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Abstract: Breast cancer stem cells (BCSCs) are tumor-initiating cells that possess the capacity for
self-renewal. Cancer stem cells (CSCs) are responsible for poor outcomes caused by therapeutic
resistance. In our study, we found that sulconazole—an antifungal medicine in the imidazole
class—inhibited cell proliferation, tumor growth, and CSC formation. This compound also reduced the
frequency of cells expressing CSC markers (CD44high/CD24low) as well as the expression of another CSC
marker, aldehyde dehydrogenase (ALDH), and other self-renewal-related genes. Sulconazole inhibited
mammosphere formation, reduced the protein level of nuclear NF-κB, and reduced extracellular IL-8
levels in mammospheres. Knocking down NF-κB expression using a p65-specific siRNA reduced CSC
formation and secreted IL-8 levels in mammospheres. Sulconazole reduced nuclear NF-κB protein
levels and secreted IL-8 levels in mammospheres. These new findings show that sulconazole blocks
the NF-κB/IL-8 signaling pathway and CSC formation. NF-κB/IL-8 signaling is important for CSC
formation and may be an important therapeutic target for BCSC treatment.
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1. Introduction

Breast cancer is a cancer that develops from common breast tissue and a major fatal health
problem among females [1]. Patients treated with different therapeutics suffer from cancer relapse and
metastasis because of cancer stem cells (CSCs), a subpopulation of tumor cells. CSCs are heterogeneous
bulk tumor cells that differentiate into cancer cells. CSCs are resistant to chemotherapies and contribute
to tumor heterogeneity [2]. CSCs were first identified in leukemia and found to show properties similar
to those of stem cells by Bonnet and Dick [3]. Markers of breast cancer stem cells (BCSCs) include CD44,
CD133, and ALDH1. CD44 expression is upregulated in the microenvironment that promotes cancer
progression and metastasis [4]. Additionally, CD44 isoforms are reliable markers of CSCs. The CD44
isoform CD44v-xCT regulates redox in cancer stem cells [5]. The signaling pathways regulating
CSC stemness and differentiation are the Wnt, Hedgehog, Hippo, and Notch signaling pathways.
Molecular targeting of these pathways to inhibit BCSCs may be a useful tool for cancer treatment [6].
Sox2, Nanog, Oct4, and c-Myc are crucial for CSC formation and potential targets for cancer therapy.
One report showed that NF-κB was involved in CSCs from primary acute myeloid leukemia (AML)
samples [7]. Additionally, BCSCs overexpress NF-κB signaling pathway components and induce NF-κB
activity. BCSCs have high protein expression of NF-κB [8]. Inhibiting NF-κB signaling with BMS-345541
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in lung cancer reduces the stemness and self-renewal capacity of lung CSCs [9]. The cytokines IL-6 and
IL-8 regulate links between CSCs and the microenvironment. The Stat3 and NF-κB pathways regulate
the gene expression of IL-6 and IL-8 in breast cancer. Microenvironmental IL-6 and IL-8 regulate
BCSC populations [10]. In lung cancer patients, high extracellular IL-6 levels are associated with a
poor prognosis [11,12]. IL-6 regulates BCSC formation through the IL-6/IL-6 receptor interaction [13].
The protein expression level of IL-8 is higher in breast cancer cells than in normal breast tissue cells,
and IL-8 promotes cancer progression. IL-8 promotes BCSC activity through the CXCR1/IL8 interaction.
IL-8/CXCR1 signaling is an important pathway for targeting BCSCs [14]. Azole compounds used
as antifungal drugs inhibit the ergosterol biosynthesis pathway through suppression of the enzyme
lanosterol 14-α-demethylase, a cytochrome P450 (CYP) enzyme. Azole antifungal drugs consist of
an imidazole (clotrimazole and ketoconazole) and a triazole (fluconazole and itraconazole). Recently,
antifungal imidazole drugs have well-established pharmacokinetic profiles and known toxicity,
which can make these generic drugs strong candidates for repositioning as antitumor therapies [15].
Sulconazole is an antifungal medicine in the imidazole class and has broad-spectrum activity against
dermatophytes [16]. We demonstrated that sulconazole had antiproliferative properties in breast
cancer and inhibited BCSC formation through a reduction in IL-8 expression induced by disrupting
the NF-κB pathway.

