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Abstract: Preeclampsia is a pregnancy disorder characterized by hypertension. Epidemiological
studies have associated preeclampsia with an increased risk of neurodevelopmental disorders in
offspring, such as autism and schizophrenia. Preeclampsia has also been linked with maternal vitamin
D deficiency, another candidate risk factor also associated with autism. Our laboratory has established
a gestational vitamin-D-deficient rat model that shows consistent and robust behavioural phenotypes
associated with autism- and schizophrenia-related animal models. Therefore, we explored here
whether this model also produces preeclampsia as a possible mediator of behavioural phenotypes in
offspring. We showed that gestational vitamin D deficiency was not associated with maternal blood
pressure or proteinuria during late gestation. Maternal and placental angiogenic and vasculogenic
factors were also not affected by a vitamin-D-deficient diet. We further showed that exposure to
low vitamin D levels did not expose the placenta to oxidative stress. Overall, gestational vitamin
D deficiency in our rat model was not associated with preeclampsia-related features, suggesting
that well-described behavioural phenotypes in offspring born to vitamin-D-deficient rat dams are
unlikely to be mediated via a preeclampsia-related mechanism.

Keywords: maternal vitamin D deficiency; preeclampsia; placental insufficiencies; renin–angiotensin
system; oxidative stress

1. Introduction

Emerging evidence suggests that preeclampsia is a risk factor for several neuropsychi-
atric disorders including autism, schizophrenia, and attention deficit hyperactivity disorder
(reviewed in [1]). A recent meta-analysis showed that the risk of autism is 32% greater
in children who had intrauterine exposure to preeclampsia compared with controls [2].
In this meta-analysis, seven out of ten studies reported a positive association between
preeclampsia and autism.

Preeclampsia is a pregnancy-specific syndrome that affects approximately 3–7% of first
pregnancies [3]. It is characterized by hypertension and renal failure [4]. Severe proteinuria
after 20 weeks of pregnancy is also a common symptom [5]. About 85% of affected women
present symptoms at ≥34 weeks of gestation [6]. It is one of the major causes of maternal
and foetal morbidity and preterm birth [4]. The aetiology of preeclampsia has not been fully
elucidated; however, clinical studies suggest that the placenta plays a central role in the
development of preeclampsia [7]. Patients with preeclampsia also display a significantly
altered angiogenic profile compared with normal pregnancies [4].
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Preeclampsia is considered a two-stage syndrome. The first stage consists of poor pla-
centation due to defective trophoblast invasion of the maternal spiral artery, leading to poor
placental perfusion [8,9]. This leads to the second stage which proceeds with the activation
of the renin–angiotensin system (RAS), placental hypoxia, placental inflammation, and
increased production of soluble fms-like tyrosine kinase 1 (Flt-1) [4,10,11]. Flt-1 is a splice
variant of vascular endothelial growth factor (Vegf) receptor and acts as an antagonist of
Vegf and placental growth factor (Pgf) [12]. It is produced by different tissues including
placenta [13]. Increased Flt-1 levels in preeclampsia have been associated with reduced
free Vegf and Pgf resulting in endothelial dysfunction [10]. In addition to this, aldosterone
is also suppressed in established preeclampsia [14,15]. Aldosterone is a mineralocorticoid
hormone involved in the sodium reabsorption and water retention required for maternal
volume expansion during pregnancy. Reduced aldosterone levels during preeclampsia
may lead to reduced pregnancy-associated expansion of circulating fluid volume. This also
contributes to reduced placental perfusion and ischaemia [15].

