 ). It may be because chlorine reacts differ-
ntly with amino acids ( Na et al., 2007 ) at different sites of viral capsids,
hich explains these high reactivity sites. However, chlorine is less re-
ctive than ozone, meaning that some microorganisms (and specifically
acteria) are inactivated differently. After chlorination, chlorine reacts
ore with intracellular components, meaning that the cells show bet-

er structural integrity and less plasma leakage because the diffusion of
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Table 6 

Utilization of advanced oxidation technologies a . 

Study conducted on a 

compound Applied technologies Summary 

Hydroxychloroquine Advanced electrochemical oxidation As part of oxidation, two boron-doped diamond diodes (BDD) are used to create 
CO2 and other intermediate compounds that are highly unstable due to a large 
amount of OH 

∗ radicals formed at the surface of the BDD due to electrochemical 
oxidation of water. 

Chloroquine Electro-Fenton oxidation BDD anodes are used with the addition of FeSO4 in the solution in order to 
generate a more significant number of free radicals in the AOP and thus 
improving the cost-effectiveness, even though, the pH has to be controlled. 

Virus Photocatalyst The photocatalyst Ag 3 PO 4 /g-C 3 N 4 synergizes the effects of Ag 3 PO 4 with those 
of g-C 3 N 4 , improving the efficiency of the absorption of visible light; 
consequently, a more significant destruction of the viruses by means of the ROS. 

Ozone The powerful oxidant that, by generating ROS, could attack the virus in 
different places of its structure, especially the S-glycoprotein, inhibiting the 
infection process. 

Flat-sheet PVDF and filters based on PVDF 
coated with multiwalled carbon 
nanotubes layer (MWCNTs). 

A flat sheet of PVDF is employed, showing a bacteriophage photocatalysis 
inactivation where the membrane acted as a fence. MWCNTs functionalized 
with different silver-based filters were demonstrated to remove effectively viral 
bacteriophages but with a virus retention limitation after the filtration. 

Cold plasma (CP) The plasma acts to facilitate the production of UV radiation with reactive 
oxygen and/or N species (RONS) that are also the limiting factor and acts to 
damage the nucleic acids, oxidizing nucleic acids, proteins and lipids 

a Adapted with permission from Pacheco et al. (2021) . 
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hlorine into cells is less constrained by reactions with cell walls. Chlori-
ation is influenced by factors similar to ozone disinfection ( Churn et al.,
983 ; Cho et al., 2010 ). 

dvanced oxidation 

AOP (advanced oxidation process) is one of the chemical processes
idely used for wastewater, including different mechanisms for or-
anic destruction. Moreover, AOP has been seen as an environmentally
riendly, efficient, and cost-effective alternative to traditional disinfec-
ion methods for controlling water microbes ( Garrido-Cardenas et al.,
020 ). As a result, chemical oxidants are formed in situ in order to disin-
ect water and degrade harmful organic contaminants. There is no doubt
hat AOPs can effectively kill various microorganisms such as viruses,
rotozoa, spore-forming bacteria, fungi , and yeasts. As part of this process,
n order to be able to purify water, an adequate number of hydroxyl rad-
cals (OH 

•) are produced, and this idea was later extended to sulfate rad-
cals (SO 4 •

∗ ). AOPs have been studied for the inactivation of pathogens,
athogenic indicators, and the degradation of organic and inorganic pol-
utants. AOPs are the best treatment methods because strong oxidants
an rapidly destroy recalcitrant organic pollutants. Several studies using
OPs for textile dye wastewater treatment have been conducted. AOP’s
dvantages include: synthesizing stable inorganic compounds by con-
erting organic materials, preventing pathogens, particularly with the
se of UV rapid and robust technology, and removing heavy metals from
early all organic compounds ( Boczkaj et al., 2017 ; Kanakaraju et al.,
018 ; Miklos et al., 2018 ). 

The Rodrigues et al. (2008) , report demonstrated that heteroge-
eous photocatalysis could remove more than 90% of COD from textile
astewater treatment effluents. Azbar et al. (2004) showed that AOP

esults in 60% COD and 50% colour removal when combined with con-
entional methods using O 3 /H 2 O 2 /UV. Integrating the AOP with the
onventional methods results in 96% colour removal and 99% COD re-
oval. Soares et al. (2014) showed that using AOPs in cotton-textile
yeing wastewater resulted in a 60 mg catalyst loading, 85.5% miner-
lization, and 98.5% decolourization in the solar-photo-Fenton process.