2. Materials and Methods

2.1. Cell Lines and Media

MCF-7 and MDA-MB-231 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM;
Gibco, Thermo Fisher Scientific, Waltham, CA, USA) supplemented with 10% (v/v) fetal bovine serum
(FBS; Thermo Fisher Scientific, Waltham, CA, USA), 1% penicillin and streptomycin in a humidified 5%
CO2 incubator at 37 ◦C. Breast cancer cells were cultured at a concentration of 3.5 × 104 or 0.5 × 104

cells/well in an Ultralow Adherent plate containing MammoCultTM medium (STEMCELL Technologies,
Vancouver, BC, Canada) supplemented with heparin and hydrocortisone in a humidified 5% CO2

incubator at 37 ◦C. A 6-well plate was scanned, and mammosphere counting was performed using the
NICE program [17]. A mammosphere formation assay was determined by evaluating mammosphere
formation efficiency (MFE) (%) as previously described [18].

2.2. Antibodies, siRNAs, and Plasmids

Anti-pStat3 (Y705) (rabbit monoclonal) antibodies were obtained from Cell Signaling Technology.
Anti-p65 (mouse polyclonal), anti-pp65, anti-Stat3 (rabbit monoclonal), anti-β-actin (mouse
polyclonal), and anti-Lamin b antibodies were purchased from Santa Cruz Biotechnology.
Anti-CD44 FITC-conjugated and anti-CD24 PE-conjugated antibodies were obtained from BD
Pharmingen. A human p65-specific siRNA and scrambled siRNA were purchased from Bioneer
(Daejeon, Korea).

2.3. Cell Proliferation

We used a previously reported method [19]. Breast cancer cells were incubated in a 96-well plate
with sulconazole for 24 h. We followed the manufacturer’s protocol for a CellTiter 96® Aqueous One
Solution cell kit (Promega), and the optical density at 490 nm (OD490) was determined using a plate
reader (SpectraMax, Molecular Devices, San Jose, CA, USA).

2.4. Colony Formation and Migration Assays

MDA-MB-231 cells were cultured at 2 × 103 cells/well with different concentrations of sulconazole
in DMEM/10% FBS. The cancer cells were incubated, and colonies were counted. The cancer cells
were incubated in a 6-well plate, and a scratch was made using a microtip. After washing with
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DMEM, the breast cancer cells were cultured with sulconazole. We followed a previously described
method [20].

2.5. Flow Cytometry Analysis of the Expression of CD24 and CD44 and an ALDEFLUOR Assay

We used a previously described method [20]. In total, 1 × 106 cells were incubated with
FITC-conjugated anti-CD44 and PE-conjugated anti-CD24 antibodies (BD, San Jose, CA, USA) and
incubated on ice for 20 min. The breast cancer cells were washed two times with 1X PBS and assayed
by using a flow cytometer (BD curi C6, San Jose, CA, USA). An ALDH1 assay was performed using
an ALDEFUOR kit (STEMCELL Technologies, Vancouver, BC, Canada). We followed a previously
described method [20]. Breast cancer cells were incubated in ALDH assay buffer at 37 ◦C for 20 min.
ALDH-positive cells were determined by using a personal flow cytometer (BD Accuri C6).

2.6. RNA Isolation and Real-Time RT-qPCR

Total RNA was purified, and RT-qPCR was performed using a one-step RT-qPCR kit (Takara,
Tokyo, Japan). We followed a previously described method [19]. The specific primers used can be
found in Supplementary Table S1. The β-actin gene was used as an internal control for RT-qPCR.

2.7. Immunoblot Analysis

Proteins isolated from breast cancer cells and mammospheres were separated by 10% SDS-PAGE
and transferred to a polyvinylidene fluoride (PVDF) membrane (EMD Millipore, Burlington, MA,
USA). The blots were blocked in 5% skim milk in 1X PBS-Tween 20 at room temperature for 60
min and then incubated overnight at 4 ◦C with primary antibodies. The antibodies were anti-JAK2,
anti-Stat3, anti-p65, anti-pp65, anti-lamin B, anti-phospho-Stat3 (Cell Signaling, Danvers, MA, USA),
and anti-β-actin (Santa Cruz Biotechnology, Dallas, TA, USA) antibodies. After washing, the blots
were detected with IRDye 680 RD and 800 CW secondary antibodies, and images were detected by
using ODYSSEY CLx (LI-COR, Lincoln, NE, USA).

