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Automatic monitoring of feeding behavior especially rumination and eating in cattle is

important to keep track of animal health and growth condition and disease warnings.

The noseband pressure sensor is not only able to accurately sense the pressure change

of the cattle’s jaw movements, which can directly reflect the cattle’s chewing behavior,

but also has strong resistance to interference. However, it is difficult to keep the same

initial pressure while wearing the pressure sensor, and this will pose a challenge to

process the feeding behavior data. This article proposed a machine learning approach

aiming at eliminating the influence of initial pressure on the identification of rumination

and eating behaviors. The method mainly used the local slope to obtain the local data

variation and combined Fast Fourier Transform (FFT) to extract the frequency-domain

features. Extreme Gradient Boosting Algorithm (XGB) was performed to classify the

features of rumination and eating behaviors. Experimental results showed that the local

slope in combination with frequency-domain features achieved an F1 score of 0.96,

and recognition accuracy of 0.966 in both rumination and eating behaviors. Combined

with the commonly used data processing algorithms and time-domain feature extraction

method, the proposed approach improved the behavior recognition accuracy. This

work will contribute to the standardized application and promotion of the noseband

pressure sensors.

Keywords: noseband pressure sensor, machine learning, XGB, behavior classification, feeding behaviors

INTRODUCTION

Precision livestock farming (PLF) is a research field involving multiple disciplines such as
the Internet of Things (IoT) and artificial intelligence (AI). Through the continuous real-time
monitoring of individual livestock’s health and growth condition, not only the animal welfare
but also the production and quality can be improved further (1, 2). Feeding behavior is one of
the key indicators in cattle to measure growth and diseases. Accurate analysis of feeding behavior
can help evaluate the feed intake and growth rate, which could be used to provide a reference for
cattle breeding (3). In particular, rumination and eating are the most direct and effective feeding
behavior characteristics to confirm the cattle’s health status (4). Therefore, automatic and accurate
monitoring of rumination and eating in cattle is of great significance to building precision livestock.
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In traditional livestock farming, direct observation is one of
the most widely used methods (5). Stopwatch, counter, telescope,
and other tools are commonly used to track cattle for continuous
recording of their eating, rumination, resting, and wandering
behaviors. Unfortunately, these methods are both time and
labor-consuming, especially for the grazing sector (6). With the
development of information technologies, sensor technology has
been applied to monitor cattle behaviors to achieve automatic
and continuous detection, which is more efficient and less
intrusive than the traditional manual monitoring method (7).
Due to the favorable stability and endurance, wireless sensors
can provide long-term monitoring, and therefore, are promising
in grazing pastures (8). The sensors consist of sound sensors
(9, 10), acceleration sensors (11, 12), and pressure sensors
(13, 14). The sound sensors are mainly used to detect the
chewing behaviors of cattle such as chewing, biting, and chew-
bite through the sound produced during chewing (15, 16). For
example, Chelotti et al. (17) proposed an online bottom-up
foraging activity recognizer algorithm incorporating multilayer
perceptron (MLP) along with a decision tree and achieved
the F1 scores of 82.2% (grazing) and 74.3% (rumination) in
the 5min detection window size. Although the sound sensors
have good performance for monitoring chewing behavior in
the ideal environment, they are susceptible to being affected by
noise in complex farms (18). The monitoring method based on
acceleration sensors is to fix the devices on the head, mandible,
ear, neck, or other parts of cattle and then identify the feeding
behaviors by distinguishing the movements and postures of the
acceleration (19, 20). For instance, Smith et al. (7) used the
triaxial acceleration to collect cattle motion data signals and the
one-VS-all classification framework was proposed to recognize
grazing, walking, ruminating, resting, and other behaviors. In
the 30 s window size condition, this method achieved the F1
score of 0.98 (grazing) and 0.86 (ruminating). The acceleration
sensors are always affected by the semblable acceleration signals
and different behaviors may have semblable signal features, it
is difficult to judge the behaviors for acceleration-based models,
especially in practical scenarios (21). Given that sound sensors
and acceleration sensors have limitations in the task of behavior
recognition, some studies have improved the classification
performance by combining multiple sensors (22, 23).