Two decades ago, AOPs gained notable recognition as a technology
or enhancing wastewater treatment. Several methods have successfully
roken-down organic contaminants at the pilot scale, including Fenton,
avitation, ozonation, and photocatalytic oxidation. In addition, upon
ctivation, AOPs create radicals of the OH type, which react with organic
14 
ompounds in the presence of dissolved oxygen ( Table 6 ) ( Abbas et al.,
014 ). 

zone based AOPs 

Water treatment has long used ozone as an oxidant and disinfectant.
xidation by ozone is highly selective; ozone attacks primarily electron-

ich functional groups such as double bonds, amines, and aromatic rings
e.g., phenol). The fact that its reactions often result in the formation of
H in real aqueous solutions frequently qualifies ozonation as an AOP
r similar process. By reacting ozone with hydroxide ions, OH can be
ormed. Radicals are generated as by-products after reactions involv-
ng ozone and organic matter (particularly phenolic and amine func-
ional groups). In particular, these reactions contribute significantly to
he radical formation during the ozonation of secondary effluents. The
eneration of radicals can be actively initiated using ozonation at an
levated pH and combinations of O 3 /H 2 O 2 , O3/UV, and O 3 /catalysts
 Ikehata et al., 2018 ; Hussain et al., 2020 ). 

V-based AOPs 

AOPs based on UV is typically irradiated with UV-light (mainly UV-
) and use various radical promoters in conjunction with UV light.

n advanced oxidation, UV fluences are typically > 200 mJ/cm 

2 and
hus exceed the UV dosage needed to inactivate most pathogens, in-
luding those resistant to UV. Typically, UV irradiation is produced
y low-pressure or medium-pressure mercury lamps with monochro-
atic or polychromatic emission spectra. However, in recent research

 Miklos et al., 2018 ), ultraviolet light-emitting diode (LED) sources with
pecific wavelength distributions have been studied and analyzed for
isinfection purposes. In comparison to conventional medium and low-
ressure lamps, LEDs have three principal advantages. They eliminate
ercury, emit unique peak wavelengths, are compact, have a flexible
esign, and have a rapid startup time ( Deng et al., 2015 ; Miklos et al.,
018 ). 

lectrochemical AOPs 

Various electrodes are typically used in this process, including
oped SnO 2 , PbO 2 , RuO 2 , boron-doped diamond (BDD), and sub-
toichiometric and doped TiO 2 . Despite this, BDD-electrodes are fre-
uently used because their production costs are typically lower than
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ther electrodes, and the diamond layer remains stable under anodic
olarization ( Oliveira et al., 2021 ). Using BDD electrodes for electro-
hemical oxidation of contaminated water can produce OH directly due
o the evolution of O 2 from water oxidation. In this way, BDD-electrode
reatment is considered an eco-friendly and efficient method of remov-
ng various pollutants. Due to the fact that the generation of OH oc-
urs directly on the electrode surface and since OH has a reactivity
ange of about 1 mm, diffusion at the electrode surface limits high ox-
dation efficiencies. Nevertheless, hydrodynamic parameters for eAOP
rocesses must be considered since the energy used for pumping wa-
er might account for the largest share of energy consumption in this
rocess ( Ganzenko et al., 2014 ; Oturan et al., 2014 ). 

ffect of AOP on SARS-CoV-2 

Using AOPs widely, emerging contaminants and pathogens will be
ore efficiently removed from water and wastewater. Different combi-
ations of UV, H 2 O 2 , and O 3 are regularly used to create OH in sufficient
mounts to degrade organic pollutants and some inorganic pollutants.
or example, it has been demonstrated that AOP (UV/H 2 O 2 ) can re-
ove SARS-CoV-2 from wastewater and degrade endocrine-disrupting

ompounds ( Pacheco et al., 2021 ; Teymoorian et al., 2021 ). 

