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ABSTRACT
The identification of gene–gene and gene–environment interaction in human traits and diseases is an active

area of research that generates high expectation, and most often lead to high disappointment. This is partly

explained by a misunderstanding of the inherent characteristics of standard regression-based interaction

analyses. Here, I revisit and untangle major theoretical aspects of interaction tests in the special case of lin-

ear regression; in particular, I discuss variables coding scheme, interpretation of effect estimate, statistical

power, and estimation of variance explained in regard of various hypothetical interaction patterns. Linking

this components it appears first that the simplest biological interaction models—in which the magnitude of

a genetic effect depends on a common exposure—are among the most difficult to identify. Second, I high-

light the demerit of the current strategy to evaluate the contribution of interaction effects to the variance of

quantitative outcomes and argue for the use of new approaches to overcome this issue. Finally, I explore

the advantages and limitations of multivariate interaction models, when testing for interaction between

multiple SNPs and/or multiple exposures, over univariate approaches. Together, these new insights can be

leveraged for future method development and to improve our understanding of the genetic architecture of

multifactorial traits.
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1 INTRODUCTION

Hundreds of studies have searched for gene–gene and gene–

environment interaction effects in human data with the under-

lying motivation of identifying or at least accounting for

potential biological interaction. So far, this quest has been

quite unsuccessful and the large number of methods that have

been developed to improve detection (Aschard et al., 2012b;

Cordell, 2009; Gauderman, Zhang, Morrison, & Lewinger,

2013; Hutter et al., 2013; Thomas, 2010a; Wei, Hemani, &

Haley, 2014) have not qualitatively changed this situation.

This lack of discovery in the face of a substantial research

investment has been discussed in several review papers that

pointed out a number of issues specific to interaction tests,

including exposure assessment, time-dependent effect, con-

founding effect and multiple comparisons (Aschard et al.,

2012b; Bookman et al., 2011; Thomas, 2010b). While these

factors are obvious barriers to the identification of interaction
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effects, it appears that some of the limitations of standard

regression-based interaction tests that pertain to the nature of

interaction effects are underestimated. Previous work showed

the detection of some interaction effects requires larger sam-

ple sizes than marginal effects for a similar effect size

(Aiken, West, & Reno, 1991; Greenland, 1983), however it

is not an absolute rule. Understanding the theoretical basis

of this lack of power can help us optimizing study design

to improve detection of interaction effect in human traits

and diseases, and open the path for new methods develop-

ment. Moreover the interpretation of effect estimates from

interaction models often suffer from various imprecisions.

Compared to marginal models, the coding scheme for inter-

acting variables can impact effect estimates and association

signals for the main effects (Aiken et al., 1991; Andersen

& Skovgaard, 2010). Also, the current strategy to derive

the contribution of interaction effects to the variance of an

outcome greatly disadvantages interaction effects and are
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inappropriate when the goal of a study is not prediction but

to assess the relative importance of an interaction term from

a biological perspective. While alternative approaches exist,

they have not so far been considered in genetic association

studies. Finally, the development of new pairwise gene–gene

and gene–environment interaction tests is reaching some lim-

its, because the number of prior assumptions that can be lever-

aged to improve power (e.g. gene–environment independence

(Piegorsch, Weinberg, & Taylor, 1994) or the presence of

marginal genetic effect for interacting variants (Dai, Kooper-

berg, Leblanc, & Prentice, 2012) is limited when only two

predictors are considered. With the exponential increase of

available genetic and nongenetic data, the development and

application of multivariate interaction tests offer new oppor-

tunities to building powerful approaches and moving the field

forward.

2 METHODS AND RESULTS

2.1 Coding scheme and effect estimates

Consider an interaction effect between a single nucleotide

polymorphism (SNP) G and an exposure E (which can be

an environmental exposure or another genetic variant) on a

quantitative outcome Y. For simplicity I assume in all further

derivation that E is normally distributed with variance 1, and

G and E are independents. The simplest and most commonly

assumed underlying model for Y when testing for an interac-

tion effect between G and E is defined as follows:

𝑌 = 𝛽𝐺 × 𝐺 + 𝛽𝐸 × 𝐸 + 𝛽𝐺𝐸 × 𝐺 × 𝐸 + 𝜀

where 𝛽𝐺 is the main effect of G, 𝛽𝐸 is the main effect of

E, 𝛽GE is a linear interaction between G and E, and 𝜀, the

residual, is normally distributed with mean and variance 𝜎2

set so that Y as mean of 0 and variance of 1 (so the absence

of the intercept term in the above equation). One can then

evaluate the impact of applying linear transformation of the

genotype and/or the exposure when testing for main and inter-

action effects. For example, assuming E has a mean > 0 and

G is defined as the number of coded allele in the generative

model, Y can be rewritten as a function of 𝐺𝑠𝑡𝑑 and 𝐸𝑠𝑡𝑑 , the

standardized G and E:

𝑌 = 𝛽′
𝐺
× 𝐺𝑠𝑡𝑑 + 𝛽′

𝐸
× 𝐸𝑠𝑡𝑑 + 𝛽′

𝐺𝐸
× 𝐺𝑠𝑡𝑑 × 𝐸𝑠𝑡𝑑 + 𝜀′

where 𝛽′
𝐺

, 𝛽′
𝐸

, and 𝛽′
𝐺𝐸

are the main effects of 𝐺𝑠𝑡𝑑 and 𝐸𝑠𝑡𝑑

and their interaction. Relating the standardized and unstan-

dardized equations, we obtain (supplementary Appendix A):

𝛽′
𝐺
=
(
𝛽𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸

)
× 𝜎𝐺

𝛽′
𝐸
=
(
𝛽𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺

)
× 𝜎𝐸

𝛽′
𝐺𝐸

= 𝛽𝐺𝐸 × 𝜎𝐸 × 𝜎𝐺

where 𝜇𝐺, 𝜎𝐺, 𝜇𝐸 , and 𝜎𝐸 are the mean and variance of G
and E, respectively. Hence, the estimated main effects of 𝐺𝑠𝑡𝑑

and 𝐸𝑠𝑡𝑑 not only scale with the variance of G and E but

can also change qualitatively if there is an interaction effect

(i.e. the direction of the effect can change). In comparison,

the interaction effect 𝛽′
𝐺𝐸

remains qualitatively similar, how-

ever, because 𝛽′
𝐺𝐸

does not scale with 𝜎𝐺𝐸 the variance of the

interaction term but with the variance of G and E, the inter-

pretation of the relative importance of the interaction effect

can change (see Section 2.3).

Which coding scheme for G and E has the most biological

sense can only be discussed on a case by case basis (Aiken

et al., 1991). Indeed, defining the optimal coding for a bio-

logical question can be very challenging, and as noted in

previous work, “most mathematical models are convenient
fictions and would certainly be rejected given sufficient sam-
ple size” (Clayton, 2009). Yet, it is important to recognize that

coding scheme should be chosen carefully when testing an

interaction as different coding can correspond to qualitatively

different relative contribution of each predictor (the main

and interaction terms) to the outcome. This is illustrated in

Figure 1, which shows the contribution of a pure interaction

effect (𝛽𝐺 = 𝛽𝐸 = 0 and 𝛽𝐺𝐸 ≠ 0) to Y. When G and E are

centered, the interaction term has a positive contribution to

the most extreme subgroups (low exposure and homozygote

for the protective allele vs. high exposure and homozygote for

the risk allele) and a negative contribution to the opposite het-

erogeneous subgroups (low exposure and homozygote for the

risk allele vs. high exposure and homozygote for the protec-

tive allele, Fig. 1A). Conversely, when G and E are positive

or null only, the interaction term corresponds to a monotonic

increase (or decrease if the interaction effect is opposite to

the main effects) of the magnitude of the genetic and envi-

ronmental effects (Fig. 1B). Hence, allowing G and/or E to

have negative values in the generative model implies an inter-

action effect that could be difficult to interpret from a bio-

logical perspective. Furthermore, one can easily show that

when the mean of the exposure increases while its variance

is fixed (e.g. if an environmental exposure increases affect the

entire population), an interaction effect will appear more and

more as a sole genetic effect (supplementary Fig. S1). Over-

all, coding schemes that can be related through linear transfor-

mations are mathematical equivalent (they produce the same

outcome values as long as the predictor effects are rederived

to account for the transformation). However, coding scheme

should not be overlooked because of this equivalence, and as

shown in the example of Figure 1, variable coding should

be justified whenever the interpretation of effect estimates

matters.

Hopefully, the choice of a specific coding scheme, how

to interpret effect estimates when modeling an interac-

tion, and the motivation for adding nonlinear terms in gen-

eral have been already debated, and several general guide-

lines have been proposed (see for example the review by
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F I G U R E 1 Example of a gene by exposure interaction effect on height. Pattern of contribution of a hypothetical genetic-by-exposure interaction term

to human height when shifting the location of the genetic and the exposure burdens in the generative model. Genetic burden can correspond to the number

of coded allele for a given SNP and exposure burden can correspond to the measure of an environmental exposure. Examples of simple coding are defined

in parenthesis on both axes, and the resulting contributions to each specific combination of genetic and environmental values are defined on each panel

for a given interaction effect parameter 𝛽𝐺𝐸 . In (A) the interaction is defined as the product of a centered genetic variant and a centered exposure. Such

encoded interaction induces positive contribution to the outcome for the two extreme groups: (i) maximum exposure burden and maximum genetic burden, and

(ii) lowest exposure burden and lowest genetic burden; and negative contribution to the outcome for the two opposite groups: (iii) maximum exposure burden and

lowest genetic burden, and (iv) lowest exposure burden and maximum genetic burden. In (B) genetic and exposure burdens are encode in their natural scale and

are therefore positive or null. Such coding induces a contribution of the interaction effect to the outcome that is monotonic with increasing genetic and exposure

burden.

Robert J. Friedrich (Friedrich, 1982)). The consensus is that,

if the range of the independent variables do naturally includes

zero (e.g. smoking status, genetic variants) there is no prob-

lem in interpreting the estimated main and interaction effect.