Clinical studies show that prenatal vitamin D (vitamin D3) deficiency is associated
with an increased risk of preeclampsia [16–20]. Women with dark skin are at higher risk
of vitamin D deficiency due to less efficient vitamin D synthesis [21]. The known racial
disparity in preeclampsia, with women with dark skin being more likely to develop severe
preeclampsia than fair-skinned women, is therefore also consistent with a possible role
for vitamin D [22]. However, other studies report no evidence of an association between
vitamin D deficiency and preeclampsia [23–25]. Furthermore, the possible mechanisms
through which vitamin D deficiency can influence preeclampsia risk are unclear. Vitamin
D deficiency during pregnancy also interacts with other preeclampsia risk factors such
as gestational diabetes [26] and maternal obesity [27]. Vitamin D deficiency increases the
risk of gestational diabetes [28]. Moreover, studies show an inverse relationship between
vitamin D status during pregnancy and maternal body mass index (BMI) [29,30]. Hence,
vitamin D deficiency in women with gestational diabetes and increased BMI may increase
their susceptibility to preeclampsia.

Developmental vitamin D (DVD) deficiency throughout gestation is associated with
the subsequent development of schizophrenia or autism in offspring [31–34]. Our labo-
ratory has established a rat model of this exposure. We have been using this model for
the past 20 years to investigate the biological plausibility of an association between gesta-
tional vitamin D deficiency and neurodevelopmental disorders such as schizophrenia and
autism [35,36]. Our group has shown that offspring born to vitamin-D-deficient dams ex-
hibit schizophrenia and autism-like behavioural phenotypes as juveniles and adults [37,38].
We have also shown a range of cellular and neurotransmitter changes in neonatal DVD-
deficient brains with relevance to autism and schizophrenia [39]. However, the maternal
factors that may contribute to altered foetal brain development and offspring behaviour are
not fully elucidated. For instance, it is possible that the previously established phenotypes
in this model may be, in part, due to impaired placental functions due to preeclampsia.

Vitamin D is a neuro-steroid which is biologically converted into its active form,
1,25-dihydroxy-vitamin D (1,25OHD), by the enzyme 1 alpha-hydroxylase. The 1,25OHD
regulates expression of several genes via its nuclear receptor—the vitamin D receptor
(VDR). Mounting evidence suggests that vitamin D may have a regulatory effect on the
RAS system that plays a key role in regulating blood pressure. Vitamin D supplementation
has been shown to normalize blood pressure in both humans [40,41] and animal models of
preeclampsia [42]. It is believed that adequate vitamin D status influences blood pressure
by downregulating plasma and placental Flt-1 [42]. Studies also show an inverse relation-
ship between vitamin D and plasma renin activity [41,43], aldosterone, and angiotensin
II levels [44]. Taken together, these studies suggest that vitamin D may play a role in
regulating RAS to influence blood pressure. We now wish to investigate whether the
behavioural phenotypes observed in DVD-deficient rats may, in part, be secondary to the
impaired maternal and placental functions associated with preeclampsia.
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2. Materials and Methods
2.1. Animals

The study was approved by the Animal Ethics Committee (AEC) of the University
of Queensland (Approval Number: QBI/555/16). Dietary DVD deficiency was induced
according to well-established methods [45]. Briefly, standard casein rodent chow (AIN93G)
free of vitamin D (Product # SF09-105) or containing 1000 IU/kg of cholecalciferol (Prod-
uct # SF09-104) was fed to female Sprague–Dawley (SD) rats (Speciality Feeds, Western
Australia). After 6 weeks on the diet, female rats were time-mated with vitamin-D-normal
sires. Successful mating was confirmed by the presence of a copulatory plug in the vagina,
and the day was denoted gestational day (GD) 0. A total of 9 control and 9 vitamin-
D-deficient dams were used in this experiment. For placental analysis, two placentas
per litter (placentas containing one male and one female) (control group = 9 males and
9 females, vitamin-D-deficient group = 9 males and 9 females) were used. Vitamin D
deficiency was confirmed by measuring serum 25-hydroxyvitamin D3 (25OHD) levels at
GD19 (control = 31.05 nm/L ± 8.5, deficient = 3.29 nm/L ± 1.1 (± standard deviation),
(F1,17 = 71.30, p = 0.0001)).