ctivated carbon 

The adsorbent properties of AC are primarily due to its highly porous
arbon matrix, with a high surface area and a broad range of functional
roups. Despite the irregular arrangement, many chemical bonds con-
ect the layers of carbon, creating a highly porous structure that in-
ludes lines and cracks between them. In addition, the carbonaceous
aterial AC has a high porosity and a large surface area, making it
seful for a wide range of applications. Their characteristics such as
ore diameter, hardness, density, iodine number, and ash content make
hem suitable for different applications. Besides, the pores on ACs have
emediable surface chemistry, chemical/thermal stability, and high ac-
essibility ( Wong et al., 2018 ; Völker et al., 2019 ). Different functional
roups of aromatic rings maintain the chemical properties of AC. To
reate these groups, carbon can be treated chemically, thermally, or hy-
rothermally. The pores in AC can be divided into macropores (diameter
 50 nm), mesopores (2 ≤ diameter ≤ 50 nm), and micropores (diameter
 2 nm). These filters remove organic substances through a combina-

ion of adsorptive and biological processes. A common technique for
dvanced wastewater treatment is GAC filtration. AC is produced from
oconut shells, coals, wood, and lignite in today’s wastewater treatment.
C characteristics make them ideal for adsorption: porous surfaces, high
urface areas and surfaces containing specific chemical groups that re-
ct with molecules. AC adsorption occurs first on the outside of the car-
on matrix. A second process is the transfer of materials inside carbon
ores. A third is the adsorption of materials on the carbon’s internal
alls ( Perrich, 2018 ; Zahmatkesh et al., 2020 ). 

Furthermore, in wastewater treatment, AC is one of the most effec-
ive adsorbents for removing pollutants like dyes ( Moosavi et al., 2020 ),
etals ( Karnib et al., 2014 ), and pesticides ( Gupta et al., 2011 ). Heavy
etals in water can also be dangerous to human health; additionally,
C is an economical and straightforward method to remove heavy met-
ls; for this reason, AC is widely used to process water containing these
ollutants ( Santhy et al., 2004 ). Meanwhile, three areas in which the
C process is applied include the advanced treatment of drinking wa-

er, sewage reclamation, and industrial wastewater treatment. The more
fficient AC is a powerful adsorbent, with various activities in wastewa-
er. The COD and BOD removal rate in wastewater by AC is affected by
ts porous structure and surface area. 

Biological activated carbon is based on physicochemical adsorption
nd biological-oxidation degradation synergistic effects. Different sized
rganic molecules and dissolved oxygen can enter the pores of AC due to
15 
ts high adsorption capacity and micropores ( Wang et al., 2021 ), meso-
ores ( Kennedy et al., 2004 ), and macropores ( Dong et al., 2019 ). In ad-
ition, in AC technology, AC microorganisms extend activated carbon’s
dsorption capacity by biodegrading organic adsorbates to regenerate
dsorption sites. However, the pore size of AC has a significant effect on
icrobial attachment, and the highest biomass retention was measured
ith a pore size between 2 and 50 nm. Also, AC is more suitable for

he control of DBP precursors in systems ( Singh et al., 2011 ; Dos Santos
t al., 2020 ). 

ffect of AC on SARS-CoV-2 

SARS-CoV-2 can be retained with AC filters, as they adsorb viruses
rom contaminated deposits. The adsorption of SARS-CoV-2 to AC is
ue to electrostatic attraction between the virus and amino groups and
arboxyl groups in AC ( Schema 8 ). 

lgae 

The comparison between microalgae wastewater treatment sys-
ems and conventional biological wastewater treatment indicates
hat microalgae are a more sustainable, environmentally friendly
 Zahmatkesh and Sillanpää, 2022 ), and economical alternative to con-
entional biological wastewater treatment ( Abdel-Raouf et al., 2012 ).
lgae can produce biofuel and advanced bioremediation by integrat-

ng industrial and municipal utilities into holistic urban resources
 Wollmann et al., 2019 ). In general, integrated algal wastewater treat-
ent systems can remove N, P, BOD, and COD from wastewater ( Li et al.,
019 ; Zahmatkesh et al., 2020 ), capture CO 2 from power plants, and
roduce biofuels by cultivating algae. Organic nitrogen (such as urea)
nd inorganic nitrogen (such as ammonium and ammonia), nitrites and
itrates, can both be used by micro-algae. During wastewater treatment,
O 2 is released due to the environmental conditions under which N is

emoved ( Wollmann et al., 2019 ). 
A recent study highlights different advantages of integrated algae

ystems, such as sustainable CO 2 -rich exhausts that can be used as
O 2 filters, which stimulate algae growth. Enhanced bio-treatment of
astewater using algae that can remove P and N in wastewater for

cological wastewater removal, manufacturing biofuels using algae that
ccumulate 20–70% lipid, or using algae for agriculture by producing
arbohydrates, proteins, vitamins, etc pigments for fertilizer or pharma-
eutical uses. Using high-nutrient resources to cultivate algae is feasi-
le and cost-effective with the abovementioned benefits. Due to this,
icro-algae treatment processes produce fewer greenhouse gas emis-

ions; for example, micro-algae can assimilate the majority of nitrogen
ather than convert it to oxides of nitrogen ( Amenorfenyo et al., 2019 ;
ohsenpour et al., 2021 ). 

