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Abstract The incubation period for typhoid, polio, measles, leukemia and many other diseases

follows a right-skewed, approximately lognormal distribution. Although this pattern was discovered

more than sixty years ago, it remains an open question to explain its ubiquity. Here, we propose an

explanation based on evolutionary dynamics on graphs. For simple models of a mutant or

pathogen invading a network-structured population of healthy cells, we show that skewed

distributions of incubation periods emerge for a wide range of assumptions about invader fitness,

competition dynamics, and network structure. The skewness stems from stochastic mechanisms

associated with two classic problems in probability theory: the coupon collector and the random

walk. Unlike previous explanations that rely crucially on heterogeneity, our results hold even for

homogeneous populations. Thus, we predict that two equally healthy individuals subjected to equal

doses of equally pathogenic agents may, by chance alone, show remarkably different time courses

of disease.

DOI: https://doi.org/10.7554/eLife.30212.001

Introduction
The discovery that incubation periods tend to follow right-skewed distributions originally came from

epidemiological investigations of incidents in which many people were simultaneously and inadver-

tently exposed to a pathogen. For example, at a church dinner in Hanford, California on March 17,

1914, ninety-three individuals became infected with typhoid fever after eating contaminated spa-

ghetti prepared by an asymptomatic carrier known to posterity as Mrs. X. Using the known time of

exposure and onset of symptoms for the 93 cases, Sawyer, 1914 found that the incubation periods

ranged from 3 to 29 days, with a mode of only 6 days and a distribution that was strongly skewed to

the right. Similar results were later found for other infectious diseases. Surveying the literature in

1950, Sartwell noted a striking pattern: the incubation periods of diseases as diverse as streptococ-

cal sore throat (Sartwell, 1950) (Figure 1a), measles (Stillerman and Thalhimer, 1944), polio,

malaria, chicken pox, and the common cold were all, to a good approximation, lognormally distrib-

uted (Sartwell, 1950). On a time scale of years instead of days, the incubation periods for bladder

cancer (Goldblatt, 1949) (Figure 1b), skin cancer, radiation-induced leukemia, and other cancers

were also found to be approximately lognormally distributed (Armenian and Lilienfeld, 1974).

Two natural questions arise: Why should incubation periods be distributed at all, and why should

they be distributed in the same way for different diseases? Previous explanations rest on the pre-

sumed heterogeneity of the host, the pathogen, or the dose (Sartwell, 1950; Nishiura, 2007;

Horner and Samsa, 1992). To see how this works, return to the typhoid outbreak at the Hanford

church dinner (Sawyer, 1914). Every person who ate that spaghetti presumably had a different level

of overall health and immune function, and every plate of spaghetti was likely contaminated with a

different dose and possibly even strain of typhoid.
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eLife digest When one child goes to school with a throat infection, many of his or her

classmates will often start to come down with a sore throat after two or three days. A few of the

children will get sick sooner, the very next day, while others may take about a week. As such, there

is a distribution of incubation periods – the time from exposure to illness – across the children in the

class.

When plotted on a graph, the distribution of incubation periods is not the normal bell curve.

Rather the curve looks lopsided, with a long tail on the right. Plotting the logarithms of the

incubation periods, however, rather than the incubation periods themselves, does give a normal

distribution. As such, statisticians refer to this kind of curve as a “lognormal distribution".

Remarkably, many other, completely unrelated, diseases – like typhoid fever or bladder cancer –

also have approximately lognormal distributions of incubation periods. This raised the question: why

do such different diseases show such a similar curve?

Working with a simple mathematical model in which chance plays a key role, Ottino-Löffler et al.

calculate how long it takes for a bacterial infection or cancer cell to take over a network of healthy

cells. The model explains why a lognormal-like distribution of incubation periods, modeled as

takeover times, is so ubiquitous. It emerges from the random dynamics of the incubation process

itself, as the disease-causing microbe or mutant cancer cell competes with the cells of the host.

Intuitively, this new analysis builds on insights from the “coupon collector’s problem”: a classical

problem in mathematics that describes the situation where a person collects items like baseball

cards, stamps, or cartoon monsters in a videogame. If a random item arrives every day, and the

collector’s luck is bad, they may have to wait a long time to collect those last few items. Similarly, in

the model of Ottino-Löffler et al., the takeover time is dominated by dramatic slowdowns near the

start or end of the infection process. These effects lead to an approximately lognormal distribution,

with long waits, as seen in so many diseases.

Ottino-Lo€ffler et al. do not anticipate that their findings will have direct benefits for medicine or

public health. Instead, they believe their results could help to advance basic research in the fields of

epidemiology, evolutionary biology and cancer research. The findings might also make an impact

outside biology. The term “contagion” has now become a familiar metaphor for the spread of

everything from computer viruses to bank failures. This model sheds light on how long it takes for a

contagion to take over a network, for a variety of idealized networks and spreading processes.

DOI: https://doi.org/10.7554/eLife.30212.002
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Figure 1. Frequency distributions of incubation periods for two diseases. Data redrawn from historic examples.

Dashed red curves are noncentral lognormal distributions. Solid blue curves are Gumbel distributions, predicted

by the theory developed here. Both sets of curves were fitted via the method of moments. (a) Data from an

outbreak of food-borne streptococcal sore throat, reported in 1950 (Sartwell, 1950). Time is measured in units of

days. (b) Data from a 1949 study of bladder tumors among workers following occupational exposure to a

carcinogen in a dye plant (Goldblatt, 1949). Time is measured in units of years.

DOI: https://doi.org/10.7554/eLife.30212.003
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Suppose the typhoid bacteria proliferated exponentially fast within the hosts and triggered symp-

toms when they reached a fixed threshold. Then, if the bacterial dose, growth rate, or triggering

threshold were normally distributed across the hosts, one can show that the resulting distribution of

incubation periods would have been either exactly or approximately lognormal (see Results, ‘Influ-

ence of heterogeneity’). On the other hand, there is counter-evidence that lognormal distributions

can occur even if some of these sources of heterogeneity are lacking. For example, Sartwell, 1950

reanalyzed data from a study (Bodian et al., 1949) in which identical doses and strains of polio virus

were injected into the brains of hundreds of rhesus monkeys. The incubation period, defined as the

time from inoculation to the onset of paralysis, was still found to be approximately lognormally dis-

tributed, even though the route of infection and the viral dose and strain were held constant. More-

over, the lognormal distributions commonly observed for human diseases have a particular shape,

with a dispersion factor (Sartwell, 1950) around 1:1� 1:5, which previous models cannot explain

without special parameter tuning. (See Box 1 for the definition of dispersion factors.)

Here, we propose a new explanation for the skewed distribution of incubation periods. Instead of

heterogeneity, it relies on the stochastic dynamics of the incubation process, as the pathogen

invades, multiplies, and competes with itself and the cells of the host in a structured network topol-

ogy. The theory predicts that under a broad range of circumstances, incubation periods should fol-

low a right-skewed distribution that resembles a lognormal, but is actually a Gumbel, one of the

universal extreme value distributions (Kotz and Nadarajah, 2000). Heterogeneity is not required,

but it is allowed; it does not qualitatively alter our results when included.

Results

Mathematical Model
We model the incubation process using the formalism of evolutionary graph theory

(Lieberman et al., 2005; Nowak, 2006; Ohtsuki et al., 2006; Ashcroft et al., 2015). A network of

N � 1 nodes is used to represent an environment within a host where a pathogenic agent, such as a

harmful bacterium or a cancer cell, is invading and reproducing. The network could represent several

plausible biological scenarios, for example the intestinal microbiome, where harmful typhoid bacte-

ria are competing against a benign resident population of gut flora in a mixing system (modeled as

a complete graph); or it could represent mutated leukemic stem-cells vying for space against healthy

hematopoietic stem cells within the well-organized three-dimensional bone marrow space (modeled

as a 3D lattice); or a flat epithelial sheet with an early squamous cancer compromising and invading

nearby healthy cells (modeled as a 2D lattice). For the sake of generality, we will refer to the two

types of agents as healthy residents and harmful invaders.

Box 1. Dispersion factors.

The Dispersion Factor of a distribution or dataset is defined to be its geometric standard

deviation. Or more explicitly, given a positive dataset xn, it is sG, where

�G :¼ exp
X

n

1

N
logðxnÞ

" #

sG :¼ exp
X

n

1

N� 1
logðxn=�GÞ2

" #

:

We measure this quantity for multiple reasons. While �G is a dimensionful quantity, sG is

dimensionless. Secondly, logðsGÞ is the maximum likelihood estimator for the scale parameter

of an unshifted lognormal distribution. Moreover, this is the quantity Sartwell used to describe

the variability of incubation periods (Sartwell, 1950), so it is a useful point of comparison.