2.2. Blood Pressure Measurements and Tissue Collection

Blood pressure was measured in a designated quiet room (22 ± 2 ◦C), where rats
were acclimatized for 30 min before experiments began (Figure 1A). Blood pressure was
measured by non-invasive tail-cuff plethysmography (NIBP System IN125/R ADInstru-
ments Inc., Dunedin, New Zealand). Animals were warmed to 33 to 35 ◦C on a heating
pad for 5 min before and during the blood pressure recordings. Rats were trained on
plethysmography 2 days prior to mating. In training, rats were encouraged to walk into
the rat restrainer (MLA5024, ADInstruments Inc., Dunedin, New Zealand). The pressure
cuff and pulse transducer were placed at the base of the tail. To measure blood pressure,
the occlusion cuff was inflated to 300 mmHg and deflated over 20 s. The volume pressure
recording (VPR) sensor cuff senses variations in the tail blood volume as the blood returns
to the tail during the cuff deflation. Each session involved 15 to 25 inflation and deflation
cycles. The first five cycles were acclimation cycles and were not used in the analysis. Blood
pressure in dams was measured at two time points. The first blood pressure reading was
taken during training sessions from virgin rats and the second measurement was taken
at GD18. Pregnant dams were euthanized at GD19. The dams’ blood, dams’ urine, foetal
tail tips and placentas were collected. Serum was obtained from the dams’ blood. Urine
was used to measure proteinuria using a Pierce™ BCA Protein Assay Kit (23227 Thermo
Scientific™ Waltham, MA, USA) according to the manufacturer’s instructions. Foetal tails
were used for the identification of foetal sex by amplification of the sex-determining region
Y gene [46].
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Figure 1. Vitamin D-deficient pregnant rats do not display preeclampsia phenotypes. Blood pressure data were acquired
and processed using LabChart® 8.1 (A). Blood pressure was recorded from virgin and pregnant rats (B). There was no
significant effect of diet on blood pressure at both time points. No proteinuria difference was detected in vitamin-D-deficient
dams (C). Maternal Flt-1 (D), angiotensin II (E) and aldosterone (F) were also not significantly changed between the sera of
control and vitamin-D-deficient dams. Data shown are means; error bars show SEM; n = 9 control, n = 9 vitamin-D-deficient,
PM = prior to mating, GD18 = gestational day 18.

2.3. Angiotensin II, Flt-1, and Aldosterone Assays

Sera and placental samples were analysed using commercially available enzyme-
linked immunosorbent assays (ELISA). Angiotensin II (ADI-900-204, Enzo Life Sciences,
Inc., Farmingdale, NY, USA), Flt-1 (ab270206, abcam, Cambridge, UK) and aldosterone
(ADI-900-173, Enzo Life Sciences, Inc., Farmingdale, NY, USA). ELISAs were conducted
according to the manufacturer’s instructions. Briefly, serum samples were diluted (1:4)
with the provided diluent and loaded onto the 96-well plates. Placental samples were pre-
pared by homogenizing half of the placenta in lysis buffer (1:10 w/v) containing protease
inhibitors. Homogenates were centrifuged at 13,000 revolutions per min for 20 min at 4 ◦C
and supernatants collected. Total protein concentration was determined using a Pierce™
BCA Protein Assay Kit (23227, Thermo Scientific™, Waltham, MA, USA). Individual pro-
teins were calculated relative to total protein content in homogenates. The concentrations
were calculated using 4 parametric logistic regression (4PL) curve methods.

2.4. Quantitative Polymerase Chain Reaction (qPCR)

A qPCR was used for the gene expression analysis of Pgf, type-1B angiotensin II recep-
tor (Agtr1b), hypoxia-inducible factor 1-alpha (Hif1α), and prostaglandin–endoperoxide
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synthase 2 (Ptgs2) (see Supplementary Material for primer sequences). Total RNA was
extracted from the remaining half of the placental tissue using an RNeasy Mini Kit (Cat
No. 74104, Qiagen, Hilden, Germany) and was reverse transcribed into cDNA using a
SensiFAST™ cDNA Synthesis Kit (Meridian Bioscience Inc., Cincinnati, OH, USA). The
qPCR was performed using a SensiFAST™ SYBR®No-ROX Kit (Meridian Bioscience Inc.,
Cincinnati, OH, USA). The reaction was performed in a LightCycler® 480 System (Roche
Diagnostics, Penzberg, Germany) under the following conditions: denaturation at 95 ◦C
for 5 min and then amplification for 40 cycles (95 ◦C for 10 s, 60 ◦C for 20 s, then 72 ◦C
for 20 s). The relative gene expression was normalized to glyceraldehyde 3-phosphate
dehydrogenase (Gapdh).