For an interaction effect between A and B, the main effect of

A corresponds to the effect of A when B is absent and con-

versely. On the contrary, if the range of the variables do not

naturally encompass zero, then the observed estimates “will
be an extrapolations beyond the observed range of experi-
ence” (Friedrich, 1982). Centering the variables can be an

option to address this concern. In that case, the main effect

of A and B would represent the effect of A among individ-

uals having the mean value of B and conversely. However,

as mentioned previously, using centered variables induces a

less interpretable interaction term. I suggest that a reasonable

alternative would consists in shifting the exposure values so

that it has a minimum value close to 0, or alternatively to use

ordinal categories of the exposure (e.g. high vs. low BMI as

done to define obesity), so that the main effect of A would

correspond to the effect among the lowest observed value of

B in the population and conversely.

2.2 Power considerations

The power of the tests from the interaction model and from

a marginal genetic model defined as 𝑌 = 𝛽𝑚𝐺 × 𝐺 + 𝜀𝑚,

can be compared when deriving the noncentrality parame-

ters (ncp) of the predictors of interest. Assuming all effects

are small, so that 𝜎2 the residual variance is close to 1,

these ncps can be approximated by (see supplementary

Appendix B):

𝑛𝑐𝑝𝐺 ≈ 𝑁 × 𝜎2
𝐺
× 𝛽2

𝐺
×

𝜎2
𝐸

𝜇2
𝐸
+ 𝜎2

𝐸

𝑛𝑐𝑝𝐸 ≈ 𝑁 × 𝜎2
𝐸
× 𝛽2

𝐸
×

𝜎2
𝐺

𝜇2
𝐺
+ 𝜎2

𝐺

𝑛𝑐𝑝𝐺𝐸 ≈ 𝑁 × 𝜎2
𝐸
× 𝜎2

𝐺
× 𝛽2

𝐺𝐸
= 𝑁 × 𝛽

′2
𝐺𝐸

𝑛𝑐𝑝𝑚𝐺 ≈ 𝑁 × 𝜎2
𝐺
×
(
𝛽𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸

)2 = 𝑁 × 𝛽
′2
𝐺

Note that in such scenario adjusting for the effect of E in

the marginal genetic model has a minor impact on 𝑛𝑐𝑝𝑚𝐺.

The above equations indicate first that the significance of

the marginal test of G (𝑛𝑐𝑝𝑚𝐺) and the interaction test (𝑛𝑐𝑝𝐺𝐸)

are invariant with the coding used in the model tested, while

the significance of the test of the main genetic and exposure

effects can change dramatically when shifting the mean of G
and E. Second, as illustrated in Figure 2, depending on the

parameters of the distribution of the exposure and the genetic

variants in the generative model, the relative power of each

test can be dramatically different. For example, if the genetic

variant has only a main linear effect but is not interacting with

the exposure, we obtain 𝑛𝑐𝑝𝐺 = 𝑛𝑐𝑝𝑚𝐺 × 𝜎2
𝐸
∕(𝜇2

𝐸
+ 𝜎2

𝐸
), so

that testing for 𝛽𝑚𝐺 will be much more powerful that test-

ing for 𝛽𝐺 if the mean of E is large, although there is no

interaction effect here. When the generative model includes

an interaction effect only (𝛽𝐺 = 𝛽𝐸 = 0 and 𝛽𝐺𝐸 ≠ 0), we
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F I G U R E 2 Relative power of the joint test of main genetic and inter-

action effects. Power comparison for the tests of the main genetic effect

(main.G), the interaction effect (int.GxE), and the joint effect (Joint G.GxE)

from the interaction model, and the test of the marginal genetic effect (mar.G).

The outcome Y is define as a function of a genetic variant G coded as [0,1,2]

with a minor allele frequency of 0.3, and the interaction of G with an exposure

E normally distributed with variance 1 and mean �̄�. The genetic and interac-

tion effects vary so that they explain 0% and 0.04% (A), 0.1% and 0.1% (B),

0.6% and 0.1% (C) with effect in opposite direction, and 0.4% and 0% (D) of

the variance of Y, respectively. Power and 𝜌𝐺,𝐺×𝐸 , the correlation between G
and the 𝐺 × 𝐸 interaction term (E) were plotted for a sample size of 10,000

individuals and increasing �̄� from 0 to 5.

obtain 𝑛𝑐𝑝𝑚𝐺 = 𝑛𝑐𝑝𝐺𝐸 × 𝜇2
𝐸
∕𝜎2

𝐸
. Again, the marginal test of

the genetic effect can be dramatically more powerful than

the test of interaction effect although the generative model

includes only an interaction term but no main effect.