DOI: https://doi.org/10.7554/eLife.30212.004
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Figure 2. Evolutionary update rules. (a) In the Birth-death (Bd) update rule, a node anywhere in the network is

selected at random, with probability proportional to its fitness, and one of its neighbors is selected at random,

uniformly. (b) The neighbor takes on the type of the first node. In biological terms, one can interpret this rule in

two ways: either the first node transforms the second; or it gives birth to an identical offspring that replaces the

second. (c) In the Death-birth (Db) update rule, a node is selected at random to die, with probability inversely

proportional to its fitness, and one of its neighbors is selected at random, uniformly, to give birth to one offspring.

(d) The first node is replaced by the offspring of the second.

DOI: https://doi.org/10.7554/eLife.30212.005

Box 2. Nomenclature for the Moran model.

There are many distinct variations on the basic Moran model, but the six most popular all con-

sist of a two-step update. The first step selects a node over the entire population, whereas the

second step selects a neighboring node from the neighbors of the first.

However, the content of each step can vary from one model to another. For example, the

selection in each step can occur in a fitness-weighted fashion. Also, the node in the first step

can be interpreted as either giving birth, or dying.

To avoid confusion, we use standard abbreviations to distinguish the different models, as illus-

trated by the table below. The order of letters indicates the order of the steps, and the capi-

talization denotes which steps have a fitness dependence. For example, dB refers to the

update rule where the first step uniformly selects a node from the entire population to die,

and then one of its neighbors is selected, with probability proportional to fitness, to replace it.

In this paper, we focus exclusively on Bd and Db. Although much the same analysis could be

done on any of the other update rules, these two were showcased due to their relative popu-

larity and simplicity.

Step order Fitness-step first Fitness-step second Both fitness-steps

Birth first Bd bD BD

Death first Db dB DB

DOI: https://doi.org/10.7554/eLife.30212.006
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While Sartwell’s law has been applied to many different types of diseases with diverse etiologies,

the model we propose makes the most sense for asexually reproducing invaders, like cancer cells or

bacteria. Viruses, on the other hand, often reproduce with a ‘one-to-many’ dynamic, which is not

faithfully captured in this model. So, while the general phenomenon of network invasion seems to

apply to viruses as well, the model in its present form is not well suited to describe their dynamics.

Considering asexually reproducing and competing invaders, then, we choose to model the inva-

sion dynamics as a Moran process (Moran, 1958; Williams and Bjerknes, 1972; Lieberman et al.,

2005; Nowak, 2006). Invaders are assigned a relative fitness r (suggestively called the carcinogenic

advantage by Williams and Bjerknes, 1972). The fitness of residents is normalized to 1. We consider

two versions of the Moran process. In the Birth-death (Bd) version (Figure 2a), a random node is

chosen, with probability proportional to its fitness. It gives birth to a single offspring. Then, one of

its neighbors is chosen uniformly at random to die and is replaced by the offspring (Figure 2b). We

also consider Death-birth (Db) updates (Figure 2c,d). In this version of the model, a node is ran-

domly selected for death, with probability proportional to 1=r; then a copy of a uniformly random

neighbor replaces it. To test the robustness of our results, we study both versions of the Moran

model on various networks: complete graphs, star graphs, Erdős-Rényi random graphs, one-, two-,

and three-dimensional lattices, and small-world, scale-free, and k-regular networks. We also vary the

invader fitness r and the model criterion for the onset of symptoms. These extensions are presented

in the Materials and methods, Figures 5, 6. Box 2 discusses other variants of the Moran model. Here

we focus on the simplest cases to elucidate the basic mechanisms.

Our simulations start with a single invader placed at a random node in a network of otherwise

healthy residents. The update rule is applied at discrete time steps. In the long run, either the

invaders replace all the residents, or vice versa. If symptoms are triggered when the entire network

has been taken over by invaders, then the incubation period is the number of time steps between

the introduction of the invader and its fixation. On the other hand, if the invaders die out and the

healthy cells take over, then the process is stopped and no observable symptoms manifest. Later, in

the paper, we consider a generalization from complete to partial takeovers, but for now the incuba-

tion period will refer to a complete takeover.
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Figure 3. Network topology and invader fitness shape the distribution of incubation periods. Plots show simulated

distributions of incubation periods, defined here as invader fixation times. Starting from a single invader at a

random node, the state of the network was updated by Birth-death dynamics on both a complete graph and a

two-dimensional (2D) lattice. Results for the Death-birth update rule (not shown) are identical. All distributions are

normalized to have zero mean and unit variance. (a) Infinitely fit invader. For invader fitness r ! ¥, the distribution

is right-skewed for a complete graph (blue symbols). It approaches a Gumbel distribution as N ! ¥, where N is

the number of nodes in the network. In contrast, for a 2D lattice (red symbols) the incubation periods are normally

distributed. The difference is that a coupon collection mechanism operates in the complete graph and in lattices

of sufficiently high dimension d � 3; this mechanism causes the right skew. Simulations used 10
6 repetitions on a

complete graph of N ¼ 150 nodes, and 10
5 repetitions for a 2D lattice of N ¼ 30

2 nodes. (b) Neutrally fit invader.

Distributions of incubation periods are shown for invader fitness r ¼ 1, using 10
6 repetitions on a complete graph

of N ¼ 50 nodes (blue symbols), and 10
5 repetitions for a 2D lattice of N ¼ 7

2 nodes (red symbols). Similar right-

skewed distributions occur for both networks, caused by a conditioned random walk mechanism.

DOI: https://doi.org/10.7554/eLife.30212.007
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Our notion of time in this model is linked directly to the biology of invasion of a reproducing

asexual pathogen that divides and replaces other cells sequentially. Instead of considering divisions

as a rate, and therefore linking the dynamics to real time, we consider time steps to be individual

division events. This is more akin to the standard methods of modeling chemical interactions, as in

the Gillespie algorithm (Gillespie, 1977). This focus on the biology of the individual pathogen (or

cancer cell) also provides a simple explanation for how diseases with very different natural histories

can have the same analytic distribution of incubation time. As each different disease would have a

different characteristic mean doubling time, while the shape of the distributions might be the same,

the physical time taken would scale with the characteristic proliferation time. Future iterations of this

model could consider deriving an exact scaling between physical time and this biological event-

based updating of time.

Infinitely fit invaders
First, consider what happens if the invaders have infinite fitness (r ! ¥) in the Birth-death model.

While an exaggeration, this case is instructive and is a reasonable approximation for aggressive can-

cers and infections. In this limit, the dynamics simplify enormously: only the invaders reproduce. But

because they give birth and replace their neighbors blindly, they waste time whenever they compete

between themselves and one invader replaces another. These random self-replacements slow down

the incubation process, and make it highly variable. In fact, the level of in-fighting is what determines

the incubation period in this case. Beyond fitness, the topology of the network matters too. For low-

dimensional networks, exemplified by a two-dimensional lattice (Figure 3a , red circles), the growth

rate of the invader population remains roughly constant as takeover occurs. This leads to a normal

distribution of incubation periods (Figure 3a, red circles; and see Methods and Materials, ‘Birth-

death, other solvable networks’). However, on very high-dimensional networks like the complete

graph (Figure 3a, blue circles), the distribution becomes right skewed. Intuitively, this happens

because every invader now has a chance of replacing any healthy node or any other invader. It is as

if at every time step a candidate node for replacement gets blindly drawn from a bag, relabeled as

an invader, and returned to the bag. At the start of the incubation process, almost every draw adds

another invader to the population and the infection progresses rapidly. But near the end, it will take

many, many draws to blindly fish out the last remaining healthy node, as needed to terminate the

incubation period. This slowing-down phenomenon near the end should feel familiar to anyone who

has tried to complete a collection of baseball cards, stamps, or coupons, since they are all manifesta-

tions of the coupon collector’s problem, a well-studied concept in probability theory (Pósfai, 2010;

Feller, 1968; Erdős and Rényi, 1961). Because of those frustratingly long waits to collect the final

healthy node, the incubation period distribution gets skewed to the right. In the infinite-N limit (see

Methods and Materials, ‘Birth-death, complete graph’), the coupon collector’s process returns a

Gumbel distribution, which resembles a lognormal and can be mistaken for it (Read, 1998). Indeed,

when a Gumbel and a lognormal are fit to the same real data, as in Figure 1, it is hard to tell them

apart. All this analysis can easily be repeated for the Death-birth model with minimal changes.