2.5. Statistical Analysis

Results were analysed using IBM SPSS (International Business Machines Corporation,
Statistical Package for the Social Sciences) (IBM Corp., Armonk, NY, USA; Version 25).
The blood pressure and proteinuria data in the DVD-deficient and control groups were
analysed by one-way ANOVA. The Flt-1, angiotensin II, and aldosterone (ELISA) data from
the dams’ sera were also analysed by one-way ANOVA. Both ELISA and RNA data from
placentas were analysed by multivariant analysis of variance to measure the main effect of
vitamin-D-deficient diet, main effect of foetal sex, and diet × foetal sex interactions. The
placental weight was analysed by a univariant analysis of variance. Statistical significance
was defined as p < 0.05.

3. Results
3.1. Blood Pressure and Proteinuria

Vitamin-D-deficient animals prior to mating (baseline) did not exhibit any significant
(F1,17 = 0.02, p = 0.89) group difference in systolic blood pressure (Figure 1B). Blood pressure
was also not different between the dietary groups at GD18 (F1,17 = 0.14, p = 0.71). There
was also no difference in blood pressure between the time points tested ((baseline = 96.86
mm Hg ± 17.49, GD18 = 92.94 mm Hg ± 10.65 (± standard deviation)). There were no
differences in post-pregnancy blood pressure in the two groups (F1,17 = 1.34, p = 0.26).
There was also no correlation between blood pressure and observed 25OHD concentration
in either vitamin-D-deficient or control dams (see pairwise correlations between vitamin
D levels and blood pressure in Supplementary Figure S1). Moreover, no difference was
observed in total protein concentrators in urine collected from vitamin-D-deficient and
control groups at GD18 (F1,17 = 0.77, p = 0.39) (Figure 1C).

3.2. Angiotensin II, Flt-1, and Aldosterone Levels in Dam Sera

Pregnant animals at GD19 displayed no significant difference (F1,17 = 2.37, p = 0.14) in
the circulatory levels of Flt-1 between control and vitamin-D-deficient groups (Figure 1D).
There was also no significant effect of diet on angiotensin II (F1,17 = 0.66, p = 0.43) (Figure 1E)
and aldosterone protein levels (F1,17 = 1.09, p = 0.75) in the dams’ sera (Figure 1F).

3.3. Placental Weight and Angiotensin II, Flt-1, and Aldosterone Levels in Placenta

There was no main effect of diet (F1,35 = 1.05, p = 0.31) or main effect of embryo sex
(F1,35 = 2.30, p = 0.14) on placental weight. Nor there was any diet × embryo sex interaction
(F1,35 = 1.57, p = 0.22) on the weight of placentas.

Consistent with the results from the dams’ sera, there was no main effect of diet on
Flt-1 (F1,35 = 1.37, p = 0.25), angiotensin II (F1,35 = 0.51, p = 0.82), or aldosterone (F1,35 = 1.50,
p = 0.23) in placenta. Furthermore, no effect of foetal sex was found on Flt-1 (F1,35 = 0.40,
p = 0.53), angiotensin II (F1,35 = 0.35, p = 0.56), or aldosterone (F1,35 = 0.04, p = 0.94) in
placenta. No diet × foetal sex interactions were observed for any of these hormones
(Figure 2).
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Figure 2. Vitamin-D-deficient pregnant rats do not have alterations in placental weight or expression of proteins central to
preeclampsia phenotypes. Placental weight and placental proteins were quantified at gestational day 19. There was no
effect of diet on placental weight (A). There was also no effect of diet or embryo sex on placental Flt-1 (B), angiotensin II (C),
or aldosterone (D). Data shown are means; error bars show SEM; n = 9 control males, n = 9 vitamin-D-deficient males, n = 9
control females, n = 9 vitamin-D-deficient females.