It follows that the power to detect an interaction effect

explaining for example 1% of the variance of Y (where vari-

ance explained for a predictor X is defined as 𝛽2
𝑋
∕𝜎2

𝑋
) but

inducing no marginal genetic effect (i.e. when E is centered

as in Fig. 1A) is much higher than for an interaction explain-

ing the same amount of variance but whose effect can be

capture by a marginal term (i.e. when E is not centered as

in Fig. 1B–D). This result is a direct consequence of the

covariance between 𝛽𝐺 and 𝛽𝐺𝐸 that arise when having non-

centered exposure in the generative model (Fig. 2E). This

covariance equals 𝜇𝐸 × 𝜎2
𝐺

(supplementary Appendix C). It

induces uncertainty on the estimation of the predictor effects,

which decreases the significance of the estimates in the inter-

action model. With increasing intercorrelations between pre-

dictors it becomes impossible to disentangle the effects of one

predictor from another, the standard errors of the effect esti-

mates becoming infinitely large and the power decreases to

the null (Farrar & Glauber, 1967). As showed in the simula-

tion study from supplementary Figures S2 and S3 these results

appear consistent for both linear and logistic regression and

when assuming non-normal distribution of the exposure.

This lead to the nonintuitive situation where the power to

detect a relatively simple and parsimonious interaction effect

from a biological perspective–defined as the product of a

genetic variant and an exposure both coded to be positive

or null–is very small; and in most scenarios where the main

genetic and interaction effects do not canceled each other (see

e.g. Weiss, 2008) the marginal association test of G would be

more powerful. In comparison a more exotic interaction effect

as defined in Figure 1A and supplementary Figure S1E, would

be both much easier to detect and not captured in a screening

of marginal genetic effect.

2.3 Proportion of variance explained

In genetic association studies the proportion of variance

explained by an interaction term is commonly evaluated as the

amount of variance of the outcome it can explain on top of the

marginal linear effect of the interacting factors (Hill, Goddard,

& Visscher, 2008). Following the aforementioned principle,

one can derive the contribution of G (𝑟2
𝐺

), E (𝑟2
𝐸

), and 𝐺 × 𝐸

(𝑟2
𝐺𝐸

) to the variance of the outcome using the estimates from

the standardize model, in which the interaction term is inde-

pendent from G and E (supplementary Appendix D):

𝑟2
𝐺
= 𝛽

′2
𝐺

=
(
𝛽𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸

)2 × 𝜎2
𝐺

𝑟2
𝐸
= 𝛽

′2
𝐸

=
(
𝛽𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺

)2 × 𝜎2
𝐸

𝑟2
𝐺𝐸

= 𝛽
′2
𝐺𝐸

=
(
𝛽𝐺𝐸 × 𝜎𝐸 × 𝜎𝐺

)2
.

The total variance explained by the predictors in the inter-

action model equals 𝑟2
𝑚𝑜𝑑𝑒𝑙

= 𝑟2
𝐺
+ 𝑟2

𝐸
+ 𝑟2

𝐺𝐸
. It follows that

one can draw various scenarios where the estimated main

effect of E and G can be equal to zero but have a nonzero

contribution to the variance of Y because of the interaction

effect. Consider the simple example where G and E are binary

variables and have a pure synergistic effect, that is, the effect

of G and E is observed only in the exposed subjects carry-

ing the risk allele. Following the above equations, if G and E
have frequencies of, e.g. 0.3 and 0.7 and 𝛽𝐺𝐸 = 0.5, the con-

tribution of G, E, and 𝐺 × 𝐸 to the variance of the outcome
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F I G U R E 3 Examples of attribution of phenotypic variance explained by an interaction effect. Proportion of variance of an outcome Y explained by a genetic

variant G, an exposure E and their interaction G × E in a model harboring a pure interaction effect only (𝑌 = 𝛽𝐺𝐸 × 𝐺 × 𝐸 + 𝜀). The exposure E follows a

normal distribution with a standard deviation of 1 and mean of 0 (A), 2 (B), and 4 (C). The genetic variant is biallelic with a risk allele frequency increasing

from 0.01 to 0.99. The interaction effect is set so that the maximum of the variance explained by the model equals 1%.

equal 2.56%, 0.47% and 1.10%, respectively. More generally,

Figure 3 shows that depending on the frequency of the causal

allele and the distribution of the exposure in the generative

model, the vast majority of the contribution of the interaction

term to the variance of Y will be attributed to either the genetic

variant or the exposure. This is in agreement with previous

work showing that even if a large proportion of the genetic

effect on a given trait is induced by interaction effects, the

observed contribution of interaction terms to the heritability

can still be very small (Hill et al., 2008). Because such inter-

action effects have small contribution to 𝑟2
𝑚𝑜𝑑𝑒𝑙

on top of the

marginal effects of E and G, they have a very limited utility for

prediction purposes in the general population (Aschard et al.,

2012a; Aschard, Zaitlen, Lindstrom, & Kraft, 2015).

Still, this is a strong limitation when the goal is not pre-

diction but to understand the underlying architecture of the

trait under study and to evaluate the relative importance of

main and interaction effects from a public health perspective.

