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ABSTRACT
Glucagon-like peptide-1 (GLP-1) is a product of proglucagon cleavage synthesized in
L cells in the intestinal mucosa, a-cells in the pancreatic islet, and neurons in the nucleus
of the solitary tract. GLP-1 is essential for normal glucose tolerance and acts through a
specific GLP-1 receptor that is expressed by islet b-cells as well as other cell types. Because
plasma concentrations of GLP-1 increase following meal ingestion it has been generally
presumed that GLP-1 acts as a hormone, communicating information from the intestine
to the endocrine pancreas through the circulation. However, there are a number of prob-
lems with this model including low circulating concentrations of GLP-1 in plasma, limited
changes after meal ingestion and rapid metabolism in the plasma. Moreover, antagonism
of systemic GLP-1 action impairs insulin secretion in the fasting state, suggesting that the
GLP-1r is active even when plasma GLP-1 levels are low and unchanging. Consistent with
these observations, deletion of the GLP-1r from islet b-cells causes intolerance after IP or
IV glucose, challenges that do not induce GLP-1 secretion. Taken together, these data sup-
port a model whereby GLP-1 acts through neural or paracrine mechanisms to regulate
physiologic insulin secretion. In contrast, bariatric surgery seems to be a condition in
which circulating GLP-1 could have an endocrine effect. Both gastric bypass and sleeve
gastrectomy are associated with substantial increases in postprandial GLP-1 release and in
these conditions interference with GLP-1r signaling has a significant impact on glucose
regulation after eating. Thus, with either bariatric surgery or treatment with long-acting
GLP-1r agonists, circulating peptide mediates insulinotropic activity. Overall, a case can be
made that physiologic actions of GLP-1 are not hormonal, but that an endocrine
mechanism of GLP-1r activation can be co-opted for therapeutics.

THE INCRETIN EFFECT: REGULATION OF INSULIN
SECRETION BY GASTROINTESTINAL PEPTIDES
Healthy humans maintain blood glucose within relatively tight
limits, a feat of homeostasis that is particularly remarkable con-
sidering the wide variations in the amount and timing of car-
bohydrate intake. An essential feature of the maintenance of
glucose tolerance is the ability of the endocrine pancreas to
rapidly and accurately secrete insulin in amounts appropriate to
the size of the meal. Fundamental to this regulation is the
incretin effect, signals initiated in the gastrointestinal tract in
response to nutrient ingestion that augment insulin secretion1,2.
First described in the early 1960s, the incretin effect has been
ascribed primarily to two peptides produced by endocrine cells

of the intestinal mucosa, glucose-dependent insulinotropic
polypeptide (GIP) and glucagon-like peptide 1 (GLP-1)1–3. The
two incretins are secreted in response to glucose, lipid or mixed
meal ingestion in amounts proportional to meal size, and stim-
ulate insulin secretion in the presence of elevated blood glucose
levels1–3. This feed-forward system allows for the rapid and
appropriate b-cell response necessary to control postprandial
blood glucose.
GLP-1 and GIP share several characteristics beyond synthesis

in the gut. Both signal through family B G-protein coupled
receptors expressed on islet b-cells, stimulate insulin release
only in the presence of supra-basal glucose concentrations, and
have their insulinotropic effect inactivated by the enzyme
dipeptidyl peptidase-4 (DPP-4). However, there are several
major differences between GIP and GLP-1 with regard to blood
glucose control. First, GLP-1 suppresses glucagon secretion,
complementing its effect to stimulate insulin, and coordinating
the islet hormones to lower blood glucose1,2; in contrast, GIP
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stimulates glucagon release4. Second, GIP shows a large dynamic
range of postprandial secretion, approximately 10-fold, whereas
changes in plasma GLP-1 are modest, 1.5–2-fold (Figure 1)1,5,6.
Finally, the effects of GLP-1 to stimulate insulin secretion and
reduce blood glucose are retained in diabetic humans, whereas
GIP has a muted effect in the setting of chronic hyperglycemia3,7.
GLP-1 was discovered incidentally after the cloning of pro-

glucagon, and has been one of the most studied regulatory pep-
tides in the field of metabolism over the past three decades2.
There is a body of convincing experimental evidence showing
that GLP-1 is essential for normal glucose tolerance8–10; simply
put, interference with GLP-1 signaling by a variety of interven-
tions causes glucose intolerance. Unlike many previously identi-
fied gastrointestinal peptides that were insulinotropic in vitro or
in healthy humans, but ineffective in persons with diabetes1,3,
GLP-1 has potent antidiabetic effects. Infusion of GLP-1 lowers
fasting hyperglycemia11,12, and corrects abnormal insulin secre-
tion7,13,14 in persons with type 2 diabetes. Indeed, it is this
remarkable effectiveness in diabetic patients that has led to the
rapid development of drugs for diabetes based on GLP-115,16.
Taken as a whole, basic and clinical investigation of the GLP-1
system has been one of the most important and rapidly moving
areas of diabetes-related research in the recent past.