The environment of pasture is more complex than that
inside farmhouses, and thus, it is more challenging to monitor
the feeding behavior. Compared with sound and acceleration
sensors, noseband pressure sensors can directly sense the
pressure change of cattle’s jawmovements and reflect the chewing
behavior, which is a direct and effective way to monitor real-
time feeding behavior (24). Since the pressure signal of sensors
and cattle’s chewing behavior have a very high correlation (25).
Rutter (26) proposed the program (called Graze) that was
used to apply the amplitude and frequency of pressure data to
conduct the behavior identification of eating and rumination
and obtained 91% identification accuracy. However, Graze was
used in conjunction with the IGER Behavior Recorder, and
the recorder interfered with the animals. Zehner et al. (27)
developed and validated a novel scientific monitoring device for
automated measurement of ruminating and eating behavior in

stable-fed cows to provide research with a measuring instrument,
and published two software versions of RumiWatch to identify
cattle foraging behavior, and the average recognition accuracy
of the two software versions was 88.86 and 85.31% under
the condition of 1min windows. Subsequently, several versions
of RumiWatch were released, and the prediction accuracy of
ruminant behavior and foraging behavior in the 1min window
were both higher than 90% (28, 29). Shen et al. (30) applied
the pressure sensor to count rumination bouts, duration of
rumination, and the number of cuds, respectively, and obtained
an accuracy of 100, 94.2, and 94.45%. They proposed to use the
SD and spectrum characteristics of pressure data for rumination
behavior recognition and achieved an accuracy of 94.2% under
the condition of 51.2 s time resolution.

The monitoring of feeding behavior could help predict
herbage demand (31). Consequently, to monitor the cattle’s
health more effectively and improve animal welfare, the feeding
behavior recognition algorithm based on pressure sensors needs
more progress for future potential applications (32). However,
in previous studies, the pressure sensor-based feeding behavior
recognition algorithm is built on the peak rates and the peak
intervals of cattle chewing data. The peak is detected by the
threshold, which is very sensitive and easily affected by the
pressure values. Due to the difference in the size of cattle head,
to obtain the initial state (trough of the pressure value) of the
chewing process, it is necessary to ensure that the jaw is fully
occluding, and the flexible band is at the same stretch degree.
To achieve this, there is a need to observe the jaw movement
and the pressure value of the equipment at the same time and
then adjust the equipment accordingly, which is quite laborious.
Furthermore, the maximum pressure of complete opening is still
out of control. Moreover, the classification of feeding behavior
is based on general algorithms without animal-specific learning
data, and thus the average recognition accuracy is low.

Machine learning (ML) methods have been widely considered
in feeding behavior recognition, namely, support vector machine
(SVM), random forest (RF), and extreme gradient boosting
(XGBoost) (33). Dutta et al. (34) adopted supervised machine
learning techniques for cattle behavioral classification with a 3-
axis accelerometer and magnetometer, and the highest average
correct classification accuracy of 96% was achieved using the
bagging ensemble classification with Tree learner. Fogarty et al.
(35) explored four ML algorithms (CART, SVM, LDA, and QDA)
for sheep behavior classification with ear-borne accelerometers,
and the accuracy for each ethogram was over 75%. Riaboff et
al. (36) developed a prediction method for feeding behavior and
posture using accelerometer data based on the XGB algorithm
and also presented a variety of machine learning algorithms for
comparisons. Balasso et al. (3) developed a model to identify
posture and behavior from the data collected from a triaxial
accelerometer located on the left flank of dairy cows, and four
algorithms (RF, KNN, SVM, and XGB) were tested and the XGB
model showed the best accuracy. Dutta et al. (37) developed
and deployed a neck-mounted intelligent IoT device for cattle
monitoring using the XGBoost classifier, which achieved an
overall classification accuracy of 97%. Although XGB algorithms
achieved good performance in accelerometer data analysis, the
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FIGURE 1 | Components of the wearable integrated data acquisition device. (a) Masticatory pressure collecting device, (b) miniature camera, and (c) adjustable

wearable collar.