Lewontin (Lewontin, 1974) highlighted similar issues, show-

ing that the analysis of causes and the analysis of variance

are not necessarily overlapping concepts. His work presents

various scenarios where “the analysis of variance will give
a completely erroneous picture of the causative relations
between genotype, environment, and phenotype because the
particular distribution of genotypes and environments in a
given population.” Since then, a number of theoretical stud-

ies have explored the issue of assigning importance to cor-

related predictors (Budescu, 1993; Chao, Zhao, Kupper, &

Nylander-French, 2008; Darlington, 1968; Green, Carroll, &

DeSarbo, 1978) and several alternatives measures have been

proposed. To my knowledge, none of these measures has

been considered so far in human genetic association studies.

The advantages and limitation of these alternative methods

have been debated for years and no clear consensus arose,

however Pratt axiomatic justification (Pratt, 1987) for one

of these method—further presented in the literature as the

Product Measure (Bring, 1996), Pratt index or Pratt’s mea-

sure (Thomas, Hughes, & Zumbo, 1998)—makes it a relevant

substitute. For a predictor 𝑋𝑖, the Pratt’s index that we refer

further as 𝑟2∗, is defined as the product of 𝛽𝑋𝑖
, the standard-

ized coefficient from the multivariate model (where all predic-

tors are scaled to have mean 0 and variance 1, including the

interaction term), times its marginal (or zero-order) correla-

tion with the outcome 𝑐𝑜𝑟(𝑌 ,𝑋𝑖), i.e. 𝑟2∗
𝑋𝑖

= 𝛽𝑋𝑖
× 𝑐𝑜𝑟(𝑌 ,𝑋𝑖).

By definition, 𝑟2∗
𝑋𝑖

attributes a predictor’s importance as a

direct function of its estimated effect and therefore addresses

the previously raised concern. Among other relevant proper-

ties, it depends only on regression coefficients, multiple cor-

relation, and residual variance but not higher moments, and

it does not change with (nonconstant) linear transformation

of predictors other than 𝑋𝑖. It also has convenient additiv-

ity properties as it satisfies the condition 𝑟2∗
𝐺

+ 𝑟2∗
𝐸

+ 𝑟2∗
𝐺𝐸

=
𝑟2
𝑚𝑜𝑑𝑒𝑙

(supplementary Appendix D), so that the overall con-

tribution of the predictors is the sum of their individual con-

tribution, and for example the cumulated contribution of mul-

tiple interaction effects can easily be evaluated by summing

𝑟2∗
𝑋𝑖

. The Pratt’s index also received criticisms (Bring, 1996;

Chao et al., 2008), in particular for allowing 𝑟2∗
𝑋

being neg-

ative (Thomas et al., 1998). Pratt’s answer to this concern is

that 𝑟2∗
𝑋𝑖

only describes the average contribution of a predictor

to the outcome variance in one dimension and is therefore, as

any one-dimension measure, a suboptimal representation of

the complexity of the underlying model. For example, a neg-

ative 𝑟2∗
𝑋𝑖

means that if we were able to remove the effect of

𝑋𝑖, the variance of the outcome would increase because of

the correlation of 𝑋𝑖 with other predictors (see example from

supplementary Appendix D).

From a practical perspective, 𝑟2∗
𝑋𝑖

can be expressed as a

function of the estimated effects, the means and the variances

of E and G (supplementary Appendix D), and can be derived

using estimates from a standard regression model:

𝑟2∗
𝐺

=
(
𝛽2
𝐺
+ 𝛽𝐺 × 𝛽𝐺𝐸 × 𝜇𝐸

)
× 𝜎2

𝐺

𝑟2∗
𝐸

=
(
𝛽2
𝐸
+ 𝛽𝐸 × 𝛽𝐺𝐸 × 𝜇𝐺

)
× 𝜎2

𝐸

𝑟2∗
𝐺𝐸

= 𝛽2
𝐺𝐸

× 𝜎2
𝐺𝐸

+ 𝛽𝐺𝐸

×
(
𝛽𝐺 × 𝜇𝐸 × 𝜎2

𝐺
+ 𝛽𝐸 × 𝜇𝐺 × 𝜎2

𝐸

)
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F I G U R E 4 Relative importance of an interaction term as defined by the Pratt index. Contribution of a genetic variant G with minor allele frequency of 0.5,

a normally distributed exposure E with mean of 4 and variance of 1 and their interaction G × E, to the variance of a normally distributed outcome Y, based on

the standard approach-–the marginal contribution of E and G and the increase in r2 when adding the interaction term–(gray boxes), and based on the Pratt index

(blue boxes), across 10,000 replicates of 5,000 subjects. For illustration purposes the predictors explain jointly 10% of the variance of Y. In scenario (A) all G,

E, and G × E have equal contribution, while in scenarios (B), (C), and (D) there is no interaction effect, no exposure effect, and no genetic effect, respectively.

As showed in Figure 4 and supplementary Figure S4, the

Pratt index can recover the pattern of the causal model in situ-

ations where the standard approach would underestimate the

importance of the interaction effects. It can therefore be of

great use in future studies to evaluate the importance of poten-

tially modifiable exposures that influence the genetic compo-

nent of multifactorial traits.

