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Based on artificial intelligence (AI), computer-assisted medical diagnosis can scientifically
and efficiently deal with a large quantity of medical imaging data. AI technologies including
deep learning have shown remarkable progress across medical image recognition and
genome analysis. Imaging-genomics attempts to explore the associations between
potential gene expression patterns and specific imaging phenotypes. These
associations provide potential cellular pathophysiology information, allowing sampling of
the lesion habitat with high spatial resolution. Glioblastoma (GB) poses spatial and
temporal heterogeneous characteristics, challenging to current precise diagnosis and
treatments for the disease. Imaging-genomics provides a powerful tool for non-invasive
global assessment of GB and its response to treatment. Imaging-genomics also has the
potential to advance our understanding of underlying cancer biology, gene alterations,
and corresponding biological processes. This article reviews the recent progress in the
utilization of the imaging-genomics analysis in GB patients, focusing on its implications
and prospects in individualized diagnosis and management.
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INTRODUCTION

Glioblastoma (GB) is the most common malignant primary
brain tumor in adults, accounts for 48.3% of malignant brain
tumors (1). Much work has focused on GB, given that it has the
characteristics of infiltrating the surrounding brain tissue (2),
and has an aggressive course and extremely grim prognosis (3).
Gene expression profiling has provided new perspectives for the
identification of tumor-associated genetic mutation, biomarkers,
and therapeutic targets of glioblastoma (4, 5). The 2016 central
nervous system (CNS) tumor classification of the World Health
Organization (WHO) incorporated molecular markers into
traditionally histopathological classification, providing an
integrated phenotypic and genetic classification (6). Recently,
based on transcriptomic profiling, GBs have been divided into
proneural, classical, and mesenchymal subtypes (7).

The characteristic neuroradiological findings raise the initial
suspicion for GB and determine the initial surgical approach and
plan. Diagnosis is confirmed through histo-molecular evaluation
of the tissue post-biopsy/resection. Traditional magnetic
resonance imaging (MRI) has greatly improved the diagnostic
efficiency of intracranial lesions, but there are still limitations in
the definitive diagnosis of brain tumors. Over the past few
decades, there has been a rapid development towards the
application of quantitative parametric MRI techniques for GB
evaluation (8). More recently, advanced computer technology
has permeated the field of modern medicine, making precision
medicine an inevitable trend in the development of clinical
medicine. Artificial intelligence (AI) is a broad term that
covers a wide range of disciplines including computer vision,
machine learning, and more. Deep learning is a branch of
machine learning that uses artificial neural networks as a
framework to learn and characterize databases. There has been
growing interest in the application of AI techniques to
neuroimaging research, making machine learning and deep
learning algorithms critical to the radiomics procedures.

Radiomics utilizes high-throughput radiomics features and
mathematical models to quantify tumor characteristics, allowing
the non-invasive capture of microscale information hidden
within medical imaging (9, 10). As an important branch of
radiomics, imaging-genomics (also known as radiogenomics)
further links imaging characteristics (phenotypes) with genetic,
mutational, and expression patterns (11, 12). The basic
hypothesis of imaging-genomics is that the expression of a
specific set of genes or molecular alterations affects the
extractable imaging phenotypes (13). A particular focus of
imaging-genomics analysis has been on the association
between imaging characteristics and gene expression patterns,
including the expression of individual genes and the expression
of specific gene subgroups (14). Just like the resolution and
complexity that genomics has brought to tumor biology,
imaging-genomics also brings similar effects to traditional
medical images. The ultimate goal of radiomics is to maximize
the utilization of medical imaging information to help clinicians
make clinical decisions, so as to minimize the possibility of
potential invasive maneuvers. The increasing importance of
genetic markers has also led to the rapid growth of GB
Frontiers in Oncology | www.frontiersin.org 2
imaging-genomics research, with progressively greater
complexity, including the combination of artificial intelligence
(AI) technology. More recently, deep learning using convolutional
neural networks has further improved radiogenomics prediction
(15, 16), providing unique opportunities and challenges for the
diagnosis and treatment evaluation of GB.

Herein, we will review the latest researches on radiomics and
imaging-genomics of GB. First, we briefly introduced the
genomic characteristics of GB and the principle of imaging-
genomics, and then summarized the findings of the latest
research. Finally, we will present our opinions on its current
challenges, and potential future directions.
GENOMICS IN GLIOBLASTOMA

Traditionally, GBs can be divided into “primary” and
“secondary” GBs. The vast majority of GB (about 90%)
develop rapidly de novo in elderly patients and are mostly
isocitrate dehydrogenase (IDH) wild-type. While secondary
GBs develops from a preexisting lower-grade glioma in
younger patients and usually carry mutations in IDH (17).
Radiologically, primary GBs are widely distributed in the brain,
while secondary GBs are preferentially located in the area of the
frontal lobe surrounding the rostral extension of the lateral
ventricle in younger patients (17, 18). Primary and secondary
GBs are largely histologically indistinguishable, but they are
different in genetic and epigenetic profiles (17). The genomic
and transcriptome characteristics of these tumors have revealed
the key alterations that may contribute to the classification and
evaluation of the disease (4, 19, 20) (17) (21).Different
bioinformatics algorithms have identified several genes as
significantly mutated in GB, including but not limited to
epidermal growth factor receptor (EGFR), TP53, PTEN,
Neurofibromatosis 1 (NF1), and RB1 (20, 21). Additionally,
genomic analysis based on multiple sampling from the same
neoplasm suggests that transcriptome subtypes are
heterogeneous in GB (22) (23). Patient-specific intratumor
heterogeneity of GB underlies variation in response to
treatment, which contributes to the eventual failure of
treatment (22, 24, 25), including drug resistance, radiotherapy
resistance, and fast and incurable tumor recurrence. Thus,
relying only on single tissue samples from individual patients
to understand the cancer dynamics of GB is challenging.