XGB algorithms with noseband pressure sensors have never been
applied to the classification of livestock behavior. Therefore, there
is a need to assess the application of the XGB algorithm to
recognize livestock behaviors with noseband pressure data.

To simplify the standardizing of the wearing of the nasal band
pressure sensor and improve feeding behavior recognition, this
article aims to explore a data processing approach in combination
with a machine learning model to eliminate the impact of
different ranges of noseband pressure values and facilitate the
behaviors recognition.

MATERIALS AND METHODS

Experimental Equipment
This research developed a set of comprehensive data acquisition
equipment, which could collect masticatory pressure data and
record behavior data in videos at the same time. The equipment
consisted of the masticatory pressure collecting device, the
miniature camera (Gold touch U21), and the adjustable wearable
collar, as shown in Figure 1. The Masticatory pressure collection
device included a pressure sensor (0–2,000.000 g), an HX711
ADC converter (sampling frequency 50Hz), an SoC chip
ASR6501 integrated with LoRa, a 16 GB data recorder module,
a 3D printing shell, and two lithium batteries (3.7V, 500 mAh)
in Figure 2. Three stretchable cords attached the device to the
head of a cow. Since it is very difficult to track the chewing
behavior of cattle manually under natural grazing conditions,
a micro camera (64 GB SD card), and mobile power supply

(5V, 10,000 mAh) were used to construct a wearable video
monitoring system for chewing behavior by 3D printer, to ensure
that the whole process of cattle chewing behavior was collected
for a long time. The video monitoring system can maintain 24 h
of uninterrupted power supply, in which the working currents
of data acquisition equipment and miniature cameras are 26
and 230mA. The mobile power not only supplies power to
the miniature camera but also charges the masticatory pressure
collecting device. Changing the mobile power supply once a day
can maintain the continuous collection of pressure data and
video data without dismantling equipment.

Data Collection and Preparation
This research was conducted in the Gao’an base of the Jiangxi
Academy of Agricultural Sciences. Three Simmental × Chinese
Yellow crossbred cattle, each weighing about 650 kg on average,
were used for grazing in the experimental area. Before binding
to the cattle, the noseband pressure sensor device was turned
on and automatically calibrated for an initial pressure value
of 0 g for all devices. At the same time, the breeders helped
make the cattle gentle, so that the noseband pressure sensor
device and micro-camera could be installed. In addition, the
equipment adaptability test on all three cows lasted for 2 days.
The formal experiment period lasted for 5 days, from 8 a.m. to 5
p.m. every day. A total of 135 h of masticatory pressure data and
the corresponding video monitoring data were collected. Based
on the monitoring data of masticatory pressure collected by the
micro-camera, the data of masticatory pressure were manually
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FIGURE 2 | Masticatory pressure collecting device.

TABLE 1 | The labeling rules of the classification behavior description.

Behavior Description

Ruminating Regurgitation, remastication with steady frequency,

and swallowing

Eating Bowing the head, moving grass from the pasture

with the tongue into the mouth, chewing

Other All remaining behaviors

marked. As shown in Table 1, according to the suggestions from
animal husbandry experts, the marking rules of cattle feeding
behavior were summarized. Then, the annotated pressure data
was saved in CSV files, where each line included the recording
time, pressure value, and the label. It is worth noting that the
noseband pressure sensor device was set up to synchronize
with the micro-camera, ensuring that the behavior of the video
annotation was corresponding to the original pressure data.

Data Preprocessing
The scope of original pressure data of different individuals
varies greatly, and such scale difference has a great influence
on the data modeling (38). In this section, data preprocessing
was designed to obliterate the scale difference which was
produced by the original pressure data. In the mastication

TABLE 2 | The setting of hyperparameters of XGB algorithm.