Neutrally fit invaders
At the other extreme, suppose the invaders have no selective advantage (r ¼ 1). Then a different

stochastic mechanism skews the distribution of incubation periods to the right (Figure 3b and Meth-

ods and Materials, ‘Random Walk Skewness’). For many networks, the dynamics reduce to an unbi-

ased random walk on the number of invaders, with waiting times at each population level. There are

two absorbing states, corresponding to both 00 and N invaders for the two kinds of fixation. How-

ever, we only care about random walks that successfully hit N, as these represent disease processes

that manifest symptoms, so we must always condition on its success. This demands that the invader

experience early success and growth, pushing it away from probable extinction. This conditioning

introduces a bias that makes short incubation times probable, but long walks may still occasionally

occur, driving the mean time above the median. In short, a conditioned random walk will introduce a

right skew in the distribution of incubation periods. This effect holds for both high- and low-dimen-

sional networks (Figure 3b), and for Birth-death and Death-birth dynamics.
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Testing robustness to update rule and truncation
Right-skewed distributions typically persist in the face of various perturbations to the model, but

some perturbations can turn them into normal distributions. For example, suppose we allow symp-

toms to occur when invaders take over only a fraction f of the whole network. This is a reasonable

consideration as leukemic cells need not take over all the bone marrow before leukemia becomes

evident, nor does typhoid need to overwhelm all the cells in the microbiome before causing fever;

indeed it is likely far fewer in both cases. Figure 4 contrasts what happens for Birth-death and

Death-birth dynamics under these assumptions. When r ¼ ¥, the Gumbel distribution of Figure 3a

persists for f ¼ 1 (Figure 4a), but turns into a normal distribution (Baum and Billingsley, 1965) when

f ¼ 0:9 (Figure 4b) or f ¼ 0:1 (Figure 4c). Yet under Death-birth dynamics, the distribution stays

Gumbel for all nonzero values of f (Figure 4d,e,f). The fact that birth-death dynamics returns a nor-

mal for 0<f<1 whereas Death-birth still returns a Gumbel can be rationalized via various convergence

theorems (Baum and Billingsley, 1965; Ottino-Löffler et al., 2017; Pósfai, 2010). However, the

fact that similar update rules behave so differently under a reasonable perturbation should caution

us to be mindful of our choice of models.

Influence of heterogeneity
Historically, the distribution of incubation periods has been ascribed to heterogeneity (Sart-

well, 1950; Nishiura, 2007; Horner and Samsa, 1992) in the fitness (growth rate, say) or dose of
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Figure 4. Testing robustness. The plots show how the distribution of incubation periods does or does not change

when we modify the assumed update rules and criterion for the onset of symptoms. Both Birth-death (Bd) and

Death-birth (Db) dynamics were simulated on a complete graph of N ¼ 5000 nodes, using a infinite invader fitness.

Incubation periods are now defined as times needed for invaders to take over a fraction f of the whole network.

All distributions are normalized to have zero mean and unit variance. Data points are color-coded according to the

nature of the distribution: blue indicates a Gumbel distribution, and red indicates a normal distribution. (a) The

distribution of times till invader fixation (f ¼ 1) under Birth-death dynamics. The Gumbel distribution of Figure 3a

persists. (b) When f is reduced to 0.9, the incubation periods under Birth-death dynamics become normally

distributed instead of skewed. (c) When f is reduced to 0.1, the incubation period distribution remains normally

distributed. By contrast, Death-birth dynamics are insensitive to this modification: the Gumbel distribution persists

not only for (d) f ¼ 1 but even for (e) f ¼ 0:9 and (f) f ¼ 0:1. The difference in sensitivity between the two types of

dynamics can be explained intuitively by when the slowest part of the coupon collection process occurs. For

Death-birth dynamics, it occurs near the beginning of the invasion, when it takes a long time to randomly select

one of the few available invaders to give birth. Since the slow part of coupon collection occurs near the beginning,

it is insensitive to the end-condition f<1. In contrast, the slow part occurs near the end of the invasion for Birth-

death dynamics (when residents are scarce), and hence gets truncated when f<1, giving rise to a normal instead of

a right-skewed distribution.

DOI: https://doi.org/10.7554/eLife.30212.008
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the pathogen, or in host factors like immune response. To see how these potential sources of het-

erogeneity could account for the skewed and approximately lognormal distribution of incubation

periods, consider a pathogen growing exponentially with rate r from an initial population N0, so that

its population at time t is given by NðtÞ ¼ N0e
rt. If an immune response or other detectable symptoms

are triggered when N reaches a threshold population �, then the incubation time T satisfies

NðTÞ ¼ N0e
rT ¼ �. Solving for T yields

T ¼ 1

r
log�� logN0ð Þ: (1)

So if either the threshold � or the inoculum N0 are normally distributed across the host popula-

tion, the incubation period T will be lognormally distributed. Likewise, but in a more qualitative

sense, a normal distribution of pathogen growth rates r will also produce a skewed distribution that

resembles a lognormal (Nishiura, 2007). However, if there is no randomness in any of those sources,

this model predicts a single deterministic value of T for the incubation period.

In contrast, the stochastic model proposed here does not need these sources of heterogeneity to

produce right-skewed distributions. But if they happen to be present, as they likely are for many real

diseases, our model can accommodate them. Indeed, when any of the three sources of heterogene-

ity are included in our model, they only serve to make the predicted distributions even more right-

skewed, as we now show.

First, to emulate the heterogeneity of the strength of the pathogen, we assume heterogeneity in

the parameter r (which, in our model, governs the fitness of the invading cells relative to those of

the host). In particular we randomly draw a different r>0 in each simulation, to simulate different

hosts being infected with different pathogenic strains. The resulting distribution of invader fixation

times depends on the distribution of the r’s, but our investigations demonstrate they consistently

produce right-skewed distributions (Figure 5a).
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Figure 5. Robustness to heterogeneity. Simulated, fitted, and normalized distributions of incubation periods for

birth-death dynamics on a complete graph of N ¼ 500 nodes. Unless stated otherwise, each simulation used an

invader fitness of r ¼ 10, measured times till complete takeover (f ¼ 1), and started from an initial dose of 1

invader. Runs where the dosage was not smaller than the truncation point were rejected. The blue curves indicate

noncentral lognormals fitted via the method of moments. (a) Heterogeneous fitness of invader. Every run used a

different r selected from a Gamma distribution with a shape parameter of 10. (b) Heterogeneity of host response.

Instead of waiting until all N residents had been replaced by invaders, every run used a different truncation point

uniformly selected from f2; 3; . . .Ng. (c) Heterogeneity of dosage. Every run had a different starting population

drawn from a Poisson of mean 10 and a shift of 1. (d) Heterogeneity of invader fitness, host response, and dosage.

Every run used an r drawn from Gamma(10), a truncation point f drawn from Uniform(0,1), and a dosage drawn

from Poisson(10)+1.
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Second, to emulate the heterogeneity of host factors like immune response, we allow variability

in the parameter f , which quantifies the fraction of the network that needs to be invaded before

symptoms appear. Let Tf denote the time it takes for N � f of the original resident nodes to be

replaced by invaders. If we draw f randomly from some distribution, then essentially each host has a

different threshold at which symptoms appear. In contrast to Figure 4b, where we saw that

repeated simulations for a host population with a single, fixed, deterministic f can cause skewed dis-

tributions to turn into normal distributions, that is no longer the case when heterogeneity is

included, as Figure 5b indicates. In fact, the heterogeneity actually causes even more right-skew

than before.

Third, emulating variable doses is also straightforward. Instead of always starting with a single

invader cell, we choose the initial number of invaders according to some distribution. Again, this

modification does not remove the right-skewed behavior established in the Moran model

(Figure 5c).

Finally, we can apply all these sources of heterogeneity at once, and remain with a right-skewed

distribution (Figure 5d). In summary, although our main results were obtained by analyzing stochas-

tic models of homogeneous host and pathogen populations, allowing for heterogeneity makes the

predicted right-skewed distributions more, not less, prominent.

Discussion
The evolutionary dynamical model presented here is intended to mimic the within-host development

of certain cancers and bacterial infections. It is not well suited to the dynamics of viruses. Thus,

explaining why Sartwell’s law also holds for so many viral diseases remains an open question.

Our model suggests two basic mechanisms underlie the observed right-skewed, approximately

lognormal distributions of incubation periods. When the fitness of the pathogen is high, the skew

comes from coupon collection; when the pathogen fitness is neutral or low, the skew comes from

conditioned random walks; and at intermediate fitnesses, a combination of the two creates skew.

Neither of these effects demand any heterogeneity from the invader or the host. However, the

model can accommodate such heterogeneity, either by having the invader fitness r be randomly

drawn, or by having symptoms occur when a random fraction f of the host network has been

invaded. Our simulations show that both sources of heterogeneity only exaggerate the level of right-

skewness we would have seen without them (See Results,‘Influence of heterogeneity’, Figure 5).

Beyond accounting qualitatively for the distributions of incubation periods, our model accounts

for a quantitative feature that has never been explained before. As shown in Methods and Materials,

Table 1, the distributions generated by highly fit pathogens and mutants are predicted to have

Table 1. Model dispersion factors.