3.4. mRNA Expression in Placenta

Maternal vitamin D deficiency has no effect on gene expression of Agtrb1 (F1,35 = 0.53,
p = 0.82), Pgf (F1,35 = 0.40, p = 0.53), Hif1a (F1,35 = 0.90, p = 0.35), or Ptgs2 (F1,35 = 0.09,
p = 0.93) (Figure 3) in placenta. There was also no main effect of foetal sex on expression of
any of the genes Agtrb1 (F1,35 = 1.46, p = 0.23), Pgf (F1,35 = 0.83, p = 0.77), Hif1a (F1,35 = 0.11,
p = 0.74), or Ptgs2 (F1,35 = 1.02, p = 0.31). No diet × sex interactions were found (Figure 3).
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Figure 3. Vitamin-D-deficient pregnant rats do not have alterations in expression of genes central to preeclampsia phe-
notypes. The mRNA levels were measured at gestational day 19 from placentas collected from both male and female
foetuses. No significant effect of diet was observed on type-1 angiotensin II receptor (Agtrb1) (A), placental growth fac-
tor (Pgf ) (B), hypoxia inducible factor 1 alpha (Hif1a) (C), or prostaglandin–endoperoxide synthase 2 (Ptgs2) (D). Data
shown are means; error bars show SEM; n = 9 control males, n = 9 vitamin-D-deficient males, n = 9 control females, n = 9
vitamin-D-deficient females.

4. Discussion

The primary aim of this study was to analyse whether vitamin D deficiency induces
preeclampsia-like features in vitamin-D-deficient pregnant rats. We showed that vitamin
D deficiency was not associated with maternal hypertension or proteinuria. Moreover,
maternal and placental angiogenic factors were not significantly altered by maternal
vitamin D deficiency.

Despite the fact that the epidemiological evidence linking vitamin D deficiency in
pregnancy and preeclampsia is reasonably strong [16–20], the molecular basis for dietary
vitamin D deficiency inducing preeclampsia is less well established. The molecular ev-
idence for the link between vitamin D deficiency and preeclampsia has primarily been
established from studies that used constitutive mouse knock-outs of either the VDR or the
enzyme 1 alpha-hydroxylase, which is responsible for the production of the active vitamin
D hormone [47–49]. Ablation of either VDR or 1 alpha-hydroxylase in mice activates the
RAS and leads to the accumulation of angiotensin II [47–49]. The deletion of 1 alpha-
hydroxylase also leads to hypertension and cardiac hypertrophy in mice. Interestingly,
vitamin D supplementation normalizes the blood pressure and RAS in 1 alpha-hydroxylase
knockout mice, suggesting that vitamin D may be protective against preeclampsia [49].
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The situation with respect to dietary deficiency, however, is far less clear. When dietary vita-
min D deficiency is induced in pregnant mice, enhanced blood pressure accompanied by
elevated RAS, Agrtb1, and dysregulated placental vascularization was observed [50]. How-
ever, in contrast, Andersen et al. showed no effect of dietary vitamin D deficiency on key
aspects of preeclampsia phenotype in a transgenic rat model of human renin–angiotensin
system-mediated preeclampsia [51].