The whole-genome sequence analysis has revealed the genetic
and epigenetic landscapes of human brain GB (4, 20). Complex
gene interaction events and molecular modulation networks are
involved in the occurrence and development of GBs (4, 5, 26). It
is expected that one or several biomarkers will provide
information to help clinicians make the diagnosis, and enable
clinical experts to make the best choice among various treatment
options, such as surgery and/or chemotherapy, and/or
radiotherapy, and/or targeted therapy. Numerous studies have
identified alterations of several core signaling pathways in GB,
including the RB1 pathway, the TP53 pathway, and the PI3K/
PTEN pathway (4, 21). The heterogeneity of GB cells (26)
July 2021 | Volume 11 | Article 699265
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suggests that targeting strategies based on multiple elements of
different signaling pathways might constitute a more efficient
therapy for GB (5).

Given its invasive and infiltrating nature, GB is essentially
considered to be a disease of the entire brain (27). Surgical biopsy
is currently the standard procedure for providing the genomics
information of GB. However, a biopsy is not only highly invasive,
but its accuracy is also limited by the biopsy site, resection type,
and disease variability. Compared with traditional genomic
analysis, imaging-genomics has the advantage of assessing the
entire tumor volume, and non-invasively provides a “virtual
biopsy” by predicting specific gene status, biological processes,
and even core signaling pathways of GB (28–30) (28, 29, 31).
High-resolution imaging technologies can present the tumor
completely and three-dimensionally. Based on this property,
imaging-genomics can associate the radiological phenotypes
(such as shape or texture) of a specific spatial location (such as
necrosis, high perfusion, or even more subtle subregions) with
the tumoral molecular characteristics of the same location. Also,
by associating the genetic status of the biopsy location with the
quantitative imaging features, imaging-genomics has the
potential to help characterize tumoral genetic heterogeneity
(30), which shows diagnostic value under the context of
individualized oncology.
RADIOMICS AND IMAGING-GENOMICS
OF GLIOBLASTOMA

Traditional pathology and radiology have been primarily focused
on the associations between histopathologic and visual imaging
findings, while radiomics and imaging-genomics focus on
Frontiers in Oncology | www.frontiersin.org 3
exploring the relationships between imaging phenotypes and
biological characteristics (11, 12). Generally, radiomics is
dedicated to discovering the biological significance (such as
predicting survival and treatment prognosis) of specific
imaging phenotype, which when correlated with genomics is
termed imaging-genomics. Imaging-genomics analysis helps to
understand the biological associations behind image phenotypes,
explain how biological processes are reflected in imaging, and
define imaging markers associated with molecular biological
characteristics. When constructing an imaging genomic map of
GB, several dimensions need to be considered, including the
disease course, imaging category, lesion delineation, features
extraction and selection, and biological data type, as well as
model building or integration (11). Typically, the imaging
features used in a radiomics or imaging-genomics study are
mainly divided into two categories, namely manually defined
features and deep learning features.

Feature Extraction, Selection, and
Corresponding Modeling
Manually Defined Features
Manually defined feature-based imaging-genomics utilizes
specific mathematical algorithms to extract features from pre-
depicted regions of interest (ROI) (Figure 1). After feature
extraction and feature selection, machine learning models are
used to solve classification and/or regression problems. Usually,
the steps of the process mentioned above includes a few phases as
following: 1) Data acquisition; 2) Image pre-processing,
including multiparametric imaging registration, noise
reduction, intensity and/or orientation normalization, spatial
resampling, and corrections of MRI field inhomogeneities; 3)
Segmentation of ROI, segment the tumors into necrosis,
enhancement, edema, and peritumoral parts, etc. by manual
FIGURE 1 | General workflow of radiomics studies in neuro-oncology. The workflow of a radiomics study, including the following steps: (1) Multimodal imaging and
biological data acquisition; (2) Data preprocessing and standardization; (3) Delineation of regions of interest, including manual segmentation and deep learning-based
segmentation; (4) Radiomics feature extraction using predefined algorithms or deep learning techniques; (5) Data analysis, feature reduction, and/or selection for
further analysis of machine learning and/or deep neural networks; (6) Multi-omics and clinical information integrated model training and testing, guiding individualized
disease diagnosis, treatment evaluation, and prognosis prediction. GB, Glioblastoma; OS, Overall Survival; PFS, Progression free survival.
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delineation or (semi-) automated algorithms; 4) Feature
extraction, extract different kinds of quantitative features that
reflect the heterogeneity of tumors, including shape features,
histogram-based features, textural features, and higher-order
statistics features; 5) Feature selection, including supervised
and unsupervised methods to overcome the issue of redundancy
and overfitting that may be seen with multitudinous features; 6)
Model building and evaluation, build a mathematical model (such
as regression models, random forest (RF), and/or support vector
machines (SVM) based on the selected features to predict a known,
underlying ground truth, including specific genetic mutation or
pathway alterations. In general, training set data is used for learning
to fit the parameters of a classifier, while the validation set is used to
tune the parameters of the model. Ideally, after model training and
validation, the final models should be applied to the test set
(unexposed independent data) to evaluate the performance of the
final model. A robust radiomic model must be validated by
independent, external data to show its value for clinical
promotion and application.