Table 1 illustrates the differences between the two

approaches for two confirmed interaction effect on body mass

index (BMI). In case (1), the authors identified and replicated

an interaction between soda consumption and a genetic risk

score (GRS) of 32 BMI SNPs. Case (2) is a replication of a

previously identified interaction between a GRS of 12 BMI

SNPs and physical activity (Ahmad et al., 2013). Following

the formulas above and using approximation of mean and

variance of the genetic and exposure variables (supplemen-

tary Table S1 and S2), I estimated the contribution of each

term using the standard approach and the Pratt index after

rederiving effect estimates for a model where predictor val-

ues (for the GRS and the exposure) are shifted so that the

minimum observed values equal 0—as suggested earlier. It

resulted in major differences of the relative importance of the

three predictors, the contribution of the interaction effect as

derived with the Pratt Index being substantially higher in both

cases (increasing from 4.4% to 10.8% for case 1, and from

0.4% to 15.7% for case 2). Case 1 highlights in particular that

reducing soda consumption might have a greater impact in

reducing the average BMI in the population than one would

expect when focusing on the amount of variance explained as

defined in the standard approach. An important caveat here is

that the Pratt Index is sensitive to location shift of the pre-

dictor (as performed in this analysis) and the results from

Table 1 would change if a different transformation was applied

to the predictors (i.e. if the minimum possible value was

defined differently). In comparison, the standard approach is

robust to linear transformation of the predictors.
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T A B L E 1 Relative importance of GRS by exposure interaction effect from real data example

Reference Contribution to BMI Standarda Pratt index

32 BMI SNPs × soda consumption Total 0.011 0.011

% of genetic 91.0% 70.5%

% of environment 4.6% 18.7%

% of interaction 4.4% 10.8%

12 BMI SNPs × physical Activity Total 0.016 0.016

% of genetic 43.8% 49.1%

% of environment 55.8% 35.2%

% of interaction 0.4% 15.7%

BMI, body mass index; SNP, single nucleotide polymorphisms.
aVariance explained for the interaction effect is derived as the variance explained on top of the marginal contribution from the genes and the environment.

2.4 Improving detection through multivariate
interaction tests

Using statistical technics such as the Pratt index can pro-

vide clues on the importance of interaction effects; however it

does not help in mapping interaction. Increasing power mostly

relies on two principles: increasing sample size, and lever-

aging assumptions on the underlying model. The case-only

test, which assumes independence between the genetic vari-

ant and the exposure, and a two steps strategy that select can-

didate variants for interaction test based on their marginal

linear effects, are good examples of the later principle (Dai

et al., 2012; Gauderman et al., 2013; Mukherjee, Ahn,

Gruber, & Chatterjee, 2012). However, only a limited num-

ber of assumptions can be made for a single variant by a sin-

gle exposure interaction test. With the overwhelming wave of

genomic and environmental data, I suggest that a major path

to move the field forward is to extend this principle while con-

sidering jointly more parameters.

This has actually already been applied over the past few

years with the joint test of main genetic and interaction effects

(Kraft, Yen, Stram, Morrison, & Gauderman, 2007). The ncp
of such a joint test can be expressed as a function of main and

interaction estimates (𝛽𝐺 and 𝛽𝐺𝐸), their variances (𝜎2
𝛽𝐺

and

𝜎2
𝛽𝐺𝐸

) and their covariance 𝛾 (supplementary Appendix E). By

accounting for 𝛾 the joint test recovers most of the power lost

by the univariate test of the main genetic and interaction effect

(so the situation where neither the interaction effect nor the

main genetic effect are significant, while the joint test is, see

e.g. SNP rs11654749 in (Hancock et al., 2012)). More impor-

tantly, in the presence of both main and interaction effects, it

can outperform the marginal test of G. Although this is at the

cost of decreased precision, i.e. if the test is significant, one

cannot conclude whether association signal is driven by the

main or the interaction effect. Moreover this would be true

only if the contribution of the interaction effect on top of the

marginal effect is large enough so that it balanced the increase

in number of degree of freedom (Aschard, Hancock, London,

& Kraft, 2010; Clayton & McKeigue, 2001) (Fig. 2).

Application of the joint test of main genetic effect and a

single gene by exposure interaction term is now relatively

common in GWAS setting (Hamza et al., 2011; Hancock

et al., 2012; Manning et al., 2012). However, exploring fur-

ther multivariate interactions with multiple exposures is lim-

ited by practical considerations. Existing software to perform

the joint test in a meta-analysis context (Aschard et al., 2010;

Manning et al., 2011) only allow the analysis of a single

interaction term mostly because it requires the variance-

covariance matrix between estimates, which is not provided

by popular GWAS software. Leveraging the results from the

previous sections on can show that the ncp of the joint test of

main genetic effect and interactions with l independent expo-

sures can be expressed as the sum of ncp from the test of G
and the 𝐺 × 𝐸𝑐𝑒𝑛𝑡.𝑖 where 𝐸𝑐𝑒𝑛𝑡.𝑖 is the centered exposure i
(supplementary Appendix E):

𝑛𝑐𝑝𝐺+𝐺𝐸 = 𝑁 × 𝜎2
𝐺
× 𝛽

′′2
𝐺

+
∑

𝑖=1…𝑙

[
𝑁 × 𝜎2

𝐺
× 𝜎2

𝐸
× 𝛽

′′2
𝐺𝐸𝑐𝑒𝑛𝑡.𝑖

]
where 𝛽

′′

𝐺
and 𝛽

′′

𝐺𝐸𝑐𝑒𝑛𝑡.𝑖
are the effects of G and 𝐺 × 𝐸𝑐𝑒𝑛𝑡.𝑖.