Dispersion factors (geometric standard deviations, see Box 1) for the simulated distributions of incu-

bation periods shown in Figures 6,7,8 , for different networks and invader fitness levels r. Errors rep-

resent 95% confidence intervals. Due to finite size effects, the dispersion factors exceed 1 for 1D and

2D lattices with r ¼ ¥ (they should approach one as N ! ¥). Dispersion factors for the r ¼ 1 case are

larger than for the r ¼ ¥ case, but are more uniform for different network topologies.

Network r ¼ ¥ r ¼ 1

Complete 1:2386� 0:0004 1:6629� 0:0012

Star 1:3463� 0:0006 1:6875� 0:0012

1D Lattice 1:1418� 0:0002 1:7907� 0:0014

2D Lattice 1:0731� 0:0003 1:6799� 0:0012

3D Lattice 1:1289� 0:0006 1:6659� 0:0012

Erdős-Rényi 1:2586� 0:0004 1:6900� 0:0012

Small-World 1:2604� 0:0004 1:7693� 0:0014

k-Regular 1:2125� 0:0003 1:7229� 0:0013

Scale-Free 1:4189� 0:0007 1:7399� 0:0013

DOI: https://doi.org/10.7554/eLife.30212.010
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dispersion factors (also known as geometric standard deviations; see Box 1) of about 1:1� 1:4, close

to the actual values of 1:1� 1:5 observed for various infectious diseases (Sartwell, 1950;Sart-

well, 1966;Nishiura, 2007). Moreover, the model also helps to explain why so few infectious dis-

eases yield dispersion factors greater than 1.5. Such high dispersion factors arise only for r » 1,

corresponding to pathogens or mutants that are only slightly more fit than the resident populations

against which they are competing.

On the other hand, it is tempting to speculate that this regime of nearly neutral fitness may be

more relevant to cancer development. While it is likely that tumor cells late in the disease process

have much higher fitness than healthy cells secondary to continued selection (Scott and Marusyk,

2017), there is ample evidence that most cancers have long latency periods, for example in genetic

data from pancreatic cancers (Yachida et al., 2010). One could speculate that during this early

period, which accounts for the majority of the cancer’s time in the patient, the fitness is nearly neu-

tral. For the cancer data reviewed by (Armenian and Lilienfeld, 1974), the observed distributions

typically had dispersion factors around 1:4� 1:9. In our model, these high dispersion factors tend to

arise when the invader is only slightly more fit than residents. This is also consistent with the sugges-

tion of (Williams and Bjerknes, 1972); the shape of tumors in the model most closely resembled

that of real tumors when the fitness of the invaders was only slightly above neutral.

In 1546, Fracastorii, 1930 described the incubation of rabies after a bite from an rabid dog as

‘stealthy, slow, and gradual.’ Today, nearly five centuries later, the dynamics of incubation processes

remain stealthy and slow to yield their secrets. We have tried to shed light on their patterns of vari-

ability with the help of a new conceptual tool, evolutionary graph theory. This approach provides a
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Figure 6. Network dependence of incubation periods. Distributions of invader fixation times, normalized to have

zero mean and unit variance, are shown for infinite-r Birth-death dynamics on various networks. Open circles show

simulation results. Curves show analytical predictions: blue curves are Gumbels, red are normals, and pink is an

intermediate distribution. Insets show schematics of networks. (a) The distribution of fixation times for a complete

graph on N ¼ 150 nodes, for 106 runs. Distribution normalized according to analytically calculated mean and

standard deviation. Curve shows a Gumbel distribution. (b) The Gumbel distribution of fixation times for a star

graph with N ¼ 75 spokes, for 106 runs. Distribution normalized according to analytically calculated mean and

standard deviation. (c) Normal distribution of fixation times for a 1D ring on N ¼ 75 nodes, for 106 runs.

Distribution normalized according to analytically calculated mean and standard deviation. (d) Normal distribution

of fixation times for a 2D lattice of N ¼ 60� 60 nodes, for 105 runs. Distribution normalized according to

empirically calculated mean and standard deviation. (e) The distribution of fixation times for a 3D lattice of N ¼ 11
3

nodes, for 105 runs. Distribution normalized according to empirically calculated mean and standard deviation. The

predicted distribution is the result of an approximating sum of exponential random variables under 106

repetitions. (f) The distribution of fixation times for an Erdős-Rényi random graph on N ¼ 115 nodes with an edge

probability of � ¼ 0:5. Distribution normalized according to empirically calculated mean and standard deviation.
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Figure 7. Complex networks. Simulated and fitted distributions of invader fixation times for Birth-death dynamics

on small-world, scale-free, and k-regular networks. All distributions were normalized to have mean zero and unit

variance. The curves indicate non-central lognormals fitted to the first three moments of the data. All distributions

are the result of 106 simulations. The figures in the top row ((a), (b), (c)) used invader fitness r ¼ ¥, whereas the

figures in the bottom row ((d), (e), (f)) used neutral fitness r ¼ 1. (a) Newman-Watts-Strogatz small-world ring

network with shortcut probability of � ¼ 0:25 on N ¼ 75. (b) Random 3-regular graph on N ¼ 100 nodes. (c)

Barabasi-Albert scale-free network with a minimum degree of 3 and N ¼ 100 nodes. (d) Newman-Watts-Strogatz

small-world ring network with shortcut probability of � ¼ 0:25 on N ¼ 25 nodes. (e) Random 3-regular graph on

N ¼ 22 nodes. (f) Barabasi-Albert scale-free network with a minimum degree of 3 and N ¼ 22 nodes.

DOI: https://doi.org/10.7554/eLife.30212.012
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Figure 8. Neutrally fit invader ðr ¼ 1Þ. Simulated and fitted distributions of invader fixation times are shown for

Birth-death dynamics on various networks. All distributions were normalized to have mean zero and unit variance.

The curves indicate noncentral lognormals fitted via the method of moments. (a) Complete graph on N ¼ 50

nodes, for 106 runs. (b) Star graph with N ¼ 25 spokes, for 106 runs. (c) One-dimensional ring on N ¼ 50 nodes, for

10
6 runs. (d) Two-dimensional lattice on N ¼ 7� 7 nodes, for 106 runs. (e) Three-dimensional lattice on N ¼ 4

3

nodes for 106 runs. (f) Erdős-Rényi random graph on N ¼ 25 nodes with an edge probability of � ¼ 0:5.
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possible solution to the longstanding question of why so many disparate diseases show such simi-

larly-shaped distributions of incubation periods. What remains is to quantify the dynamics of incuba-

tion processes experimentally with high-resolution measurements in time and space.

Aside from their possible application to incubation processes, our results also shed light on a

broader theoretical question in evolutionary dynamics: when a mutant invades a structured popula-

tion of residents, how does the distribution of mutant fixation times depend on the network struc-

ture of the population? Early work in evolutionary graph theory (Lieberman et al., 2005;

Nowak, 2006; Ohtsuki et al., 2006) concentrated on the network’s impact on the probability of

mutant fixation and the mean time to fixation. More recent studies have gone beyond the mean

time to consider the full distribution of fixation times (Ashcroft et al., 2015), as we have also done

here. We hope that our exact results for disparate topologies and dynamics will stimulate further

investigations of these important questions in evolutionary biology.

Materials and methods
Here we describe the model and our analytical and numerical results in further detail. We also test

the robustness of our claims with respect to relaxation of the various assumptions in the model. See

the Appendix for complete proofs of analytical results.

Birth-death, complete graph
The population of cells is represented by a network of N nodes. Edges between nodes indicate

which cells can potentially interact with each other. There are two types of cells: harmful invaders

with fitness r, and healthy residents with fitness 1. All simulations are initialized with a single invader

placed at a random node.

The Moran Birth-death (Bd) update rule has two steps. First, a node is randomly selected out of

the total population, with probability proportional to its fitness. Second, a neighbor of the first node

is chosen, uniformly at random, and takes on the type of the first node.

In a complete graph, all nodes are adjacent. Therefore, the probability of adding a new invader,

given there are currently m invaders, is

pm :¼ PðChoose an invaderÞ �PðNeighbor is residentÞ ¼ mr

mrþðN�mÞ �
N�m

N� 1
:

In the limit of infinite fitness, ðr!¥Þ, the first term approaches one and we get

pm :¼N�m

N� 1
;

and the probability of the invader population ever decreasing is 0. So the time T to invader fixation

is sum of all the transition times m!mþ 1 for m¼ 1;2; . . . ;N� 1. These transition times can be calcu-

lated as follows. For the population to take t steps to go from m to mþ 1 invaders, nothing must

have happened for t� 1 steps before advancing on the t’th step. The probability of this happening is

exactly

pmð1� pmÞt�1:

In other words, the time to add a new invader is exactly a geometric random variable. Therefore,

the total fixation time is just

T ¼
X

N�1

m¼1

GeoðpmÞ ¼
X

N�1

k¼1

Geo
k

N� 1

� �

:

This random variable T describes a process identical to that of the coupon collector’s problem

(Pósfai, 2010; Feller, 1968). In both, we have a collection of N� 1 nodes, and draw a random one

with replacement at each time step. If we pick a healthy node, we relabel it and toss it back, and

repeat until there are no healthy nodes left. By adapting classic results (Erdős and Rényi, 1961;

Baum and Billingsley, 1965), we show in the Appendix that it is straightforward to find the
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asymptotic distribution of T as N gets large. To normalize this distribution, note that its mean is

�¼
P

m p
�1

m »N logðNÞþNg. Then we find

T ��

N
!d Gumbelð�g;1Þ: (2)

Here g»0:5772 is the Euler-Mascheroni constant, !d denotes convergence in distribution, and a

Gumbel(a;b) random variable has a density given by

hðxÞ ¼ b�1e�ðx�aÞ=b exp �e�ðx�aÞ=b
� �

: (3)

This prediction for the normalized distribution of the incubation period T agrees with simulations

on large networks (Figure 6a).