Deep Learning-Based Features
Deep learning, a subcategory of machine learning based on
neural networks (32), represents a class of algorithms that use
stacked neural network structures (33). In deep learning-based
imaging-genomics, different network structures such as auto-
encoders or convolutional neural networks (CNNs) are utilized
to mine the hidden features from the initial data (15, 34). The
typical way to extract deep learning features is to train a deep
learning model using observed indicators, and then extract the
outputs of specific layers as deep learning features (35). For
example, the results of the final fully connected layer of CNNs or
the final convolutional layer of auto-encoder can be extracted as
Frontiers in Oncology | www.frontiersin.org 4
deep learning features (36). The extracted deep features can
either be trained by an artificial neural network for classification
and prediction (15) or leave the network and fit into different
classifiers (35) (such as SVM, RF) to generate a model (Figure 1),
the latter process is similar to the approach of manually defined
feature-based imaging-genomics. Recently, deep learning has
been successfully applied in digital pathology to segment nuclei
and for the classification of molecular markers (37, 38). Deep
learning-based imaging-genomics usually requires relatively
large datasets. Auto-encoders provide an alternative method to
extract deep features when there is not enough data to train a
deep learning model (34, 36). Another technique to overcome
this limitation is transfer learning (39, 40), which essentially uses
a pre-trained network (usually on natural images) to solve the
data set needs of deep network training (34). Figure 1 describes
the main workflow of the above two methods, and Table 1
summarizes several radiomics studies designed according to
this workflow.

Imaging-Genomics of Glioblastoma
As a subclass of radiomics, imaging-genomics focuses more on
the relationships between imaging characteristics of a disease,
and its gene expression patterns, gene mutations, and other
genomic-related characteristics (11). The gene expression
patterns for constructing these relationships include not only
the expression of a single gene (45, 50), but also the measures that
summarize expressions of specific gene subsets (14, 29, 51, 52),
the corresponding signal pathways (29, 53), and consequent
biological effects (28, 54). ‘Imaging-genomics’ research also
refers to a study aimed at discovering those relationships.

In addition to predicting the expression status of specific
molecular markers, the current imaging genomics researches can
TABLE 1 | Applications of radiomics for predicting specific molecular markers in GB.

Study Imaging
Modality

Molecular
signature(s)

No. of Patients
Training + Testing

No. of features
Initial + Final

Performance
AUC/Accuracy

Features selection and
Model building

Li et al. (41) MRI, T1+T1CE+T2+Flair IDH1 status 225 (118 + 107) 1614 8 0.96a RF-Boruta, RF
Chang et al.
(42)

MRI, T1+T1CE+T2+Flair IDH1,MGMT,and 1p/
19q

259 (80%+20%) NA NA (IDH1) 94%b CNNs

Zhang et al.
(43)

MRI,T1+T1CE+T2+ Flair
+DWI

IDH1/2 120 (90 + 30) 2970 387 0.92a Correlation coefficient, RF

Li et al. (44) PET IDH1/2 127 (84 + 43) 1561 11 0.90a Lasso, Multivariate logistic
regression

Wei et al. (45) MRI, T1CE+Flair+DWI MGMT 105 (74 + 31) 3051 13 0.90a Correlation coefficient,
MRMR, Logistic regression

Li et al. (46) MRI, T1+T1CE+T2+Flair MGMT 193 (133 + 60) 1705 6 0.88a Correlation coefficient, RF-
Boruta, RF

Qian et al. (47) PET MGMT 86 (59 + 27) 1450 3 80%b Correlation coefficient, RF
Extra trees, SVM, Neural
network

Su et al. (48) MRI, T1+T1CE+T2+Flair H3 K27M 100 (75 + 25) 85 10 0.85a TPOT
Choi et al. (15) MRI, T1CE+T2+Flair IDH1/2 status 1166 (727 + 439) NA NA 0.96a CNNs, RF
Jin et al. (38) H&E Pathological slides IDH1/2 and 1p/19q 323 (267 + 56) NA NA 87.6%b CNNs
Liu et al. (49) H&E Pathological slides IDH1/2 status 200 (6:1:1) NA NA 0.931a CNNs
July 2021 |
CNNs, Convolutional neural networks; DWI, Diffusion Weighted Imaging; Flair, Fluid-attenuated inversion recovery; H&E, haematoxylin and eosin; IDH, Isocitrate dehydrogenase; Lasso,
Least absolute shrinkage and selection operator; MGMT, O (6)-methylguanine-DNA methyltransferase; MRI, Magnetic resonance imaging; MRMR, Minimum redundancy and maximum
relevance algorithm; NA, Not available; PET, Positron emission tomography; 1p19q, the co-deletion status of the 1p/19q chromosome arms; RF, Random forest; SVM, Support vector
machines; T1, T1-weighted MRI; T2, T2-weighted MRI; T1CE, contrast-enhanced T1-weighted MRI; TPOT, the Tree-based Pipeline Optimization Tool.
The values in the performance column were achieved using the best model in the test set. a and b are used to mark the AUC and accuracy values, respectively.
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be divided into several directions. On the one hand, researchers
can first identify the prognostic imaging features (like OS or
progression-free survival, PFS) to calculate individualized
indicators (such as radiomic risk score, RRS), based on which
patients will be further classified into different subgroups (low-
or high-risk groups). Some bioinformatics analysis methods such
as Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA)
analysis can be further used to detect differences in molecular
biology of different subgroups, corresponding signal pathways,
and downstream biological processes (28, 54, 55). Another
research paradigm is the reverse process of the above method
(13, 56). Bioinformatics analysis can reveal the pathways,
biological processes, and expression of protein corresponding
to specific molecular markers detected by sequencing technique.
These biological processes can finally be mapped in the form of
different imaging phenotypes (like necrosis or edema) on multi-
modal images, and then captured by the quantitative radiomic features
(such as shape, texture, or wavelet). A pioneering radiogenomics
study by Zinn et al. (13) showed that radiomic-features could
significantly predict periostin expression status in GB patients (Area
under the receiver operating characteristic curve, AUC=76.56%) and
orthotopic xenografts (AUC=92.26%). The authors tried to establish
causality between radiomic texture features and expression levels in a
pre-clinical model. This was one of the first radiogenomics studies
highlighting a causal linkage between specific gene expression status
and radiomic-features of GB. This kind of research paradigm is more
suitable for the verification of the radiogenomics model and its
corresponding conclusions. However, to date, it has not been
elucidated how specific biological processes reflect phenotypes
through imaging. Additional multidisciplinary studies in the future
are needed to shed more light on this subject. Figure 2 describes the
common steps of an imaging-genomic study and Table 2 summarizes
several imaging-genomic studies in patients with GB.