Setting Parameters

Global setting n_estimator = 100

max_depth = 6

learning_rate = 0.4

gamma = 0.1 subsample = 0.8

min_child_weight = 1

data collected from cattle, different initial pressure values
were generated after wearing the noseband pressure sensor
due to the size difference of the cattle head. This initial
pressure value is a relatively stable constant throughout the
wearing process of the device. There are two ways to eliminate
this constant, one is to extract local changes in the data,
and the other is signal filtering. In this study, first-order
difference and local slope were used to extract local variation
of data. At the same time, the high-pass filter was used to
filter out unstable initial variables. Furthermore, the control
method exerted in this article means the original pressure data
without any processing.

First-Order Difference
First-order difference (FOD) is the simplest way to extract
the continuous numerical changes for a given sequence. More

Frontiers in Veterinary Science | www.frontiersin.org 4 May 2022 | Volume 9 | Article 822621

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Chen et al. Machine Learning for Behavior Recognition

specifically, each term in the original sequence is subtracted from
the next. After the above operation, the number of arrays is
reduced by 1. Specific operations are as follows:

dt = xt − xt−1 (1)

Local Slope
Local slope (LS) is computed using linear regression over the
spectral amplitude values (39). It can obtain the variation trend
of local signals in samples. The algorithm can eradicate the initial
pressure, and this is because the slope of the local signal is solely
determined by the trend of signal change. The process of the local

FIGURE 3 | Illustration of the preprocessing operation of partial slope extraction. (A) Aims to extract the slope of the position of 0.1 s and the corresponding

least-squares fitting line. (B) Intends to extract the slope of the position of 0.12 s and the corresponding fitting line. (C) It is the local slope after data preprocessing,

each point of the local slope corresponding to the original pressure data of local trends. A total of 20 local slopes are extracted excluding the auxiliary calculation

points.
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slope extraction is to extract all slope features of the data sample
according to the sliding window with 11 sampling points and
one stride. First, calculating the local slope requires an auxiliary
arithmetic array, as shown below:

C = (1, 2, 3, . . . , 9, 10, 11) (2)

To make the local slope in agreement with the current window,
the least square solution is applied:

ŝt =
N

∑N
i=1 cix

∗
i −

∑N
i=1 ci

∑N
i=1 x

∗
i

N
∑N

i=1 c
2
i −

(

∑N
i=1 ci

)2
,N = 11 (3)

x∗i is the sample point in each sliding window. The sliding
window exhibits the local slope sample of the whole data sample.
Figure 3 shows the process diagram of the partial slope extraction
preprocessing method in the flow chart. After this process, 20
local slopes are extracted from 0.1 to 0.48 s corresponding to the
raw pressure data.

High-Pass Butterworth Filter
High-pass Butterworth filter (HBF) is used to remove the
frequency region in the waveform whose signal frequency is
lower than the cutoff frequency, including the uncertain initial
pressure value (40). Specifically, the original signal is processed
with a high-pass Butterworth filter with a sixth-order cut-off
frequency of 0.3Hz. The output data points are the same as
the input.

Feature Extraction
Features were extracted from two aspects of the time and
frequency domain. The frequency-domain feature (FDF) is
established on the fast Fourier transform principle (41), as
the range of unilateral frequency domain (not normalized). A
sequence array of length 250 was extracted as an FDF, exhibiting
both the range of intensity in each sampling frequency (0–25Hz,
resolution: 0.1Hz) and serving as a distributed representation
of the preprocessed data. The time-domain statistical feature
(TDSF) included position parameters like average, variance, SD,
maximum,minimum, range, median, first quartile, third quartile,
interquartile range, root mean square, movement variation,
skewness, and kurtosis. Skewness and kurtosis extracted in the
time domain (34) were computed and the maximum of the
pairwise correlations between each axis was considered. The
time-domain feature extraction referenced the Riaboff method
in the feature extraction process of acceleration sensor data
for cattle behavior classification (42). Since the main frequency
signal in the process of eating (around 1.3Hz), ruminating
(around 0.7Hz) has a significant difference in the frequency
domain, and time features were widely used in cattle behavior
classification. Therefore, this article used FDF and TDSF for the
data preprocessing.