A Gumbel distribution of incubation periods has previously been obtained for a variant of this

model. Instead of working with the large-N limit of a complete graph, it assumed a continuous-time

birth-death model of an invading microbial population whose dynamics were governed by differen-

tial equations (Williams, 1965).

Birth-death, other solvable networks
The analysis of the finite-N complete graph sets up an important framework that can be applied to

more complicated networks. For example, in the Appendix we prove that the distribution of fixation

times T for a star network also converges to a Gumbel for N � 1, specifically:

T �N2 logðNÞ� ðg� 1ÞN2

N2
!d Gumbelð�g;1Þ: (4)

This prediction matches simulations (Figure 6b).

The same framework also applies to a one-dimensional (1D) ring lattice, but instead of using the

coupon-collector framework, we need to cite the Lindeberg-Feller central limit theorem (Dur-

rett, 1991). As shown in the Appendix, this gives us

T �ðN2 �NÞ=2
ð2N3 � 3N2 þNÞ=6!

d
Normalð0;1Þ: (5)

This prediction agrees with simulations (Figure 6c).

For a two-dimensional square lattice, it is more difficult to produce analytical results that are both

rigorous and exact. But by making an approximation based on the geometry of the lattice, and using

the fact that the population growth rate is proportional to its surface area (see the Appendix, ”Nor-

mally distributed fixation times for 2D lattice’), we can make a non-rigorous analytical guess about

the distribution of the fixation times T. Via these arguments, and given � ¼ E½T � and s2 ¼ VarðTÞ,
we predict

T ��

s
!d Normalð0;1Þ: (6)

Despite the approximation, this prediction works well (Figure 6d).

By similar arguments, we predict that lattices of dimension d � 3 have right-skewed asymptotic

distributions of fixation times. Specifically, given h :¼ 1� 1=d, we predict

SkewðTÞ :¼ E½ðT ��Þ3�
s3

¼ 2zð3hÞ
zð2hÞ3=2

; (7)

where z is the Riemann zeta function. The methods used to derive that can also be used to create

approximate finite-size distributions for the lattices (Figure 6e).

In particular, we predict positive skew for all d � 3 and for the skew to increase monotonically

with dimension (see the Appendix). Meanwhile, both 1D and 2D lattices have normal asymptotic dis-

tributions, and therefore no skew. This establishes d ¼ 2 as a critical dimension in these dynamics,

transitioning from zero skew to positive skew.
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Incidentally, these arguments also suggest that appropriate infinite-dimensional networks will

asymptotically have a Gumbel distribution. This is numerically true for the Erdős-Rényi random graph

(Figure 6f).

For more complex networks, such as the Watts-Strogatz small-world network, the k-regular ran-

dom graph, and the Barabasi-Albert scale-free network, we currently lack theory to predict the

asymptotic distributions analytically. However, numerical simulations produce simulations that are all

well-approximated by a noncentral lognormal, obeying Sartwell’s law (Sartwell, 1950) (Figure 7a,c,

e).

Table 1 shows that geometric standard deviations of the incubation period distributions for all of

these networks fall around 1:1� 1:4, in agreement with the dispersion factors of 1:1� 1:5 observed

for many infectious diseases (Sartwell, 1950; Horner and Samsa, 1992).

Random walk skewness
So far we have focused on infinitely fit invaders (r ! ¥). Now we consider the opposite extreme,

where invaders have nearly neutral fitness (r » 1) relative to the residents. We will show that right-

skewed distributions of incubation periods occur in this limit as well, but for a completely different

reason than coupon collection.

The analysis is again simplest for the complete graph, so we return to that case. As before, the

probability of an invader replacing a resident in the next time step is

pþm :¼ mr

mrþðN�mÞ �
N�m

N� 1
:

Similarly, the probability of an invader being replaced by a resident in the next time step is

p�m :¼ N�m

mrþðN�mÞ �
m

N� 1
:

So the probability of the next replacement adding a new invader is
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Figure 9. Robustness to population variability. Simulated, fitted, and normalized distributions of incubation

periods for Birth-death dynamics on a complete graph that initially has N ¼ 500 nodes. Invader fitness is set at

r ¼ 10. The blue curves indicate noncentral lognormals fitted via the method of moments. (a) Constant total

population. (b) Growing population. At every time step, there is a constant 1/Nchance that a new resident node

will appear. The new node is adjacent to all preexisting nodes. (c) Shrinking population. At every time step, there

is a constant 1/Nchance that a random resident node will be removed. (d) Randomly varying population. At every

time step, a resident node is either added or removed from the population, both events occurring with probability

1/2.
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q :¼ pþm
pþm þ p�m

¼ r

rþ 1
:

This defines a random walk with drift q on the invader population.

Only a special subset of these walks are relevant to the computation of the incubation period dis-

tribution. For the incubation period to be well-defined, the invader population must not go extinct.

Therefore, we need to condition on the fact that the invader population m hits N before it ever hits

0. For the limiting case r ¼ 1, corresponding to a perfectly neutral invader, we can show with martin-

gale methods that the resulting distribution of incubation periods will be strongly skewed to the

right as N gets large (see the Appendix). This is to be expected: there are only a few ways to walk

from one to N quickly, while there are many ways to have a long, meandering excursion before

finally getting there.

The variance from this conditioned random walk process tends to drown out the effects of net-

work topology. The distribution of incubation periods ends up looking similar for diverse networks

(Figure 8), including complex networks (Figure 7b,d,f). So even though no coupon collection hap-

pens at low finesses r » 1, the effect of the conditioned random walk is more than enough to gener-

ate right-skewed distributions of incubation periods. In fact, this conditioned random walk

mechanism at low r produces an even higher dispersion factor ( » 1:7) than coupon collection does at

high r (see Table 1).

Influence of non-static population
In many diseases, it is unlikely that the total network size would remain constant in time. For exam-

ple, targeted radiation and chemotherapy leads to a loss of mass in both the tumor and the sub-

strate tissue. Depending on the specific physical case, the population levels of invaders and

residents can have many nontrivial time dependencies. As a first-order examination of the effects of

time-varying populations, three simple cases were considered on the complete graph for the inter-

mediate fitness of r ¼ 10. As a baseline, the distribution for a constant population was measured in

Figure 9a.

We considered a case when the resident population was growing. At every time step, a new resi-

dent node was added with probability 1=N, which was chosen so that takeover would happen in

finite time. Even still, the majority of the run will be spent when the resident population is small, with

takeovers and new additions occurring at a roughly even pace. This led to an accentuated level of

right skew in Figure 9b.

We then considered a case where the resident population was constantly shrinking. Again, the

probability of change was 1=N every time step, but this time it decreased the resident population by

1. While there is still a visible right skew in Figure 9c, it was somewhat lessened due to the global

shrinkage speeding up the coupon collecting process.

Finally, we considered a randomly varying resident population. Here, the resident population

increases or decreases by one every time step, each with probability 1/2. This random-walking popu-

lation level also leads to an extreme level of skew in Figure 9d.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.30212.017

Agreement of geometric and exponential variables I
Proposition: Suppose we have a family of sequences ðpmÞMm¼1

, with 0 � pm � 1 for all m and M,

where pm may depend on M. Define GeoðpÞ to be a geometric random variable with

distribution

PðGeoðpÞ ¼ kÞ ¼ ð1� pÞk�1
p

for k ¼ 1; 2; . . .. Further, let EðpÞ be an exponential random variable with distribution

PðEðpÞ ¼ xÞdx¼ pe�pxdx

for x � 0. Given some function L :¼ LðMÞ such that limM!¥ L ¼ ¥ and

lim
M!¥

X

M

m¼1

1

pmL2
¼ 0; (8)

and given TG :¼
PM

m¼1
XðpmÞ, TE :¼

PM
m¼1

EðpmÞ, and � :¼
PM

m¼1
1=pm, then

TG��

L
~

TE ��

L
: (9)

The symbol “ ~ ” means the ratio of characteristic functions goes to one as N gets large.