Although imaging-genomics has broad application prospects,
current researches mainly focus on one or several aspects of the
procedures and purpose discussed above. Here, we will review
the recent progress in the utilization of the imaging-genomics
analysis in GB patients.
PROGRESS OF IMAGING-GENOMICS
IN GB

Candidate Molecular Alterations
Isocitrate Dehydrogenase 1 and 1p/19q Codeletion
Genetic analysis revealed that the IDH1 gene mutations exist in
approximately 12% of GB (21). Tumor-related IDH1 mutations
result in the enhancement of enzyme function, which causes the
accumulation of R(-)-2-hydroxyglutarate (2HG), and the
accumulation of 2HG might drive oncogenesis (60). IDH1
mutation is also an independent factor for predicting the
prognosis of patients with glioma (61), and the IDH and 1p/
19q codeletion status has been introduced into the revised WHO
classification of CNS tumors (6).

There have been numerous studies attempted to reveal the
links between the IDH1 and 1p/19q codeletion status with the
Frontiers in Oncology | www.frontiersin.org 5
imaging-phenotypic appearance of GB (15, 38, 41–43). A model
for predicting the state of molecular markers (such as IDH1)
needs to take into account the distribution of data, considering
that the vast majority of GB are IDH1 wild types (17). In this
context, some techniques (like the synthetic minority
oversampling technique (SMOTE) and adaptive synthetic)
have been proven to have better performance in some cases
(62). In a study of 225 GB patients by Li et al. (41), after
balancing the data with the SMOTE algorithm, the model
combining all‐region (necrosis , enhancement, non‐
enhancement, and edema areas) radiomics features with
clinical information achieved the best performance of a 97%
accuracy. The radiomics model with multi-regional features has
the potential to predict the IDH1 mutation status of GB patients,
and the data balance is beneficial to improve the classification
performance. Li and colleagues (44) used 18F-fluorodeoxyglucos
PET scans from 127 patients, after feature selection through least
absolute shrinkage and selection operator (LASSO), the final
SVM model used 11 features and yielded an area under curve
(AUC) of 90% in the validation set. In general, radiomics
utilizing multimodal images seems to achieve better
performance than a single modality. Nevertheless, there are
also exceptions. Using a 3D-Dense-UNets approach,
Yogananda et al. (63) reported a mean accuracy of 97.14% in
predicting IDH status. Interestingly, the authors demonstrated
similar performance when comparing the T2-based network
with the multi-contrast network. One possible reason is that
the deep-learning networks using conventional single-modality
MR images avoid the effect of head motion due to long scan
times, which helps promote clinical translation.

Choi et al. combined perfusion and conventional MRI for the
prediction of IDH genotype in a group of 463 patients. The
authors reported that the long short-term memory model, a type
of recurrent neural network (RNN), showed performance with
an accuracy of 92.8% in the validation set and 91.7% in the test
set (50). Also, the RNN model can provide certain
interpretability by demonstrating which temporal features are
crucial for the prediction of IDH genotypes. By performing
principal component analysis on their final CNN layer, Chang
and co-workers (42) selected the imaging features and obtained a
prediction accuracy of 94% for IDH status and 92% for 1p19q
codeletion. Recently, Choi and colleagues (15) used MRI data
from multiple centers to predict IDH genotypes in a cohort of
1,166 patients with glioma (WHO grade II-IV). Researchers
developed an automated approach containing two CNN
models, one for tumor segmentation and the other for IDH
status prediction. Finally, the automated model achieved the
highest diagnostic accuracy of 93.8% and 87.9% in the internal
and external test set, respectively. A fully automated process is
conducive to the repeatability and generalization of results,
which reduces the interference of human factors and is
beneficial to future application and promotion of the models.

O (6)-Methylguanine-DNA Methyltransferase
The MGMT gene encodes a DNA repair enzyme named O6-
alkylguanine DNA alkyltransferase (64). In this process, the
methylmoiety is transferred onto the MGMT protein and thus
July 2021 | Volume 11 | Article 699265
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is consumed (64, 65). The epigenetic modification of the
cytosine-phosphate-guanine (CpG) island at specific CpG sites
of the MGMT promoter silences the gene, resulting in low DNA
alkylation repair efficiency and enhanced response to
temozolomide (TMZ) (66, 67).