IS GLP-1 A HORMONE? PROBLEMS WITH THE
CLASSICAL MODEL
GLP-1 is cleaved from proglucagon in specific intestinal entero-
cytes called L cells, and secreted primarily as an amidated 30-
amino acid peptide GLP-1(7-36)NH2

1,17. It is widely believed
that L cells account for almost all of the GLP-1 in the circula-
tion. On reaching the bloodstream, GLP-1 has access to a

specific GLP-1 receptor (GLP-1r) that is expressed in a wide
range of target tissues including pancreatic b-cells, a subset of
pulmonary epithelial cells, cells lining the gastric pits and small
intestinal mucosa, atrial cardiac myocytes, and neurons in sev-
eral brain regions and the afferent vagus18,19. Based on the clas-
sical model of the incretin effect, it has been widely assumed
that GLP-1 interacts with these diffuse GLP-1r through the cir-
culation as a hormone.
There are several problems with a strictly endocrine mecha-

nism to explain the multiple actions of GLP-1. First, GLP-1 cir-
culates in relatively low concentrations compared with other
gastrointestinal hormones, such as GIP and peptide tyrosine-
tyrosine (PYY)5,6,20. Furthermore, the changes in plasma GLP-1
after eating, the principal stimulus for its release, are very mod-
est5,6. The narrow range of plasma GLP-1 concentrations in
physiological settings is at odds with experimental data showing
a broad dynamic range of action1–3. Indeed, in healthy humans
the insulinotropic effect of GLP-1 continues to increase in a
near exponential profile at plasma levels five- to sixfold the
upper level of the physiological range21. The discordance
between concentrations of circulating peptide and the magni-
tude of its effects is the first challenge to the conventional view
that GLP-1 acts as a hormone.
A second, and perhaps more compelling reason to question

an endocrine mechanism of GLP-1 action is its rapid inactiva-
tion in the circulation. GLP-1 is metabolized by the ubiquitous
enzyme DPP-4, which cleaves the N-terminal dipeptide His-Ala
leaving the circulating congener GLP-1(9-36)NH2

22–24. Metabo-
lism of GLP-1 by DPP-4 results in a plasma half-life of 1–
2 min in mammals23–25, and as GLP-1(9-36)NH2 is inactive,
this process severely attenuates the overall effect of circulating
GLP-124. It has been estimated that considerable amounts of
GLP-1 are inactivated by the time peptide secreted from the
gut reaches the portal vein, and that only a minor fraction of
secreted GLP-1 remains intact by the time it reaches the arterial
circulation26. Taken together, these observations raise serious
arguments against the traditional endocrine model of the incre-
tin action of GLP-127–29. This presents a very fundamental
question: How are the diverse actions of GLP-1 mediated if not
by direct actions of circulating peptide on target tissues?

PRODUCTION OF GLP-1 BY THE ISLET a-CELL
After the discovery of GLP-1 in the mid-1980s, several groups
sought to determine the site of its production30–32. Early studies
focused on differential proglucagon processing by the three cell
types that express proglucagon: a- and L cells, and neurons.
Typical studies made use of extracts from the intestine and
pancreas that were fractionated using chromatography, and the
products analyzed by radioimmunoassay30. This process identi-
fied two patterns of proglucagon processing: an a-cell profile
with the majority of N-terminal proglucagon processed into
glucagon, and the bulk of C-terminal prohormone left unpro-
cessed as an inactive peptide containing both GLP-1 and GLP-
2; and an intestinal/brain profile with the majority of N-term-
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Figure 1 | Plasma levels of glucagon-like peptide-1 (GLP-1) and
glucose-dependent insulinotropic polypeptide (GIP) in healthy subjects
after a 450-kcal liquid mixed nutrient meal. Plasma GIP concentrations
increased approximately 10-fold and plasma GLP-1 increased twofold
after the meal. Adapted from Salehi et al.48