Model Training
In this section, the predictions of cow behaviors were carried out
using a single classifier to compare the results. Extreme Boosting

Algorithm (XGB) is a supervised ensemble learning algorithm
(33). Its principle is to output the prediction probability of
the corresponding category based on the training samples
with multiple features and to find the category that is most
probable to predict the kind of cow feeding behavior. XGB
serves as an efficient way to mine latent patterns in data. This
framework contains multiple hyperparameters, commonly used
as follows:

• n_estimators: number of gradient boosted trees.
• max_depth: maximum tree depth for base learners.
• learning_rate: boosting learning rate.
• gamma: minimum loss reduction required to make a

further partition
• on a leaf node of the tree.
• subsample: subsample ratio of the training instance.
• min_child_weight: The minimum sum of the required

instance weights in a child.

The complexity of the model is directly influenced by the number
of estimators and the max depth of the tree, which means that the
greater the number of the trees are, the deeper the trees’ depth
is, and the more complex the model is. To compare the model
capacity in this article, the same hyperparameters were used in all
of the classifiers as seen in Table 2.

Model Validation
The performance of eight combined models was tested under
the same parameters to find the optimal algorithm for data
preprocessing and feature extraction. One way to assess
model performance objectively is to utilize the cross-validation
technique (43). It is used to prevent overfitting in prediction
models, and protect against overfitting in a predictive model,
particularly in a case where the amount of data may be limited.
The major step of cross-validation is to divide all the data
into five subsets, each of equal size. Four subsets were used
for training, and the left one was used for testing. To ensure
that no data were omitted in the prediction, the procedure was
repeated 5 times and the confusion matrix was obtained for
each time, which was then computed to form a total confusion
eventually (44).

Accuracy, that is the proportion of successfully classified
samples in total samples, serves as the standard for assessing
the overall performance of classifiers. On the other hand,
accuracy also reflects the ratio of correctly classified
samples to total samples. To evaluate the prediction of
true positive (TP), false positive (FP), and false negative
(FN) in each scenario, precision, recall, and F1 score were
also computed. The calculation of evaluation indicators is
as follows:

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F1 = 2 ∗
(precision ∗ recall)

(precision+ recall)
(6)
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RESULTS

Multi-Window Performance Results
Noseband pressure sensors have been used to classify feeding
behaviors, but classification accuracy and computational load
are influenced by signal segmentation. Therefore, this article
considers the accuracy and execution time as standard evaluation
criteria to evaluate variable window size.

Table 3 shows the results of 1,000 samples with different
window sizes (5, 10, 15, 20, and 30 s) and different method
combinations. As can be seen, the accuracy achieved higher with
the window size increased, but with the longer execution cost.

TABLE 3 | The effect of window size on the accuracy (mean and standard

deviation) and the executing time.

Time windows Accuracy Execute time (1 k sample)

5 s 0.944 ± 0.012 11.592 s

10 s 0.966 ± 0.010 21.440 s

15 s 0.973 ± 0.010 31.621 s

20 s 0.975 ± 0.014 41.717 s

30 s 0.981 ± 0.010 63.327 s

The window sizes of 5 s led to significantly lower accuracy than
with other window sizes but the execute time was also the fastest
with 11.592 s. Despite the higher accuracy the larger windows
size performed, considering the processing speed for potential

TABLE 4 | Numerical statistical comparison of ruminant waveform data

preprocessing.