The methylation status of the MGMT gene promoter has
been considered as a crucial biomarker of tumor response to
TMZ chemotherapy. Consequently, it has become an important
molecular marker in imaging-genomics research (68–71). Sasaki
and colleagues (72) extracted features from MRI data of 201
newly diagnosed GB patients. The diagnostic model of MGMT
promoter using two significant Gray-level Co-occurrence Matrix
texture features selected by LASSO only yielded a low accuracy of
67%, which remains insufficient for practical use. Wei and
colleagues (45) found that the fusion radiomics signature
(clinical factors and texture features) showed great
performance for predicting MGMT promoter status of glioma,
Frontiers in Oncology | www.frontiersin.org 6
with an AUC value of 0.902 in the validation cohort. Moreover,
the model could classify patients into low-risk and high-risk
groups for overall survival (OS) after TMZ chemotherapy, which
may serve as a basis for individualized treatment recommendations.
Li et al. (46) predicted the MGMT promoter methylation used
1,705 radiomics features from multiregional and multiparametric
MRI in multicenter cohorts. The final model achieved an
accuracy of 80% in the test dataset. Distinguished from the
studies in the past (43), however, this study suggested that
combing clinical factors with radiomics features did not
improve the prediction performance.

PET-based radiomics is also a promising method to
noninvasively evaluate the MGMT status of gliomas. Qian
et al. (47) extracted features from PET images of 86 patients
with GB. Features were selected by comparing the weighted
feature coefficient and filtering with bivariate analysis. The
Random Forest model using the appropriate parameters from
FIGURE 2 | General workflow of imaging-genomics studies. A imaging-genomics research can generally build the relationship between imaging phenotypes and
genetic characteristics from two perspectives. (A), Left semicircle, from imaging phenotypes to genomic characteristics: using features extracted from the sub-areas
of tumors in multi-modal images to construct individualized RRS or divide patients into different subgroups, and utilize the corresponding sequencing data for further
bioinformatics analysis (such as GO or GSEA). (B), Right semicircle, from genomic characteristics to imaging phenotypes: bioinformatics analysis can reveal the
pathways, biological processes, and expression of protein corresponding to specific molecular markers detected by sequencing technique. These biological
processes can finally be mapped in the form of different imaging phenotypes (like necrosis or edema) on multi-modal images, and then captured by the quantitative
radiomic features (such as shape, texture, or wavelet features). EGFR, Epidermal growth factor receptor; GO, Gene Ontology; GSEA, Gene set enrichment analysis;
RRS, Radiomic risk score.
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the grid search achieved 80% ± 10% accuracy for the prediction
of MGMT promoter status. Kong et al. (73) used PET images
from 107 patients with WHO grade II-IV primary diffuse
gliomas for prediction. Using Wilcoxon ranksum test for
features selection, a radiomics signature comprising five final
features for the prediction of MGMT promoter status could be
identified, yielding an AUC of 0.86 in the validation sets.
However, this model lacks further validation on an
external dataset.

The CNN-based classifiers achieved the accuracy from 82.7%
to 94.9% in predicting the methylation status of MGMT
promoter in GB (74, 75). Chen et al. (74) utilized a deep
learning pipeline for automatic tumor segmentation and
MGMT promoter status prediction in an end-to-end manner
for GB patients. The better tumor segmentation and MGMT
prediction performance both came from Fluid-attenuated
inversion recovery (FLAIR) images. The CNN-based prediction
model in this study had only 4 layers and achieved an accuracy of
82.7%, which might be further improved by a deeper network
architecture with multi-layers. Korfiatis et al. (75) compared
three different residual deep neural network (ResNet)
architectures to evaluate their performance in predicting
MGMT promoter status in patients with GB. The researchers
found that the ResNet50 architecture (the deepest model with 50
layers) outperformed the two shallower architectures (ResNet18
with 18 layers, ResNet34 with 34 layers), and achieved an
accuracy of 94.9% in the test set. Networks with deeper
architectures could potentially improve the performance of the
model, which also increases the risk of overfitting. Transfer
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learning and fine-tuning of the existing pre-trained network
are alternative methods to improve the utilization of the
limited data (34).

Other Potential Genetic/Molecular Markers
EGFR is a transmembrane tyrosine kinase that regulates normal
cellular growth in epithelial cell lines. The most common EGFR
mutant in GB is EGFRvIII, which is found in 31% of patients
(76). Using support vector machine–based approaches, Akbari
et al. (58) construct an imaging signature of EGFRvIII and
achieved an accuracy of 87% in 129 patients with primary GB.
The authors also reported that EGFRvIII mutant GB exhibit
increased neovascularization and cell density, which is consistent
with a more infiltrative phenotype. Zinn and colleagues (52)
demonstrated a relationship between MRI radiomics signatures
and the TP53-PTEN-EGFR mutational landscape in 29 GB
patients from The Cancer Genome Atlas (TCGA). The
radiomics features generated by texture analysis revealed
different cellular biofunctions, such as angiogenesis, invasion,
and immune response. Despite some gaps exist, glioma
radiomics landscape is approaching its genomic counterpart in
heterogeneity and complexity.

Diffuse midline glioma with histone H3-K27M mutation is a
newly defined entity in the WHO group of grade IV diffuse
gliomas (77). Those tumors carry a poor prognosis and
frequently occur in brainstem, thalamus in the pediatric
population. The underlying histological and radiographic
variations (78) make it possible to predict the H3-K27M status
of a tumor using radiomics analysis. Su and colleagues (48)
TABLE 2 | Applications of imaging-genomics for exploring potential signaling pathway or biological processes or in GB.