That is, the random variables on both sides converge to each other in distribution as M gets

large.

Proof: The proof of this claim simply involves calculating the characteristic functions and

taking a limit. We have presented the details elsewhere (Ottino-Löffler et al., 2017).

Agreement of geometric and exponential variables II
Proposition: Given the setup in the previous proposition, define s2

G ¼ VarðTGÞ and
s2

E ¼ VarðTEÞ. If

lim
M!¥

PM
m¼1

p�1

m
PM

m¼1
p�2
m

¼ 0; (10)

then

TG��

sG

~

TE ��

sE

: (11)

Proof: Our first goal is to show that

TG��

sG

~

TE ��

sG

:

We do this by using the proposition in ‘Agreement of geometric and exponential variables

I’, substituting sG for L. First we check that Equation (8) is satisfied. Notice that

lim
M!¥

X

M

m¼1

1

pms
2

G

¼ lim
M!¥

PM
m¼1

p�1

m
PM

m¼1
p�2
m � p�1

m

¼ lim
M!¥

PM
m¼1

p�1

m =
PM

m¼1
p�2

m

1�
PM

m¼1
p�1
m =
PM

m¼1
p�2
m

¼ 0

1� 0
¼ 0

by hypothesis. Hence
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TG��

sG

~

TE ��

sG

¼ sE

sG

TE ��

sE

:

But notice that

lim
M!¥

s2

E

s2

G

¼ lim
M!¥

PM
m¼1

p�2

m
PM

m¼1
p�2
m � p�1

m

¼ lim
M!¥

1

1�
PM

m¼1
p�1
m =
PM

m¼1
p�2
m

¼ 1:

Therefore, the proposition is proven.

Condition for normality
Proposition: Let T ¼PM

m¼1
EðpmÞ, define s2 ¼ VarðTÞ ¼PM

m p�2

m ; and let limM!¥ pms ¼ ¥. If

lim
M!¥

X

M

m¼1

exp ��pmsð Þ ¼ 0; (12)

then

T ��

s
!d Normalð0;1Þ: (13)

Proof: Apply the Lindeberg-Feller central limit theorem (Durrett, 1991) to the random

variables

Ym;M :¼EðpmÞ� 1=pm
s

:

By construction,
P

mðYm;MÞ ¼ ðT � �Þ=s, E½Ym;M � ¼ 0 and
P

m E½Y2

m;M � ¼ 1. So in order to

apply the theorem (and thereby get our desired result), we simply need satisfy the Lindeberg

condition for any �>0, as given by

lim
M!¥

LindM :¼ lim
M!¥

X

M

m¼1

E½Y2

m;M ; jYm;M j>�� ¼ 0:

Notice that Ym;M<� � implies

EðpmÞ<p�1

m � �s2

E ¼ p�1

m ð1� �pmsÞ:

By hypothesis, the right hand side will eventually be less than 0, meaning that eventually

Ym;M<� � will be impossible. So if we define cm ¼ 1þ �pms, then we know that

lim
M!¥

LindM ¼ lim
M!¥

X

M

m¼1

E½Y2

m;M ; Ym;M>��:

So for large enough M, we have

LindM

:¼
X

M

m¼1

Z

¥

cm=pm

x� 1=pm
s

� �2

e�pmxpmdx

¼
X

M

m¼1

1

s2p2m

Z

¥

cm

y� 1ð Þ2e�ydy

¼
X

M

m¼1

1

s2p2m
e�cmðc2mþ 1Þ

¼
X

M

m¼1

1

es2p2m
e��pmsð2þ 2�pmsþ �2p2ms

2Þ:
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By hypothesis, pms grows without bound, so the term p2ms
2 will be dominant. Therefore,

there is some constant D such that we can create the upper bound

LindM �
X

M

m¼1

1

s2p2m
e��pmsDs2p2m

�D
X

M

m¼1

exp ��pmsð Þ:

From here, we can apply the hypothesis to get lim
M!¥

LindM � lim
M!¥

D
X

M

m¼1

exp ��pmsð Þ ¼ 0:

Thus the Lindeberg condition holds. Therefore, by applying the theorem, we conclude that

X

m

ðYm;MÞ ¼
T ��

s
!d Normalð0;1Þ:

Normally distributed fixation times for 1D lattice
Let us start with a one-dimensional (1D) ring of N nodes, with exactly one invader at the start.

Under infinite-r Birth-death (Bd) dynamics, a uniform random invader gives birth at every time

step and replaces one of its neighbors, also uniformly at random.

Because of the simple topology of the ring, the growing chain of invaders will always

advance from the left or right ends. This means that if there are currently m invaders, then the

probability of a new invader being added in this time step is exactly given by

pm ¼ 1

m

for m ¼ 1; 2; . . . ;M, where we have defined M :¼ N � 1.

The probability of spending exactly t time steps at m invaders is given by the odds of doing

nothing for exactly t � 1 steps and then advancing at the last step, and so is given by

ð1� pmÞt�1
pm. In other words, the time spent with m invaders is given by the geometric random

variable GeoðpmÞ. Therefore the total fixation time T is given by T ¼
PM

m¼1
GeoðpmÞ.

By applying the results of section ‘Agreement of geometric and exponential variables II’,

we can switch to using exponential random variables. From here we wish to apply results from

section ‘Condition for normality’, so we need to check if
PM

m¼1
expð��pmsÞ converges to zero,

given s ¼
PM

m¼1
p�2

m . Using asymptotics and a constant D, we find

X

M

m¼1

expð��pmsÞ �
X

M

m¼1

exp
�D

m
M3=2

� �

�
X

M

m¼1

exp
�D

M
M3=2

� �

¼M exp �D
ffiffiffiffiffi

M
p� �

! 0:

This lets us cite our proposition, and conclude that the fixation time is asymptotically

distributed as a normal, with

X

m

ðYm;MÞ ¼
T ��

s
!d Normalð0;1Þ:

Gumbel distributed fixation times for star graph
Next consider the infinite-r Bd dynamics on a star graph. This network consists of one ‘hub’

node and N‘spoke’ nodes, with edges exclusively between the hub and spokes. We will place

the initial invader at the hub, since starting from a spoke is a trivial perturbation off of that.
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Now, given that m of the N spokes are invaders, then the odds of another one turning into

an invader in one time step is simply the odds of choosing the hub from the set of all invaders,

times the probability of replacing an existing healthy spoke. So

pm ¼ 1

mþ 1
�N�m

N

for m ¼ 0; 1; . . . ;N � 1. As before, the fixation time T is the sum of geometric random variables

GeoðpmÞ. However, it is easy to use section ‘Agreement of geometric and exponential variables

II’ to show that the total fixation time is well approximated by the sum of exponential random

variables EðpmÞ; given we normalize by N2. So we know

T �EðTÞ
N2

¼
X

N�1

m¼1

GeoðpmÞ� 1=pm
N2

~

X

N�1

m¼1

EðpmÞ� 1=pm
N2

: (14)

The crux of finding the limiting distribution of T is noticing that Npm » ðN � mÞ=N for large m.

The sequence rm :¼ ðN � mÞ=N;m ¼ 0; . . . ;N � 1 corresponds to the well-known coupon

collector’s problem (see main text). Imagine a child trying to complete a collection of N cards

by buying one random card each week. The probability of getting a new card the first week is

1; the probability of getting a new card after the first has been collected is ðN � 1Þ=N; the
probability of getting another new card after two cards have been collected is ðN � 2Þ=N; and
so on until the probability of getting the last card is 1=N.

The time TC to complete this collection (which is also well approximated by the sum of

exponentials) has been the subject of much historical study. In fact, an exact distribution for TC
in the limit of large N is known (Ottino-Löffler et al., 2017; Pósfai, 2010; Feller, 1968;

Erdős and Rényi, 1961; Baum and Billingsley, 1965; Rubin and Zidek, 1965), and is given in

normalized form by

TC �EðTCÞ
N

~

X

N�1

m¼1

EðrmÞ� 1=rm
N

!d Gumbelð�g;1Þ; (15)

where g » 0:5772 is the Euler-Mascheroni constant.

Therefore, if we can connect our fixation time T to the coupon collector’s time TC, we

would know its distribution. We do so by taking the ratio of their respective characteristic

functions, using their respective approximations as exponential random variables. Letting

k ¼ N � m, we find a characteristic function

f :¼

¼ E exp it
X

N

k¼1

EðpkÞ� 1=pk
N2

 !" #

¼
Y

N

k¼1

exp�it=ðN2pkÞ
1� it=ðN2pkÞ

for our fixation time, and

fC :¼

¼ E exp it
X

N

k¼1

EðrkÞ� 1=rk
N

 !" #

¼
Y

N

k¼1

exp�it=k

1� it=k

for the coupon collector’s time.