Method Cattle Min Max Mean

Raw A 28.550 450.660 145.549

B 128.240 569.280 235.616

C 232.320 622.585 385.515

FOD A −21.020 25.250 0.006

B −20.510 24.680 0.010

C −35.420 20.070 0.006

LS A −19.396 23.958 0.006

B −19.003 22.197 0.008

C −15.455 18.529 0.006

HPF A −171.611 234.801 −0.004

B −173.212 249.433 −0.025

C −151.353 168.116 −0.009

FIGURE 4 | Graph of data pretreatment algorithm. Sample A, sample B, and sample C come from three different cattle. (A) Raw pressure data. (B) Data processed

by the first-order difference method (FOD). (C) The local slope (LS) of raw data. (D) Data processed after the high-pass filter (HPF).
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use, this article selected the window size of 10 s for the data
segmentation to balance the accuracy (over 95%) and execution
cost. The dataset in this work contains a total of 47,482 samples,
namely, 14,321 for rumination, 17,978 for eating, and 15,183 for
other behaviors. The entire pressure dataset construction process
did not use the data overlapping technique, and each sample was
used only once in the original annotation data.

Data Preprocessing Results
During the experiment, although this work was able to initialize
the zero-calibration process when the device was not worn
and placed horizontally and freely, it was unable to guarantee
the same initial pressure value during the wearing process.
The difference in initial pressure values of cows wearing the
pressure sensor reflected the overall data on the feeding behavior
(eating, ruminating, and others) of the three cows. Figure 4A
shows the pressure data of three cows’ ruminating behavior
during the 180 s. Based on the three data preprocessing methods
discussed in this work, the data processed by FOD, LS, and
HBF are presented in Figures 4B–D. The minimum values of
the original pressure waveforms obtained from the three cows
were 28.550, 128.240, and 232.320 g, and the corresponding
average waveforms values were 145.549, 235.616, and 385.515 g,
respectively, as shown in Table 4. Accordingly, the cows with
pressure sensors have different initial pressure values. However,
the mean values for all three cattle processed by FOD, LS,
and HBF were basically close to 0, which means the data
preprocessing methods contribute to eliminating the influence of
the initial pressure value. In particular, FOD is a kind of algorithm
that uses two sampling points to extract the slope, and it has
a small amount of calculation and range of variation and also
is sensitive to mechanical noise. By comparison, LS adopts 11
sampling points to extract the slope, which takes into account
a large range of changing trends, but costs a large amount of
calculation. This method can effectively suppress noise and the
pressure data are closer to the changing trend of the original. As
shown in Figure 4, the FOD algorithm is sensitive to mechanical
noise and produces sudden changes during 120–150 s, but the
LS algorithm can eliminate the abrupt effects of sensors and
behaviors and thus improve the recognition accuracy.

Overall Performance of the Model
The prediction accuracy of machine learning models is shown
in Figure 5. The models with frequency-domain features show
a higher accuracy in recognition than that with time-domain
statistical features. With respect to frequency domain features,
three data processing algorithms improve the recognition
accuracy of the model, reaching 0.012. In the time-domain
feature condition, the local variation extraction algorithm (first-
order difference and local slope) has improved by 0.047
compared with the empty operation.

Comparisons of Machine Learning
Algorithms
Multiple supervised classification models are used in this work to
compare the performance of k-nearest neighbor (KNN), support
vector machine (SVM), decision tree (DT), and XGBoost models

on behavior classification. The performance results of various
models are presented in Table 5. The highest performance was
obtained by combining LS+FDF and XGBoost (accuracy: 0.966
± 0.010). The model with the lowest performance is the one
that uses HPF+TDSF with SVM (accuracy: 0.689 ± 0.091). In
the cross-validation, the frequency-domain models are more
accurate and robust than the time-domain models. The best
performance across all the data processing streams was obtained
by XGBoost with an over 89% accuracy.

Discrimination of Every Behavior
Figure 6 shows the total confusionmatrix for eachmodel and the
recognition performance of every behavior is shown in Table 6.
The recognition results of rumination and eating behavior
were basically consistent with the overall performance. The
model achieved the F1 score of 0.96 for rumination and eating
recognition by using the local slope or first-order difference and
feature extraction using the frequency-domain feature. The worst
recognition model is using time-domain features which achieved
a 0.82 F1 score for rumination behavior and a 0.87 F1 score for
eating behavior.