Study Imaging
Modality

General Purpose Total Patients
Training + Testing

No. of features
Initial + Final

Performance
AUC/

Accuracy

Statistical Analysis

Choi
et al. (51)

MRI, T1+T1CE+T2
+Flair

Exploring biological characteristics behind
imaging phenotypes in GB.

200 (144 + 56) 478 7 NA Lasso-Cox, RRS, GSEA

Itakura
et al (57).

MRI, T1CE Verifying distinct pathway changes behind
different imaging subtypes of GB.

265 (121 + 144) 388 388 NA k-means consensus
clustering, IGP

Beig
et al. (28)

MRI, T1CE+T2
+Flair

Exploring prognostic stratification-based
biological processes in GB.

203 (130 + 73) 2850 25 0.84c Lasso-Cox, RRS, GO,
GSEA

Park
et al. (29)

MRI,T1+T1CE
+T2DWI +Flair
+DSC

Identifying Core signaling pathway in GB.
(RTK, p53, and RB1 pathways).

120 (85 + 35) 6472 123 (RTK) 0.88a Lasso, RF, logistic
regression,

Akbari
et al. (58)

MRI, T1+T1CE+T2
+Flair

Predicting status of EGFRvIII and exploring
associated biological processes.

129 (75 + 54) NA NA 0.86a Multivariate model, SVM

Zinn
et al. (52)

MRI, T1+T1CE
+Flair

TP53-PTEN-EGFR mutational landscape in
GB.

29 2480 457 NA Spearman rank correlation
Hierarchical clustering

Beig
et al. (53)

MRI, T1CE+ T2
+Flair

Predicting hypoxia pathway and overall
survival in GB.

115 (85 + 30) 270 8 0.83c GSEA, Cox model,
Unsupervised clustering

Hsu
et al. (59)

MRI, T1CE+ DWI Classifying immunophenotypes of GB by
radiomic features.

116 (32 + 84) 9809 76 79%b RF, Information gain, GSEA
Logistic regression

Beig
et al. (54)

MRI, T1CE+ T2
+Flair

Identifying sex-specific biological processes
and prognostic of GB.

313 (130 + 183) 2850 8 0.88c Lasso-Cox, RRS, GO,
GSEA

Zinn
et al. (13)

MRI, T1CE+ T2
+Flair

Validating causality between Periostin
expression status and MRI-features in GB.

93 (xenografts=40) 4880 31 0.93a

(xenografts)
Lasso, GSEA, XGboost
July 2021 |
DSC, Dynamic susceptibility contrast; DWI, Diffusion weighted imaging; EGFR, Epidermal growth factor receptor; Flair, Fluid-attenuated inversion recovery; GO, Gene ontology; GSEA,
Gene set enrichment analysis; IGP, in-group proportion statistic; Lasso, Least absolute shrinkage and selection operator; MRI, Magnetic resonance imaging; NA, Not available; PET,
Positron emission tomography; RB1, Retinoblastoma 1; RF, Random forest; RRS, Radiomic risk score; RTK, Receptor tyrosine kinase; SVM, Support vector machines; T1, T1-weighted
MRI; T2, T2-weighted MRI; T1CE, contrast-enhanced T1-weighted MRI; XGboost, Extreme Gradient Boosting.
The values in the performance column were achieved using the best model in the test set. a, b, and c are used to mark the AUC, accuracy, and concordance index values, respectively.
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performed an automated machine learning analysis on MRI data
from 100 patients with midline gliomas. After feature selection
and model optimization using The Tree-based Pipeline
Optimization Tool (TPOT), they finally obtained an AUC of
0.903 and an average precision of 0.911 for the prediction of H3
K27M mutant status in midline glioma. Automated machine
learning methods (such as TPOT) are relatively researcher-
independent, which increases the robustness of the results.

Signaling Pathways and
Biological Processes
Genomic analysis has identified a highly interconnected network
of aberrations in GB, including three major pathways: receptor
tyrosine kinase (RTK), the retinoblastoma 1 (RB), and tumor
protein p53 tumor suppressor pathways (4). Radiogenomics
studies have revealed the relationship between different
imaging features and certain signaling pathways or
biological processes.

In a study of 120 patients with GB, using diffusion, perfusion
MRI, and next-generation sequencing technology, Park and
colleague (29) combined radiomic and genomic features to
predict core signaling pathways in IDH wild-type GB. Different
types of radiomic features were identified by the combined
radiogenomics model, corresponding to RTK, P53, and RB
pathways respectively. This study demonstrates that MRI
features can help noninvasively identify the core signaling
pathway alterations in GB, which may further support the use
of targeted therapy for glioblastoma rather than a one-size-fits-all
approach. Another study based on perfusion MRI showed that
the elevated perfusion features were significantly associated with
poor patient survival in a subgroup of GB patients. Angiogenesis
and hypoxia pathways were enriched in this subgroup,
suggesting the possible efficacy of anti-angiogenic therapy (79).
Similarly, imaging features from enhancing tumor and
edematous regions were identified to be associated with the
hypoxia pathway (53), imaging markers of hypoxia can
discriminate GB patients as short, mid, and long-term survivors.

Radiogenomics studies also highlight sex-related biological
variations in GB patients. Colen et al. (80) revealed sex-specific
molecular mechanisms for cell death (MYC oncogenic in female
GB patients, TP53 apoptotic in male GB patients). Similarly, a
recent study by Beig et al. (54) suggested that higher expression
of texture features from enhancing tumor regions seemed to be
more enriched in ‘high-risk’ group in the male population. This
result appeared to be opposite in the female population, in which
the same features were enriched in the ‘low-risk’ group. These
findings suggesting the importance of treating sex as a covariate
in the design of a radiogenomics study.