Taking the ratio gives

fC

f
¼
Y

N

k¼1

exp
�it

N
1� 1

k

� �

þ log 1þ it

N

k� 1

k� it

� �� �

:

Ottino-Loffler et al. eLife 2017;6:e30212. DOI: https://doi.org/10.7554/eLife.30212 21 of 28

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.30212


Taking the Taylor expansion of the logarithm for N � 1, we can substitute in an appropriate

function Rm which gets small as N gets large. Thus

fC

f
¼ exp

it

N

X

N

k¼1

itðk� 1Þ
kðk� itÞþ

t2

2

X

N

k¼1

Rm

N2

k� 1

k� it

� �2
" #

:

The first sum is bounded above in norm by a constant times logðNÞ, so the first term goes

to zero as N gets large. Similarly, the second term goes to zero quickly, meaning that

fC=f ! 0. Hence

X

N

k¼1

EðpkÞ� 1=pk
N2

~

X

N

k¼1

EðrkÞ� 1=rk
N

: (16)

Using Equation (16) to connect Equation (14) to Equation (15), we find

T �EðTÞ
N2

!d Gumbelð�g;1Þ; (17)

as desired.

Normally distributed fixation times for 2D lattice
We wish to find the limiting distribution of fixation times of infinite-r Bd growth on a d-

dimensional square lattice, assuming periodic boundaries. We will eventually focus on the two-

dimensional (2D) lattice, but let us set up every case for 2 � d<¥ right now.

Unlike the previous cases, the probability of adding a new invader always depends on the

exact configuration of the existing invaders. So we can no longer define exact values for pm
that describe the fixation time T as a simple sum of random variables.

But even though we do not know the exact shape of the invader cluster, the simple

network structure can motivate a reasonable approximation. In particular, given a sufficiently

smooth and convex volume V in a d-dimensional lattice, we should expect the volume to have

a surface area proportional to Vh, where h ¼ 1� 1=d.

Assuming this to be true, recall the basic dynamics of infinite-r Bd with N nodes and m

invaders. First, we uniformly select one node out of the population of invaders, which is always

a probability of 1/mper node. Then we replace one of the invader’s neighbors, uniformly at

random. However, only invaders on the surface of the cluster even have a chance at replacing

a healthy node!

Given sufficient regularity of the boundary of the cluster, this means that the probability of

an invader replacing a healthy node is proportional to

qm ¼ 1

m
�Surface area of the invader cluster:

Using this logic, we expect the probability of adding an invader to go as mh=m at the start.

However, remember we have a periodic lattice, so using mh as the surface area of the cluster

stops being true halfway through, and using the smaller healthy cluster’s volume is a better

approximation. In other words, the surface area grows as mh at the start when the cluster

begins forming, and shrinks as ðN � mÞh at the end when there are only a few healthy cells left.

This intuitive reasoning suggests that the ‘true’ probability of adding a new invader, given

that there are already m of them, should be roughly proportional to

qm ¼minðm;N�mÞh
m

: (18)

The fact that we only estimated qm up to proportionality is adequate, because when we use

section ‘Agreement of geometric and exponential variables II’, any multiplicative factors will

just be absorbed by the variance anyway when we write down the normalized distribution.

The case of d ¼ 2 is special, so let us plug in d ¼ 2 and h ¼ 1=2 where appropriate. This

gives
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qm ¼minðm;N�mÞ1=2
m

:

Now use section ‘Agreement of geometric and exponential variables II’. Skip ahead to

defining T to be the sum of exponential random variables, and split the sum in half. Thus

T :¼ Ta þTb :¼
X

N=2�1

m¼1

EðqmÞþ
X

N�1

m¼N=2

EðqmÞ:

We assume N is even without loss of generality.

First, we show that Ta is normally distributed using the section ‘Condition for normality’. To

use this result, we first need to calculate VarðTaÞ. This is exactly

VarðTaÞ ¼
X

N=2�1

m¼1

q�2

m ¼
X

N=2�1

m¼1

m¼ ðN=2� 1Þ2 þðN=2� 1Þ
2

:

Therefore, we have

q2mVarðTaÞ ¼
1

m

ðN=2� 1Þ2 þðN=2� 1Þ
2

� 1

m

N2

8
� 1

N

N2

8
¼N

8
!¥

as N ! ¥, so the first condition is satisfied.

Next, we need to show that a certain sum of exponentials converges to zero. In particular,

for any �>0, we examine

SN :¼
X

N=2�1

m¼1

exp ��qm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðTaÞ
p

� �

:

We can make the bound
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðTaÞ
p

>N=8 and qm ¼ 1=
ffiffiffiffi

m
p

>1=
ffiffiffiffi

N
p

, so

SN �
X

N=2�1

m¼1

exp ��
ffiffiffiffi

N
p

=8
� �

�N exp ��
ffiffiffiffi

N
p

=8
� �

:

Therefore SN ! 0 as N gets large. So the second condition is satisfied. Therefore, Ta is

distributed according to a normal.

However, we need to do the same to Tb. So let us estimate the variance of this second

contribution. Letting k ¼ N � m; we get

VarðTbÞ ¼
X

N=2

k¼1

q�2

N�k ¼
X

N=2

k¼1

N�m
ffiffiffi

k
p

� �2

¼N2
X

N=2

k¼1

1

k
� 2

N

X

N=2

k¼1

1þ 1

N2

X

N=2

k¼1

k

 !

¼N2
X

N=2

k¼1

1

k
� 1þ 1

8
þ 1

8N

 !

:

So for large N, we obtain the following bound:

VarðTbÞ �
N2

4
logðNÞ:

Therefore,

q2kVarðTbÞ �
k

ðN� kÞ2
N2

4
logðNÞ � 1

4
logN:

This satisfies the first condition from section ‘Condition for normality’.
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To satisfy the second condition, we again fix some arbitrary �>0 and calculate a certain sum

of exponentials. By calculating and choosing careful bounds, we get

SN :¼
X

N=2

k¼1

exp ��qk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðTbÞ
p

� �

�
X

N

k¼1

exp � �

2

ffiffiffi

k
p

N� k
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logðNÞ
p

� �

�
X

N

k¼1

exp � �

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k logðNÞ
p

� �

This sum can be approximated from above by an appropriate integral:

SN �
Z

¥

0

exp � �

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x logðNÞ
p

� �

dx

¼ 8

�2 logðNÞ :

Therefore, SN ! 0 as N gets large. This satisfies the second condition in section ‘Condition

for normality’, meaning that we now know that Tb is distributed as a normal.

Since the sum of normal variables returns a normal variable, this means that T ¼ Ta þ Tb is

also normal. Hence, we expect for the fixation time of infinite-r Bd on a 2D lattice to be

distributed as a normal, like the 1D ring lattice but, as we will now show, unlike d � 3.

Non-normality for d � 3

Here, we wish to find the limiting distribution of fixation times of infinite-r Bd growth on a d-

dimensional square lattice, assuming periodic boundaries. Right now, we will look only at

3 � d<¥, since d ¼ 1; 2; and ¥ are special cases.

We did the bulk of the setup for this case in section ‘Normally distributed fixation times for

2D lattice’, so we have the approximate probabilities of adding an invader to be given by

qm ¼minðm;N�mÞh
m

as before. And again, we define the ‘approximate’ fixation time T to be the sum of the

exponential random variables EðqmÞ. Splitting the sum into a front and back half gives

T :¼ Ta þTb :¼
X

N=2�1

m¼1

EðqmÞþ
X

N�1

m¼N=2

EðqmÞ:

But even with such aggressive approximations, we cannot present a closed form for the

distribution of T . However, we can still calculate an important quantity: the skew of the

distribution.

Since we use section ‘Agreement of geometric and exponential variables II’, let us skip to

defining T to be the sum of exponential random variables, and split the sum in half, as we did

with the 2D lattice. Thus

T :¼ Ta þTb :¼
X

N=2�1

m¼1

EðqmÞþ
X

N�1

m¼N=2

EðqmÞ:

We assume N is even without loss of generality.

First, let us find which half contributes more variance. Bound Var(Ta) as
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VarðTaÞ ¼
X

N=2�1

m¼1

q�2

m ¼
X

N=2�1

m¼1

m2=d

�
Z N=2

0

x2=ddx�N2=dþ1:

We similarly approximate Var(TbÞ, setting k ¼ N � m and finding

VarðTbÞ ¼
X

N=2

k¼1

q�2

N�k ¼
X

N=2

k¼1

ðN� kÞ2
k2h

¼N2
X

N=2

k¼1

1

k2h
� 2

N

X

N=2

k¼1

k1�2hþ 1

N2

X

N=2

k¼1

k2=d

 !

:

Since h � 2=3, only the first term survives as N gets large, so

VarðTbÞ!N2zð2hÞ (19)

where z is the usual Riemann zeta function. Notice that 2>2=d þ 1 for d � 3.