Furthermore, microalgae and bacteria’s relationship has been proven
o provide a symbiotic environment that protects algae from harm-
ul contaminants while enhancing the removal of hazardous pollutants
 Abinandan et al., 2015 ). Many reports show that microalgae and bacte-
ia have a symbiotic relationship: microalgae utilize CO 2 by photosyn-
hesis to produce oxygen, and heterotrophic bacteria can use this oxygen
o transform carbon, N, and P in organic matter. As a result of bacteria’s
erobic metabolism, CO 2 , inorganic nitrogen, and P are released that
an be used for photosynthesis by microalgae ( Li et al., 2019 ). 

Nitrogen can be removed from wastewater using algae-based treat-
ent through nitrogen uptake and ammonia removal caused by a pH

ncrease during algae growth. Moreover, microalgae need good growth
o effectively treat wastewater, which means understanding the factors
hat influence such growth is imperative ( Larsdotter, 2006 ). Physical,
hemical, and biological factors influence the growth rate of algae and
yanobacteria . The temperature and light are examples of physical fac-
ors. Chemical factors (nutrient availability and carbon dioxide) and bi-
logical factors (competition between species, animal grazing, and virus
nfections) exist. 
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Schema 8. Images of the use of an activated carbon filter as an absorber for viruses and other microorganisms in the presence of heavy metals in wastewater 
treatment. 

Schema 9. A microrobot based on algae against SARS-CoV-2. 
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Additionally, algae cultivation can remove phosphate through bioas-
imilation, adsorption, and chemical precipitation above pH 8. Despite
he different methods of removing N and P, bioassimilation is consid-
red essential, which is affected by various factors, including light con-
itions and the availability of CO 2 purification. As part of wastewater
reatment, the initial nutritional concentrations of algae can also play
n essential role in determining their growth characteristics and nutri-
16 
nt removal kinetics ( Wang et al., 2014 ). However, microalgae could
e particularly important for treating high-strength sewage typical of
ide streams from WWTPs. Besides, microalgae are used in WWTPs for
our main reasons: 1) to absorb or convert contaminants directly or to
chieve pathogens and pollutants decline, 2) as a biomass resource for
utrient recovery, 3) to decrease the total energy cost of either direct
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r indirect oxygen supply, and 4) to reduce CO 2 emissions ( Ting et al.,
017 ; Mohsenpour et al., 2021 ). 

Moreover, microalgae’s extracellular polymeric substances (EPS)
Cheng et al.,) may also affect their flocculation. EPS production by al-
ae also reflects changes in environmental conditions. For instance, the
witch from mixotrophic to heterotrophic growth caused stress for the
lgae, resulting in EPS production. Furthermore, an alternative method
or industrial-scale production of algae biomass and biofuel has been
roposed: heterotrophic cultivation. As a result of heterotrophic culti-
ation, biomass production is more predictable and reliable than pho-
oautotrophic systems since organic carbon uptake is a reliable energy
ource ( Xiao et al., 2016 ). In addition, algal metabolism will be differ-
nt depending on growth conditions and the environment, such as nu-
rient concentrations or light conditions. Finally, depending on the algal
etabolism, EPS may have different properties that affect effluent qual-

ty, algae harvesting, and digestibility ( Mishra et al., 2011 ; Xiao et al.,
016 ). 

ffect of algae on SARS-CoV-2 

A microrobot based on algae has been manufactured by modify-
ng microalgae with an ACE2 receptor against SARS-CoV-2 spike pro-
eins, via click chemistry. As a result, SARS-CoV-2 can be efficiently
emoved from aquatic media by a biohybrid microrobot. Furthermore,
he unique properties of microrobots enable rapid decontamination of a
ide range of environmental pollutants by their robust self-propulsion

apabilities and facile surface functionalization, which can remove dyes,
eavy metals, oil, pathogenic organisms, and chemical and biological
arfare agents ( Schema 9 ) ( Alam et al., 2021 ; Zhang et al., 2021 ). 

rends, challenges, and future research needs 

Low-income families across the globe have been hit hardest by this
ew outbreak, and this is because some of them had little or no access
o safe and adequately treated water. Research on pollution levels in
ivers and lakes is a possible risk to public health, affecting populations
n need of more attention. It is equally important to note the phrases
entioned in the article published by Neal (2020). 