Heterogeneity and Molecular Subtype
Intra-tumoral Heterogeneity in GB has been a topic of long-
standing interest (23, 81). Spatio-temporally comprehensive
assessment of the tumor heterogeneity requires multiple
spatially sampling at different time points. In daily clinical
practice, effective tissue sampling remains a significant
challenge in accurately evaluating the intratumoral
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heterogeneity of a GB. Radiogenomics has shown the initial
prospects for spatially evaluating the regional and genetically
distinct subtypes that coexist within a single GB tumor (30, 82).
By collected 48 image-guided biopsies from 13 GBs, Hu et al.
(30) co-registered each biopsy location with MRI texture map to
correlate spatially matched imaging measurements with regional
genetic status. They identified significant imaging correlations
for several driver genes, including EGFR, PTEN, RB1, TP53, and
more. The author also emphasized that even within one tumor
segment (such as the enhancement part in T1 contrast-enhanced
MRI), regional genetic diversity can also exist. This suggests the
need to improve the image-based assessment of genetic
heterogeneity beyond the use of the subregion presented in a
single imaging mode.

Images contain information about tumor phenotypes that are
regulated not only by cell-intrinsic biological processes but also
by the tumor microenvironment (59, 83–85). Recently, machine
learning-based radiomics models demonstrated the capacity to
evaluate enrichment levels of different immune cells in GB
patients. Using radiomics features of MR images, the radiomics
models could classify the immunophenotypes of GB and can
predict patient prognosis (59). Lin et al. (84) used a consistent
clustering method to classify radiological features into two
subgroups. The two subtypes have significantly different
histological stages and molecular factors (such as IDH and
MGMT). Furthermore, biological information analysis hinted
that the inferior prognosis subtype may be more responsive to
immunotherapy. At the same time, if GB patients receive
immunotherapy (such as immune checkpoint blockade
therapy), the responses of therapy might also be distinguished
by radiomics signatures noninvasively (86). Cho et al. (83)
revealed that immune cell markers have significant correlations
with perfusion and diffusion MRI features in a study of 60 GB
patients. The apparent diffusion coefficient values were
correlated with the expression level of immune cell markers,
which can be used as an immune biomarker to predict the
progression and prognosis of GB patients. It should be noted that
many classification methods based on radiomics characteristics
are still in an early developmental stage. Although these potential
associations are encouraging, some conclusions still need
further verification.

Prognostic Stratification-Based Tumor
Biological Characteristics
A large number of retrospective studies have revealed the link
between the radiomics characteristics and survival time of GB
patients (70, 87). According to radiomics risk stratification, some
studies (28, 54, 84, 88) also tried to explore the corresponding
tumor biological information. Based on survival-related imaging
features, some studies (28, 54) construct individualized RRS, by
which the patients will be divided into subgroups with different
risk stratifications. Further, bioinformatics analysis such as GO
and/or GSEA will be used to identify the signaling pathway
networks or specific biological characteristics that were
associated with RRS features. For example, using data from
public platforms, Beig and colleagues (28) extracted 936
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3D-radiomics features from T1, T2, and Flair MR images of 203
patients with GB. Finally, the GO and GSEA revealed
associations of RRS signatures with signaling pathways for cell
adhesion, cell differentiation, and angiogenesis. A somewhat
similar approach was followed by Choi et al. (51) who used
RRS weighted by Lasso-Cox model to classify patients with GB.
Finally, GSEA suggested that the transcriptomic characteristics
enriched in personalized subtypes were consistent with
radiomics phenotypes. For example, the rim-enhancing
necrotic subtype could be described by T2-derived radiomic
features and further highlighted by the inflammatory
genomic signatures.

Radiogenomics has the potential to unravel the molecular
underpinning behind the imaging-derived phenotypes. However,
these associations seem to be indirect, since they were
constructed through survival variables, such as OS and PFS.
Indirect associations may obscure or expand the relationships
between radiomics characteristics and molecular phenotypes. In
addition to using optimized AI models to integrate all such
information, radiogenomics biological validation in animal
models (13) would be a promising direction in the future.

Personalized Treatment and Assessment
At present, several studies are exploring combination imaging-
genomics with the assessment of early treatment response.
Imaging biomarkers have shown great potential to stratify the
therapeutic response of patients with recurrent glioblastoma
treated with bevacizumab (89). EGFR extracellular domain
mutations in GB also present opportunities for imaging and
therapeutic development (56). Wei and colleagues (45) used
logistic regression to generate a fusion radiomics signature
based on conventional MRI of 105 patients with WHO grade
II-IV astrocytomas. The fusion signature exhibited great power
for predicting the methylation status of MGMT promoter and
evaluating temozolomide (TMZ) chemotherapy effect. Petrova
et al. (90) collected perfusion and diffusion images from 54
subjects with recurrent GB and subsequently treated with
bevacizumab. Among the six different classifiers, the authors
found that SVM was able to identify 97% of subjects that would
respond to bevacizumab with accuracy for PFS and OS of 82%
and 78%. This can help assess whether a GB patient can benefit
from anti-angiogenic therapy. However, the model still needs to
prove its repeatability and generalizability in an extensive
cohort study.