DISCUSSION

The jaw movements of cattle are the most obvious features of
feeding behavior. The difference between eating and rumination
is mainly reflected in the changes in the frequency, amplitude,
and trends of jaw movements. Even though the noseband
pressure sensor has the advantages in sensing behaviors and
strong resistance to non-feeding behaviors, the differences in
cattle individuals and resistance to wearing the pressure sensors
while wearing the pressure sensors will result in different initial
pressure. At this stage, it is unreliable to use the pressure data
to process the feeding behavior. Therefore, this article proposed
a machine learning approach combined with data preprocessing
to provide an effective way for feeding behavior recognition
using the pressure sensors in the grazing pasture. The novelty
of this article is that the local slope with the combination of
the FFT method was used to eliminate the influence of initial
pressure, and frequency-domain features were extracted for
feeding behavior recognition.

In this article, three data preprocessingmethods, namely, first-
order difference, high-pass Butterworth filter, and local slope
were used to preprocess the raw data with different initial
pressure values. Then the frequency-domain and time-domain
features were extracted from the preprocessed data and raw
data, respectively, and finally, different combination features
were applied to the XGB model for behavior classification.
Experimental results indict that the accuracy with data
preprocessing is significantly higher than that without any
preprocessing. Since the initial pressure of the noseband pressure
sensor has an impact on the feeding behavior recognition, the
influence of the initial pressure was weakened to different extents
using the preprocessing methods. The processing of the first-
order variance and local slope was reflected in the changing trend
of the jaw pressure in the chewing process. During eating and
ruminating, chewing speed was different and it can be observed
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FIGURE 5 | Validation results for each model. “None” indicates the control group in data preprocessing without any data processing. FOD, First-order difference; LS,

local slope; HPF, high-pass filter; FDF, frequency-domain features; and TDSF, time-domain statistical features.

TABLE 5 | The experiment with multi-machine learning (ML) algorithm.

Data processing Classification algorithm

KNN SVM DT XGBoost

FDF 0.900 ± 0.050 0.928 ± 0.038 0.904 ± 0.034 0.952 ± 0.028

FOD + FDF 0.952 ± 0.011 0.964 ± 0.008 0.927 ± 0.019 0.965 ± 0.015

LS + FDF 0.946 ± 0.015 0.961 ± 0.011 0.925 ± 0.016 0.966 ± 0.010

HPF + FDF 0.944 ± 0.015 0.959 ± 0.012 0.919 ± 0.026 0.964 ± 0.016

TDSF 0.792 ± 0.067 0.762 ± 0.110 0.862 ± 0.041 0.894 ± 0.064

FOD + TDSF 0.906 ± 0.028 0.907 ± 0.027 0.918 ± 0.026 0.941 ± 0.035

LS + TDSF 0.903 ± 0.024 0.901 ± 0.027 0.909 ± 0.032 0.942 ± 0.034

HPF + TDSF 0.821 ± 0.062 0.689 ± 0.091 0.883 ± 0.039 0.906 ± 0.060

according to the trend of changes in the jaw pressure (45). A high-
pass Butterworth filter was used for filtering the low-frequency
signal data (lower than 0.3Hz) which was not the main frequency
signal in the process of eating (around 1.1Hz) and ruminating
(around 0.8Hz). In general, this work is to facilitate the use of
the noseband pressure sensor in practice. That is to say, there
is no need to consider keeping the same initial pressure while
wearing the device. This work will contribute to the promotion
of the high-precision chewing behavior perception method.

As for data feature extraction, since the pressure data of
feeding behavior shows a strong regularity, the frequency-
domain features were better than the time-domain features in
feeding behavior recognition. Rumination consists of a series

of uniform chewing behaviors that create a regular waveform,
while the pattern of eating is irregular. The distribution of
the frequency-domain features could present the regularity
and provide the XGB classifier with the optimal features.
Results indicated that the local slope combined with frequency-
domain feature extraction achieved the best performance among
three data preprocessing methods, which yielded the accuracy
of 0.966, 0.96, and 0.96 on the whole, rumination and
eating, respectively.