“Various countries will emerge from the impacts of COVID-19 at
arying times and via different pathways, thus providing an opportunity
or those countries that are able to assist and support others humanely
nd humanly. Due to the fact that water enters into every aspect of hu-
an life and every sector of our increasingly globalized and intercon-
ected world, we should be embracing a human rights approach in our
mmediate, medium-term, and long-term water responses to COVID-19. ”

There is an urgent need for an economical alternative to the applica-
ion of wastewater treatment technologies. Moreover, without the risk of
ong-term effects, for example, highly toxic chlorine-based disinfectants,
he scientific community is apprehensive about the ecological damage
hey cause in the long run. 

The inadequate information about the behaviour of SARS-CoV-2 in
astewater makes proper wastewater treatment difficult and leaves gaps

hat need to be explored and explored to enhance the proposed tech-
ology to eliminate the presence of viruses in water compartments. As
OVID-19 raises public awareness of hygiene and disinfection of all
ypes of surfaces that can attach viruses, the impact will be manifested
n wastewater treatment chemicals and global water, according to a re-
ort made in the UK (Kataki et al., 2021). Natural compounds such as
icrobial and plant-based surfactants, natural wetting agents, viscosity

nhancing agents, essential oils and phenolic compounds are innovative
nd environmentally friendly solutions to reduce the burden of new con-
aminants from hygiene products. However, economic aspects must be
valuated with new technologies that increase productivity and reduce
osts by optimizing bioprocesses, separation processes or other inno-
ative methods (Daverey and Dutta, 2021). In addition, regions with
o regulations on wastewater treatment and inadequate infrastructure
17 
eed help to solve the problem. Some treatment alternatives are ad-
anced oxidation processes and membrane technologies characterized
y environmental friendliness, versatility, high efficiency, and safety. 

onclusion 

Using advanced methods such as membrane, UV irradiation, ozona-
ion, chlorination, advanced oxidation process, and AC in advanced
ater treatment causes the removal of pathogens, a variety of pollu-

ants, microplastics, etc., favouring reuse in irrigation crops and domes-
ic water. This review provides details on different suitable technolo-
ies for promoting water reuse. First, to remark that membrane meth-
ds can be substituted for conventional wastewater treatment. Thus, for
embrane-based treatments, the membrane size determines the maxi-
um pore size of the membrane, which must then be selected in order

o remove viral particles. Moreover, in order to inactivate SARS-CoV-2,
V radiation must also be intense enough to penetrate RNA and DNA.

n addition, various oxidizing radicals are created during chlorination,
hich aids in inactivating DNA, thereby inactivating SARS-CoV-2. 

Furthermore, a microrobot is fabricated using click chemistry to
unctionalize algae with an ACE2 receptor against SARS-CoV-2 spike
rotein. The ACE2-algae-robot demonstrates fast and long-lasting self-
ropulsion in diverse aquatic media, including drinking water and river
ater, eliminating the need for external fuel. In addition to removing
ARS-CoV-2 spike proteins and SARS-CoV-2 pseudovirus by moving the
lgae robot, the ACE2-algae robot is also capable of removing SARS-
oV-2 pseudovirus on-the-fly. Finally, the AC with a diameter of almost
.5 nm, which has a suitable microporous structure, can remove anionic
urfactants, and the AC with a smaller pore size between 0.56 and 0.77
m could adsorb more anionic surfactants and be more effective at re-
oving SARS-CoV-2. 

Moreover, it should be stressed that UV is an appropriate technol-
gy used in advanced water treatment for achieving the decline and
reventing the presence of viable coronavirus. Furthermore, advanced
astewater treatment technologies such as AOPs and membranes can
e used to inactivate and remove pathogens and organic contaminants
rom wastewater. In addition, WHO proposes short-term solutions as UV
nd solar radiation tend to be less damaging to the environment. Lastly,
ew low-cost detection and quantification methods in wastewater treat-
ent need to be developed and implemented to inform the assessment

f the risk of SARS-CoV-2 to human health. 
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