To use both these variances, recall the skewness summation formulation: if we have random

variables Xi with variances s2

i and skews ki, then their sum has a skewness of

Skew
X

i

Xi

 !

¼
P

i kis
3

i
P

is
2
i

� �3=2
: (20)

So this means that

SkewðTÞ ¼ SkewðTaÞVarðTaÞ3=2 þSkewðTbÞVarðTbÞ3=2

VarðTaÞþVarðTbÞð Þ3=2

¼ SkewðTaÞðVarðTaÞ=VarðTbÞÞ3=2 þSkewðTbÞ
1þVarðTaÞ=VarðTbÞð Þ3=2

! SkewðTbÞ

as N ! ¥. Here, we have used the fact that Ta has a finite skew (actually, it is easy to use

section ‘Condition for normality’ to show that Ta is distributed as a normal, and thus has zero

skew.) Hence the asymptotic skew of T is just the asymptotic skew of Tb.

We can calculate the skew of Tb by reusing Equation (20), this time on the exponential

variables defining Tb. Therefore

SkewðTbÞ ¼
PN=2

k¼1
2q�3

N�k

PN=2
k¼1

q�2

N�k

� �3=2
:

By Equation (19), the denominator limits to N3zð2hÞ3=2. Meanwhile, the numerator looks

like

2

X

N=2

k¼1

1

k3h
N� kð Þ3

¼ 2N3
X

N=2

k¼1

1

k3h
� 3

N

X

N=2

k¼1

k1�3hþ 3

N2

X

N=2

k¼1

k2�3h þ 1

N3

X

N=2

k¼1

k3=d

 !

:

The first term in the parentheses converges to zð3hÞ, whereas the rest of the terms

converge to 0. Combining the numerator and denominator gives us the conclusion that the

skew for the full distribution is given by
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SkewðTÞ ¼ 2zð3hÞ
zð2hÞ3=2

: (21)

Recall that h ¼ 1� 1=d, so the denominator diverges for d ¼ 2 and both then numerator

and denominator diverge for d ¼ 1. However, since this expression for SkewðTÞ is monotone

increasing in h for 2=3 � h<1, every dimension d � 3 will attain a unique skew, and therefore a

unique limiting distribution. Moreover, if we take d ! ¥, then h ! 1, and therefore the skew

becomes 12
ffiffiffi

6
p

zð3Þ=p3, which is exactly the skew for a Gumbel distribution, supporting our

assertion that high-dimensional systems attain higher skews.

For the purposes of estimating the distributions at finite N, it is convenient to use the

random variable

FðdÞ :¼
PN

k¼1
E pkð Þ� p�1

k
PN

k¼1
p�2

k

where

pk ¼
k1�1=d

N� k
:

Since the second half of the dynamics contribute the majority of the variance, we should

expect this to provide a reasonable approximation of T .

Asymptotic skew of conditioned random walk
When r ¼ 1 for Bd dynamics on the complete graph, the number of invaders becomes very

flexible. In fact, the probability of adding an invader on any time step is exactly equal to the

probability of removing an invader, so

pþm ¼mðN�mÞ
NðN� 1Þ ¼ p�m :

Hence the probability that the next event increases the number of invaders is always 1/2.

This means that, if we ignore the waiting times, the population of invaders obeys a simple

random walk on the values m ¼ 1; :::;N � 1 with 0 and N acting as absorbing states. So we can

understand the times required to take over the network by understanding these simple

dynamics. To set up the analysis, let Xn denote the number of invaders after n population

changes. Therefore

Xn ¼
X

n

i¼1

xi

where xi 2 f�1;þ1g, each with probability 1/2. We will use the wait-omitted time n in this

section as a first-order approximation of the true takeover time. This way, the present analysis

is generalizable to most networks. Moreover, scaling and numerical arguments based on the

results here can show that the bulk of the final distribution is defined by this random-walk

process.

Although we always start at m ¼ 1, we only care about the invader takeover result because

that is the only case for which disease symptoms would be manifested. Let us define the

stopping time

Sm ¼minfnjXn ¼mg;

which records the first time the random walk Xn hits the value m. Given that the invader

population cannot go negative or above N, the walk’s stopping time is

S¼minðS0;SNÞ:
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In the main text, we cared only about the conditioned random walk times and whether they

tended to be right skewed. So we now study the first few conditional moments

�i :¼ EðSijXS ¼NÞ;

for i ¼ 1; 2; 3.

It isn’t hard to set up a linear recurrence relation to find the probability of hitting 0 or N. In

fact, if the state of the walk is at m, then the probability of hitting N is exactly

PðXS ¼NjXn ¼mÞ ¼m=N:

This is a useful fact for simulation; instead of directly simulating Xn and discarding all the

cases that hit 0, we can directly simulate the conditioned random walk. If we define

Yn ¼ EðXnjXS ¼NÞ;

and treat it as a Markov chain, then we can easily calculate the transition probabilities. By

applying Bayes’s law,

PðYn ¼m! Ynþ1 ¼mþ 1Þ ¼ PðXn ¼m! Xnþ1 ¼mþ 1 AND XS ¼NÞ
PðXS ¼NÞ

¼ 1

2

PðXS ¼NjXn ¼mþ 1Þ
PðXS ¼NjXn ¼mÞ

¼ 1

2

mþ 1

m
:

While this speeds up simulations by a good deal in certain cases, it is not particularly useful

for quantifying the distribution of the random walk times themselves.

To identify the moments of T, we will want to apply results from martingale theory in

general, and optional stopping in particular. To start, define the random variable

Mð1Þ
n :¼ X3

n � 3nXn:

We are going to want this to be a martingale. Let’s define F n to be the sigma field

consisting of all information from the first n steps of the random walk. Therefore,

Eðxnþ1jF nÞ ¼ 0, since we cannot predict the direction of the next step. However, we do know

that Eðx2nþ1
jF nÞ ¼ 1, because the steps will always be size 1, regardless of our ignorance.

Putting this together gives

EðMð1Þ
nþ1

jF nÞ ¼ E X3

nþ1
� 3ðnþ 1ÞXnþ1jF n

� �

¼ E ðXn þ xnþ1Þ3 � 3ðnþ 1ÞðXn þ xnþ1Þ
� �

¼ E X3

n þ 3xnþ1X
2

n þ 3x2nþ1
Xn � 3ðnþ 1ÞXn � 3ðnþ 1Þxnþ1

� �

¼ X3

n � 3nXn

¼Mð1Þ
n :

So Mð1Þ
n well-approximates its future, meaning that it is a proper martingale.

Thank to this, we can cite an optional stopping theorem (Durrett, 1991). So we expect the

expectation of this variable to be the same at the stopping time as at the start, so

E M
ð1Þ
0

� �

¼ E M
ð1Þ
S

� �

: (22)

Since we start at n ¼ 0 and X0 ¼ 1, the left hand side trivially gives

E M
ð1Þ
0

� �

¼ 1
3 � 3 � 0 � 1¼ 1:

However, the right hand side gives something a bit more complicated, since we need to

condition on the possible endpoints, remembering we start at X0 ¼ 1. So
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E M
ð1Þ
S

� �

¼ PðXS ¼NÞEðMð1Þ
S jXS ¼NÞþPðXS ¼ 0ÞEðMð1Þ

S jXS ¼ 0Þ

¼ 1

N
E X3

n � 3nXnjXS ¼N
� �

þN� 1

N
E X3

n � 3nXnjXS ¼ 0
� �

¼ 1

N
N3 � 3�1N
� �

þN� 1

N
E 0

3 � 3EðSjXS ¼ 0Þ0
� �

¼N2� 3�1:

Thus we have now calculated both sides of Equation (22), meaning that we now have a

value for the first moment of time of the conditioned random walk, given by

�1 ¼
N2 � 1

3
:

The procedure to find the next two moments is not too substantially different: just repeat

the same steps of verification and evaluation on Mð1Þ
n ’s siblings

Mð2Þ
n ¼ X5

n � 10nX3

n þð15n2 þ 10nÞXn

Mð3Þ
n ¼ X7

n � 21nX5

n þð105n2þ 70nÞX3

n �ð105n3 þ 210n2 þ 112nÞXn:

These two martingales reveal the next two moments, which are given by

�2 ¼ 7N4 � 20N2 þ 13

45

�3 ¼ 31N6 � 147N4 þ 189N2 � 73

315
:

This is all we need to compute the asymptotic skew of the conditioned fixation times. In the

limit of large N, only the dominant terms of each �i will survive. The N’s cancel out in this limit,

leading to a constant given by

Skew¼ �3 � 3�1�2 þ 2�3

1

�2 ��2

1

� �3=2
»

8

7

5

2

� �1=2

»1:807:

The conclusion is that in the limit of large N, the skew of the distribution of fixation times

for a conditioned random walk will always be positive. Therefore, we expect right-skewed

distributions to be typical for the r ¼ 1 limit of Birth-death dynamics.
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