[Correction added on 12 April 2016, after first online publication: The
colours indicating GLP-1 and GIP have been swapped.]
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inal proglucagon unprocessed in forms such as glicentin and
oxyntomodulin, whereas the C-terminal portion was cleaved
into the bioactive GLPs. The simple explanation for this
dichotomization was that a-cells synthesize proconvertase
(PC) 2, and L cells and neurons synthesize PC1/3, giving uni-
form processing of proglucagon to distinct products33–36.
Although this model is generally accurate, it has been incorrectly
extrapolated to mean that a-cells produce only glucagon and no
GLP-1, and that the brain and intestine make only GLP-1. New
findings suggest that this extrapolation needs to be reconsidered.
Mice with specific deletions of PC1/335 or PC236 show the

dominant role of these enzymes in the processing of Progluca-
gon to GLP-1 and glucagon, respectively. However, the
absence of the dominant proconvertase unmasks a small
amount of PC1/3 activity and GLP-1 production in a-cells,
and PC2 activity and glucagon production in intestinal endo-
crine cells. Other groups have confirmed these findings by
measuring GLP-1 in a- and b-cell lines, and in isolated
islets36,37. Masur et al.37 showed expression of PC1/3 in a-
cells, release of fully processed, bioactive GLP-1 in culture,
and reduction of insulin secretion and b-cell growth from cul-
tured islets treated with a GLP-1r antagonist. These authors
concluded that GLP-1 is produced locally in the islet, where it
plays a role in b-cell function. The potential for a physiologi-
cal action of islet GLP-1 was perhaps best shown in the
response to b-cell stress. Nie et al.38 treated rats with strepto-
zotocin for 5 days and analyzed islet constituents. They noted
increased expression of PC1/3 throughout the islet, including
a 10-fold increase in a-cells38. Coincident with this, there was
an increase in islet GLP-1 immunoreactivity, and a doubling
of the GLP-1/glucagon ratio in islet extracts. Although in
absolute terms islet GLP-1 concentrations were only a small
fraction of glucagon content, streptozotocin treatment led to a
2.5-fold increase in plasma GLP-1(7-36). These findings sup-
port a model whereby b-cell injury induces increased local
production of GLP-1. This model is supported by the findings
of other investigators who showed increased production of
PC1/3 and GLP-1 in the a-cells of mice with insulin resis-
tance generated by a variety of conditions39.
More recently, Ellingsgaard et al. showed that the cytokine

interleukin (IL)-6 stimulates Proglucagon expression and GLP-1
production in murine L- and a-cells40. These effects of IL-6
increased insulin secretion and improved glucose tolerance, and
were dependent on signaling through the GLP-1r. In cultured
a-cells, IL-6 increased GLP-1 secretion in a dose-dependent
manner, but increased glucagon release only in the setting of
low glucose. Importantly, the effects shown in vivo and ex vivo
in mice were replicated in cultured human islets and isolated
primary a-cells. The authors of that study proposed that IL-6
served as a link between insulin-sensitive skeletal muscle and
the islet through stimulation of local GLP-1, mediated by para-
crine signaling.
Although the experimental evidence supporting paracrine

regulation of b-cells by GLP-1 from a-cells comes from studies

in rodents, it is important to note that the architecture of human
islets actually provides a superior design for this mechanism41,42.
The distribution of a-cells in a rim on the outside of the islet is
a distinctive aspect of rodent islets. In contradistinction, a-cells
in human islets are mixed into the body of the islet and are thus
in a anatomic position to facilitate cell–cell interactions. The
proposition that a-cells regulate b-cells would seem to fly in the
face of another established physiological concept, namely that
blood flow is from the core of the islet to the periphery43. How-
ever, that model addresses only the regulatory behavior of islet
hormones secreted into the circulation, and cannot be applied to
intercellular or interstitial communication. Finally, although there
is now support for the synthesis and release of GLP-1 within the
islet, it is not clear whether there is DPP-4 activity in this com-
partment to inactivate the peptide. Studies have shown consider-
able DPP-4 activity in extracts of pancreas and islets22,44, but it is
unclear how much of this resides in the substance of the islet
and how much in the endovasculature.