Such a test is robust to non-normal distribution of the expo-

sure, and modest correlation (<0.1) between the genetic vari-

ant and the exposures, but sensitive to moderate correlation

(>0.1) between exposures (supplementary Figs. S5 and S6).

Hence, one can perform meta-analysis of a joint test includ-

ing multiple interaction effects using existing software simply

by centering exposures. In brief one would have to perform

first a standard inverse-variance meta-analysis to derive chi-

squares for the 𝑙 + 1 terms from the model considered, and

then to sum all chi-squares to form a chi-square with 𝑙 + 1 df.
Importantly, centering the exposures will be of interest only

when testing jointly multiple interactions and the main genetic

effect. In comparison, the combined test of multiple interac-

tion effects can be simply performed by summing chi-squares

from each independent interaction test or from interaction test

derived in a joint model. As previously, the validity of this

approach relies on independence between the genetic variant

and the exposures, and between the exposures. Finally, a more
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F I G U R E 5 Advantages and limitations of testing interaction effect with a genetic risk score. Examples of power comparison for the combined analysis

of interaction effects between 20 SNPs and a single exposure. Power was derived for three scenarios: the interaction effects are normally distributed (upper

panels) and (A) centered, (B) slightly positive so that 25% of the interactions are negative, and (C) positive only. Three tests are compared while increasing

sample size from 0 to 10,000: the joint test of all interaction terms, the genetic risk score by exposure interaction test, and the test of the strongest interaction

effect (pairwise test) after correction for the 20 tests performed (middle panels). The lower panels show power of the three tests for a sample size of 5,000,

when including 1–400 non-interacting SNPs on top of the 20 causal SNPs in the analysis and after accounting for multiple testing in the pairwise test.

general solutions that should be explored in future studies

would consists, as proposed for the analysis of multiple phe-

notypes (e.g. Zhu et al., 2015), in estimating the correlation

between all tests considered (main genetic effect and/or multi-

ple interaction effects) using genome-wide summary statistics

in order to form a multivariate test.

A second major direction for the development of mul-

tivariate test is to assume the effects of multiple genetic

variants depend on a single “scaling” variable E. A rising

approach consists in testing for interaction between the scal-

ing variable and a genetic risk score (GRS), derived as the

weighted sum of the risk alleles. Several interaction effects

have been identified using this strategy (Ahmad et al., 2013;

Fu et al., 2013; Langenberg et al., 2014; Pollin et al., 2012; Qi,

Cornelis, Zhang, van Dam, & Hu, 2009; Qi et al., 2012), some

being replicated in independent studies (Ahmad et al., 2013;

Qi et al., 2012). This relative success, as compared to uni-

variate analysis, has generated discussion regarding potential

underlying mechanisms (Aschard et al., 2015; Ebbeling

& Ludwig, 2013; Goran, 2013; Greenfield, Samaras, &

Campbell, 2013; Malavazos, Briganti, & Morricone, 2013).

Overall, testing for an interaction effect between a GRS and a

single exposure consists in expanding the principle of a joint

test of multiple interactions while leveraging the assumption

that, for a given choice of coded alleles, most interaction

effects are going in the same direction. It is similar in essence

to the burden test that has been widely used for rare vari-

ant analysis (Lee, Abecasis, Boehnke, & Lin, 2014). In its

simplest form it can be expressed as the sum of all interac-

tion effects and it captures therefore deviation of the mean of

interaction effects from 0. When interaction effects are null

on average, a joint test of all interaction tests (as previously

described) will likely be the most powerful approach as it

allows interaction effects to be heterogeneous. Conversely, if

interactions tend to go in the same direction, the GRS-based

test can outperform other approaches (Fig. 5). Of course, in
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T A B L E 2 Genetic risk score by exposure interaction in real data

32 BMI SNP × soda consumption 12 BMI SNP × physical activity

Reported P-value Best SNPa 0.0030 0.0030

GRS from paperc <0.001 0.016

Derived P-valuea wGRS 0.000028 0.0027

uGRS 0.00019 0.015

chi2 0.014 0.050

Powerb Best SNP 0.43 0.68

wGRS 0.99 0.85

uGRS 0.96 0.54

SNP, single nucleotide polymorphisms; wGRS, weighted GRS; uGRS, unweighted GRS; chi2, sum of individual interaction chi-squared.
aP-values derived from individual SNP by exposure interaction estimates, not corrected for the number of SNPs tested.
bPower is approximated based on the effect estimate. It is derived for an alpha level of 5% and sample sizes similar to those used in the corresponding study.
cFor soda consumption, the authors used a weighted GRS, for physical activity, the authors used an unweighted GRS.

a realistic scenario, a number of non-interacting SNPs would

be included in the GRS, diluting the overall interaction signal

and therefore decreasing power. However, the gain in power

for the multivariate approaches can remain substantial even

when a large proportion of the SNPs tested (e.g. 95% in the

example from Fig. 5) is not interacting with the exposure.