GB is a heterogeneous disease composed of multiple
molecular subtypes with different clinical courses, leading to
different treatment strategies and prognoses. Radiomics and
genomics attempt to explain the diversity of tumors from
different perspectives. A more fused model might be used to
integrate clinical information and all experimental data of an
individual, and propose corresponding molecular networks
specific to a personalized GB for efficient early-stage diagnosis,
precise treatment recommendations, and prognostic assessment.
At present, the underlying transformation of imaging-genomics
remains only at an early stage of the investigation. Imaging
signatures identified by animal models may be useful for future
Frontiers in Oncology | www.frontiersin.org 9
clinical trials enriched for patients with specific subtypes of GB
(13, 86).
FUTURE CHALLENGES

Big Data and Data Sharing
One of the fundamental challenges in imaging-genomics
research is the availability of large, standardized, well-
annotated data sets. Many studies lacked external testing for
evaluating the performance of the models due to the limit of
data. While external testing is crucial to confirm model
generalizability across different institutions. Data sharing
between institutes would bring new opportunities for
researchers. The Cancer Imaging Archive (TCIA, https://www.
cancerimagingarchive.net/) (91), a part of the Cancer Genome
Atlas (TCGA), can provide open-access cancer medical
imaging and corresponding genome resources to support
imaging-genomics researches (59, 63). Some information
about the tumors and corresponding supporting data has
been summarized on the TCIA website (https://www.
cancerimagingarchive.net/collections/).

Radiological images and biological data from CPTAC
(Clinical Proteomic Tumor Analysis Consortium, https://
proteomics.cancer.gov/programs/cptac) (92, 93) have also been
made publicly available to enable researchers to investigate the
imaging phenotypes which may correlate to corresponding
genomic, proteomic, and clinical data (28, 54). Additionally,
the Ivy Glioblastoma Atlas Project (IvyGAP, http://glioblastoma.
alleninstitute.org/) (94) provides resources for exploring the
anatomic and genetic basis of GB at the radiological and
molecular levels. The dataset contains RNA sequencing data,
tissue sections, as well as partial MR data in TCIA. Data from
these public databases has motivated and continues to motivate
the technological exploration and development in imaging-
genomics field. However, such data are far from sufficient.
Further researches focused on developing improved algorithms
(such as transfer learning or data augmentation technologies)
optimized for smaller datasets are also needed.

Quality Control, Interpretability, and
Application Challenge
Even for the same data, two different calculation software might
generate different feature values (95). The lack of standardized
definitions will hamper the clinical use of the models.
Undoubtedly, quality control and repeatability should run
through the entire imaging genomic study, including data
collection, preprocessing, delineation of ROIs, features
extraction and selection, model building, and verification.
Lambin et al. (10) have proposed the radiomics quality score
(RQS) to assess the quality of radiomics studies, which plays a
guiding role in improving the initial design of an imaging-
genomics research. The Image Biomarker Standardization
Initiative (IBSI) also produced and validated a series of
consensus-based reference values for radiomics features (95).
These reference values can be used to check whether a radiomics
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software complies with IBSI standards. Improved research
quality and reproducibility can promote the clinical translation
of radiomics.

In the clinical setting, there are still many obstacles to the
standardized processing of data and the effective deployment of
the pre-trained models. The lack of sufficient verification of a
model will inevitably limit its further application. Additionally, it
is also important to note that features and models generated by
AI (especially deep learning) often lack clear interpretable
parameters. Even if AI algorithms provide good predictive
results, the models and deep features are difficult for clinicians
to interpret, which limits the integration of radiomics into
routine clinical practice. In the context of a regulated
healthcare environment, this “black box” problem of AI
algorithms is particularly outstanding. Visualization of models
and features is an alternative way to alleviate this problem.
Interpretability in AI is an emerging field of increased research
efforts in the data science community.

Multi-Omics Integration
Multi-omics is undergoing the big data revolution. Genomic
analysis such as gene mutation or altered gene expression alone
does not always reflect the real change of the corresponding
protein and downstream metabolite. The intricate connections
between tumor biology and holistic phenotype could have been
better captured by multidimensional data and multi-omics
models. In recent years, leveraging AI and digital pathology
has shown significant promise in cancer diagnosis (38, 49).
Remarkably, there have been attempts to integrate pathological
section data and radiological data (96), which is called a new
term as radopathomics. The fusion signature combining
information from distinct dimensions could better predict
discrepancies of treatment response. These results have
exhibited the great potential of radiomics in the integration of
modern precision medicine.

Predictably, the evolution of the radiomics field will gradually
differentiate into “radio-…omics”, such as radio-proteomics,
radiopatho-genomic, or even radio-metabonomics in the
coming future, dependent on the source used. As such, current
imaging-genomic association maps entail integrations of large,
“multi-omic” data sets with imaging to bridge the missing links.
Certainly, such a large number of omics features can easily lead
Frontiers in Oncology | www.frontiersin.org 10
to overfitting. Optimal feature reduction and selection methods
and appropriate model validation are also needed to deal with
the problem of “Curse of Dimensionality”.
CONCLUSION

The evolution of the field of radiomics and radiogenomics is
similar to the emergence of the microscope in pathology. It is
foreseeable that based on multi-parameter imaging features,
more biological information can be mined to evaluate the
biological characteristics of GB for supporting individualized
patients management. However, many challenges still exist and
much work needs to be done. Better interpretability and
validation of these tools will make imaging genomics more
acceptable in this field. Even though the translation of these
models from research to clinical practice is still in progress, they
provide promise for guiding precision medicine and subsequent
individualized therapeutic intervention.
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