EFFECTS OF GLP-1 ON INSULIN SECRETION IN THE
FASTING STATE
An essential, and definitional, aspect of incretins is that they
stimulate insulin secretion during nutrient absorption, and in
fact both GLP-1 and GIP were initially classified as incretins,
because plasma levels rose after food intake. In the case of GIP,
evidence from animal studies is consistent with postprandial
endocrine actions. For example, mice with a genetic deletion of
the GIP receptor are more hyperglycemic than controls after
enteral, but not parenteral, glucose challenges45; the strong
inference here is that the effect of removing GIP signaling is
only evident after a meal when plasma concentrations are ele-
vated, but not during IP glucose when GIP levels are low and
unchanging. These observations are in contrast to findings in
mice with GLP-1r knockouts. In these animals, clearance of
glycemia is abnormal whether measured after IP or oral admin-
istration of glucose8. This point has been extended in studies of
mice with a selective deletion of the GLP-1r in b-cells46. These
mice have normal glucose tolerance after gavage of glucose or
ingestion of a liquid meal, but hyperglycemia can be induced
by blocking extra-islet GLP-1r with exendin-(9-39), a peptide
antagonist. In contrast to the normal response to oral glucose,
the b-cell GLP-1r knockouts have elevated fasting glucose levels
and impaired clearance of an IP glucose load. These findings
show that glucose tolerance is not affected by interference of
direct effects of circulating GLP-1 on b-cells, but that GLP-1r
signaling is important for a normal insulin response to glucose
regulation in the fasting state.
The findings in GLP-1r knockout mice are supported by

studies in humans. Infusion of the GLP-1r antagonist exendin-
(9-39) reduces the insulin response to i.v. glucose in fasted
humans47–49. In these studies, exendin-(9-39) reduced insulin
secretion by 30–40% whether glucose was infused i.v. alone or
during oral glucose ingestion (Figure 2)48,49. Thus, comparable
effects were observed with GLP-1r blockade both when plasma
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GLP-1 levels were low and unchanging, and when they were
increased by the test meal. Although it is possible that fasting
GLP-1 concentrations are sufficient to have a tonic effect on b-
cell secretion, this seems unlikely, as infusion of exogenous
GLP-1 does not stimulate insulin release until plasma concen-
trations reach the prandial range21.
Taken together, findings from studies of transgenic mice and

humans show that interference with GLP-1r signaling impairs
insulin secretion independent of changes in plasma GLP-1 con-
centration. In the context of recent observations that GLP-1 is
made in the islet, these results raise the possibility that a para-
crine, a-cell to b-cell system of communication exists to regu-
late insulin release. In this model, islet GLP-1 could provide
tonic support for b-cell function as a mechanism of chronic
adaptation to environmental perturbation. In fact, the fasting
GLP-1 effect; that is, the degree to which exendin-(9-39)
reduces insulin secretion in the absence of elevated circulating
GLP-1, is greater in diabetic and obese patients than in lean
subjects (Figure 3)48–50.

CASE FOR GLP-1 AS A HORMONE: BARIATRIC
SURGERY
While the notion that gut-derived GLP-1 acts on distant pan-
creatic b-cells is open to skepticism, there are settings where an
endocrine action is more plausible. Patients undergoing baria-
tric surgical procedures, such as gastric bypass or sleeve gastrec-
tomy, have massive elevations of plasma GLP-1 after meals.
Indeed, levels can be increased 10–20-fold those of unoperated
control subjects. In these individuals, it is more realistic to con-
ceive of sufficient unmetabolized, plasma GLP-1 reaching the
islet to directly stimulate b-cells. In fact, patients with gastric
bypass given exendin-(9-39) have a two- to threefold greater
reduction of meal-induced insulin secretion compared with
controls, suggesting a greater GLP-1 effect that coincides with
higher plasma concentrations49. Furthermore, GLP-1r blockade

can correct the syndrome of hyperinsulinemic hypoglycemia
that affects a discrete population of gastric bypass patients50;
this finding also implicates augmented GLP-1 action after
weight loss surgery.

SUMMARY
The discovery of GLP-1 and subsequent rediscovery of the
incretin effect have been major themes in diabetes research over
the past two decades. It seems clear that GLP-1 is essential for
normal glucose tolerance, and in experimental and clinical set-
tings has marked effects on glucose regulation in persons with
type 2 diabetes. However, the principle mechanism of action of
GLP-1 has recently been questioned, with a solid body of evi-
dence that can be arrayed against a primary endocrine effect.
Coincident with these findings are new observations that sug-
gest significant a-cell production of GLP-1 and a physiological
role of local islet peptide through paracrine signaling. The
major implication of these findings is that there are important
effects of GLP-1r signaling that occur independently of plasma
levels of peptide. Understanding the full range of physiological
GLP-1 actions is important in that this pathway has been suc-
cessfully targeted to treat diabetes, but the full potential of this
mechanism has not yet been realized.
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