Table 2 illustrates power achieved by these tests in the exam-

ples used for Table 1.

Finally, as showed in supplementary Appendix F, assum-

ing the SNPs in the GRS are independents from each others,

the GRS by E interaction test can be derived from individual

interaction effect estimates. More precisely, consider testing

the effect of a weighted GRS on Y:

𝑌 ∼ 𝛾𝐺𝑅𝑆 × 𝐺𝑅𝑆 + 𝛾𝐸 × 𝐸 + 𝛾𝐼𝑁𝑇 × 𝐺𝑅𝑆 × 𝐸

where 𝛾𝐺𝑅𝑆 , 𝛾𝐸 , and 𝛾𝐼𝑁𝑇 are the main effect of the weighted

GRS, the main effect of E and the interaction effect between

E and the GRS, respectively. The test of 𝛾𝐼𝑁𝑇 is asymp-

totically equivalent to the meta-analysis of 𝛾𝐺𝑖×𝐸 , the inter-

action effects between 𝐺𝑖 and E, using an inverse-variance

weighted sum to derive a 1 df chi-square, i.e. (see supplemen-

tary Appendix F, supplementary Figs. S7 and S8, and Dastani

et al., 2012):

(
�̂�𝐼𝑁𝑇

�̂�𝛾𝐼𝑁𝑇

)2

=

⎛⎜⎜⎝
∑

𝑚

𝑤𝑖 × �̂�𝐺𝑖×𝐸

�̂�2
𝛾𝐺𝑖×𝐸

⎞⎟⎟⎠
2

∑
𝑚

𝑤2
𝑖

�̂�2
𝛾𝐺𝑖×𝐸

where 𝑤𝑖 is the weight given to SNP i.
A number of strategies can be used for the weight-

ing scheme. Assuming equal effect size of all interaction

effects, one should weight each SNP by the inverse of their

standard deviation (𝑤𝑖 = 1∕𝜎𝐺𝑖
). Alternatively, others have

used weights proportional to the marginal genetic effect of

the SNPs, assuming the magnitude of the marginal and

interaction effects are correlated. Obviously, the relative

power of each of these weighting schemes depends on their

relevance in regard to the true underlying model. Finally,

applying GRS-based interaction tests implicitly supposed a

set of candidate genetic variants have been identified. The

current rationale consists in assuming that most interact-

ing variants also display a marginal linear effect and there-

fore have focused on GWAS hits, however other screening

methods can be used (Aschard, Zaitlen, Tamimi, Lindstrom,

& Kraft, 2013; Pare, Cook, Ridker, & Chasman, 2010).

Moreover, existing knowledge, such as functional annotation

(Consortium, 2004) or existing pathway database (Kanehisa

et al., 2014) can be leverage to refine the sets of SNPs to be

aggregated into a GRS.

3 DISCUSSION

Advancing knowledge of how genetic and environmental fac-

tors combine to influence human traits and diseases remains

a key objective of research in human genetics. Ironically,

the simplest and most parsimonious biological interaction

models—those in which the effect of a genetic variant is either

enhanced or decreased depending on a common exposure—

are probably the most difficult to identify. Furthermore,

the contribution of such interaction effects can be dramat-

ically underestimated when measured as the drop in r2 if

the interaction term was removed from the model. Here, I

argue for the use of new approaches and analytical strate-

gies to address these concerns. This includes using meth-

ods such as the Pratt index to evaluate the relative impor-

tance of interaction effects in genetic association studies.

These methods can highlight important modifiable exposures

influencing genetic mechanisms, which could be neglected

with the existing approach. Regarding detection, and besides

increasing sample size, increasing power to detect interaction

effects in future studies will likely mostly rely on leverag-

ing additional assumptions on the underlying model. In the
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big data era, where millions of genetic variants are measured

on behalf of multiple environmental exposures and endo-

phenotypes, this means using multivariate models. A variety

of powerful statistical tests can be devised assuming multi-

ple environmental exposures interact with multiple genetic

variants. As showed in this study, the application of such

approaches can dramatically improve power to detect inter-

action that can be missed by standard univariate tests. While

these methods comes at the cost of decreased precision—i.e. a

significant signal would point out multiple potential culprit—

they can identify interaction effects that would potentially be

of greater clinical relevance that univariate pairwise interac-

tion (Aschard et al., 2012a, 2015; Qi et al., 2012).

Understanding the strengths and limitations of standard

statistical methods is a major key to overcome today’s chal-

lenges for the identification of interaction effects in human

traits and diseases. By deciphering the basic principles of

interaction tests, this perspective aims at providing a compre-

hensive guideline for performing interaction effects analyses

in genetic association studies, and opening the path for future

method development.
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