Concerning the window size, there is no agreed window
size to suggest, as it depends on several parameters such as
the number of sequences, processing speed, the location of
the sensors, and the specific behaviors to detect (6, 23, 46).
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FIGURE 6 | The confusion matrix of each model. FOD, First-order difference; LS, local slope; HPF, high-pass filter; FDF, frequency-domain features; and TDSF,

time-domain statistical features. (A) FDF, (B) TDSF, (C) FOD + FDF, (D) FOD + TDSF, (E) LS + FDF, (F) LS + TDSF, (G) HPF + FDF, and (H) HPF + TDSF.
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TABLE 6 | Precision, recall, and F1 score of rumination and eating behavior for

every model.

Behavior Model Precision Recall F1 score

Rumination FDF 0.96 0.90 0.93

FOD + FDF 0.96 0.95 0.96

LS + FDF 0.96 0.95 0.96

HPF + FDF 0.96 0.94 0.95

TDSF 0.90 0.76 0.82

FOD + TDSF 0.96 0.87 0.92

LS + TDSF 0.96 0.87 0.91

HPF + TDSF 0.91 0.79 0.85

Eating FDF 0.92 0.96 0.94

FOD + FDF 0.95 0.96 0.96

LS + FDF 0.96 0.96 0.96

HPF + FDF 0.95 0.96 0.96

TDSF 0.83 0.92 0.87

FOD + TDSF 0.90 0.96 0.93

LS + TDSF 0.90 0.96 0.93

HPF + TDSF 0.85 0.93 0.89

This article showed that the larger the time window, the
higher the identification accuracy, and the longer the execution
time took. In the practical scenarios, the raw data will be
collected and sent to the server for processing which will
bring a lot of power consumption and traffic costs to the
wearable detection equipment. A small amount of result data
will reduce the data transmission of a single node and in
this way, the LORA can be run stably in the low-speed and
long-distance communication mode in the future. Therefore,
this article balanced the size of the window size and the
amount of model calculation and finally chose 10 s as the
window size. Although the accuracy is not the highest, it
can provide a reference for the embedded feeding behavior
recognition model.

During the experiment, the grazing area was relatively empty
and the noseband pressure sensor was not damaged during the
use. However, if the cattle fight or attack large objects, it is likely
to damage the noseband pressure sensor. Therefore, this article
will consider using flexible solar cells for power to reduce the
power consumption of the whole equipment, which can reduce
the volume of the battery in the noseband pressure equipment.
Moreover, the outer shell of the equipment will be made of harder
material to withstand greater impact force and meanwhile, the
hard shell will be covered with a flexible shell to avoid damage
to cattle.

CONCLUSIONS

Automatic monitoring of feeding behavior especially rumination
and eating in cattle is of importance to keep track of animals’
health and growth conditions and disease warnings. In this

article, the noseband pressure sensor was used to collect the
behavior data of cattle, however, it was difficult to achieve
the high-precision accuracy of feeding behavior recognition
by using the existing algorithms with raw data. For future
potential applications, three data preprocessing methods and two
feature extraction algorithms were evaluated in this study. It
is concluded that the XGB classification model in combination
with the local slope and frequency-domain feature achieved the
F1 score of 0.96 and accuracy of 0.966 for feeding behavior
recognition. The proposed approach is suitable for processing
pressure data with a wide range of variations, which can avoid
the adjustment of the pressure sensor while wearing the device.
This work will help reduce labor consumption and contribute
to the standardized application and promotion of the noseband
pressure sensors.

Since the difference in breeds and ages of cattle will potentially
influence the model performance, future work in this study
will extend to more kinds and ages of cows, to have better
scalability and ensure that the proposed method applies to all
kinds of farms.
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