In considering these inconsistencies in studies of dietary vitamin D deficiency, it
is firstly important to consider the differences between rat and mouse placentas. Dur-
ing rat pregnancy, placental trophoblast cells enter the uterine decidua and invade the
maternal endometrium; however, this trophoblast invasion does not extend into the my-
ometrium in mice [52–54]. Given that a deeper trophoblast invasion in rat is likely to allow
greater placental perfusion [55], this may indicate that the rat placenta is more resilient to
preeclampsia compared to the mouse placenta. Alternatively, differences between species
in corticosterone production in response to dietary vitamin D deficiency during pregnancy
may also be important to consider. Elevated levels of cortisol during pregnancy induce
hypertension and endothelial dysfunction in women [56,57]. It is interesting to note that
mice and rats show differential corticosterone responses to gestational vitamin D deficiency.
Gestational vitamin D deficiency in mice leads to increased maternal corticosterone levels
and down-regulation of placental enzymes which inactivate maternal corticosterone [58].
However, we have consistently observed no effect of vitamin D deficiency on baseline cor-
ticosterone levels in pregnant rats [59,60]. Thus, differences between placental architecture
and/or hypothalamic–pituitary–adrenocortical axis activation may explain the absence
of preeclampsia phenotypes between species when subjected to gestational vitamin D
deficiency.

Inconsistencies between species were also observed in a widely used reduced uterine
perfusion pressure (RUPP) model of preeclampsia, induced by surgical restriction of blood
flow to the ovarian arteries [61]. In contrast to RUPP mice, RUPP rats show more severe
features of preeclampsia. For example, proteinuria and cytokines, and Vegf levels, were
elevated in RUPP rats [62,63] but not in RUPP mice [64]. Therefore, the contribution of
these pathways in modifying preeclampsia features in both species is an important topic of
future research. Differences in the gestational length and time of the RUPP procedure may
also contribute to the severity of preeclampsia features between species.

Our findings lend no weight to the hypothesis that molecular alterations in RAS factors
and placental inflammation may account for the clinical observations linking vitamin D
deficiency and an increased risk of preeclampsia. When preeclampsia proceeds to its second
phase after poor placentation and uneven blood perfusion, hypoxia and inflammation
generally follow. This manifests in clinical preeclampsia in humans [4] and leads to
the activation of RAS and the placental inflammatory mediators Hif1a and Ptgs2 [65–67].
Several ex vivo studies have shown that vitamin D suppresses angiotensin II, Hif1a, and
Ptgs2 in different cell lines [68–71]. The absence of such alterations also weakens the
hypothesis that these mechanisms underpin the clinical association between vitamin D
deficiency and preeclampsia.

This study has some limitations. Many studies in animal models of preeclampsia ex-
amine longitudinal changes in blood pressure from mid to late gestation [50,72]. However,
we measured blood pressure only at a single time point during pregnancy; thus, we may
have missed any longitudinal changes associated with preeclampsia. In addition, we used
an indirect method (tail-cuff sphygmomanometer) of measuring systolic blood pressure
in vitamin-D-deficient rats. Furthermore, the requirement for restraint, room temperature
fluctuations, animal handling, and equipment calibration may produce artefacts [73,74].

5. Conclusions

Gestational vitamin D deficiency has been implicated as a risk factor for neuropsychi-
atric disorders such as autism and schizophrenia [31–34]. Vitamin D deficiency in preg-
nancy has also been linked with preeclampsia in clinical studies and, in turn, preeclampsia
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has also been epidemiologically linked with these psychiatric disorders [16–20]. The
DVD-deficient rat is becoming a more widely used model to investigate the neurobiology
of later psychiatric disorders. The current study was designed to investigate whether
preeclampsia-like phenotypes contribute to this association. This study showed no associa-
tion between dietary vitamin D deficiency and preeclampsia-like phenotypes or molecular
correlates. We conclude that preeclampsia in the pregnant vitamin-D-deficient rat is not a
contributing factor to the well-described behavioural phenotypes of relevance to autism
and schizophrenia seen in this model [36,75]. This also suggests that the gestational vitamin-
D-deficient rat model may not be a good model for examining maternal factors associated
with preeclampsia.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13124254/s1, Figure S1: Pairwise correlations between maternal blood pressure and
25OHD levels at gestational day 19. There was no statistically significant correlation between
blood pressure and 25OHD levels in control (r = 0.10, p = 0.39) or deficient (r = 0.16, p = 0.28)
dams. BP = blood pressure; 25OHD = 25-hydroxyvitamin D; n = 9 control dams; n = 9 vitamin-D-
deficient dams.
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