2.8. Electrophoretic Mobility Shift Assays (EMSAs)

Nuclear extracts were prepared as described previously [21]. An EMSA for NF-κB binding was
performed using an IRDye 800-labeled NF-κB consequence oligonucleotide (LI-COR) for 30 min at
room temperature. Samples were run on a nondenaturing 6% PAGE gel, and EMSA data were captured
by ODYSSEY CLx (LI-COR). Supershifts were analyzed by incubating nuclear extracts for 30 min
before the addition of the IRDye 800-labeled NF-κB consequence oligonucleotide.

2.9. In Vivo Mouse Experiments

Twelve female BALB/C nude mice were injected with MDA-MB-231 cells and treated with/without
sulconazole (10 mg/kg). Tumor volume was measured after 1.5 months using a formula (Figure 2).
Mouse experiments were performed as described previously [22]. Animal care and animal experiments
were conducted in accordance with protocols approved by the Jeju National University Animal Care
and Use Committee. Female BALB/C nude mice (5 weeks old) were obtained from OrientBio (Seoul,
Korea) and kept in mouse facilities for 7 days. Twelve female BALB/C nude mice injected with
MDA-MB-231 cells were monitored. Nude mice (n = 6) received sulconazole using mammary fat pad
injection with an optimized dosage of 10 mg/kg. The dose of drug used was 10 mg/kg (200 µg/100 µL)
once a week. The measurement was made every 3 to 4 days starting from day 10. The solvent used is
DMSO. Tumor volumes were measured using the formula: V = (width2

× length)/2.
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2.10. Statistical Analysis

All data from three independent experiments are shown as the mean ± standard deviation
(SD). Data were analyzed using one-way ANOVA. A p-value less than 0.05 was considered
statistically significant.

3. Results

3.1. Sulconazole Inhibits the Proliferation of Breast Cancer Cells

We examined the antiproliferative effect of sulconazole on human breast cancer cells. Sulconazole
inhibited proliferation (Figure 1A,B). Apoptosis in breast cancer cells was induced by sulconazole at
a concentration of 20 µM (Figure 1C). Sulconazole induced caspase3/7 activity in breast cancer cells
(Figure 1D). The breast cancer cells showed formation of apoptotic bodies in response to sulconazole
treatment (Figure 1E). Sulconazole inhibited the migration of cancer cells and reduced the number of
colonies (Figure 1F,G). Our data showed that sulconazole effectively inhibited proliferation, migration,
and colony formation.
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Figure 1. Sulconazole inhibits cell proliferation in breast cancer. (A) The molecular structure of
sulconazole is shown. (B) Breast cancer cells were incubated in a 96-well plate with the indicated
concentration of sulconazole. Cell proliferation was measured by an MTS assay. (C) Sulconazole
induced apoptosis in cancer cells at the indicated concentration. Apoptotic cells were determined using
Annexin V/PI staining. (D) The caspase3/7 activity of cancer cells was determined using a Caspase-Glo
3/7 assay kit (Promega). The data are presented as the mean ± SD; n = 3 independent experiments; * p <

0.05 vs. the control (0.3% DMSO). (E) Apoptotic cells were analyzed by fluorescence nuclear staining
using Hoechst 33,258 dye (magnification, 40×). (F) The effect of sulconazole on the migration of cancer
cells was evaluated using a scratch assay. The scratch assay was performed with cancer cells treated
with sulconazole. (G) The effect of sulconazole on colony formation is shown. 1000 cancer cells were
incubated in 6-well plates with sulconazole (0.1% DMSO) and 0.1% DMSO. Representative images
were recorded. The data are presented as the mean ± SD; n = 3 independent experiments; * p < 0.05 vs.
the control.
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3.2. Sulconazole Inhibits Tumor Growth

As sulconazole has cytotoxic activity in breast cancer, we tested whether sulconazole inhibits
tumor growth in an in vivo mouse model. The tumor volume in sulconazole-injected mice was smaller
than that in control mice (Figure 2A). The tumor weights in the sulconazole-injected mice were lower
than those in the control mice (Figure 2B). The sulconazole-treated mice showed body weights similar
to those of the control mice (data not shown). Our data showed that sulconazole effectively decreased
tumor growth in the xenograft mouse model.
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Figure 2. Effect of sulconazole on in vivo tumor growth. (A) NOD-SCID nude mice were inoculated
with MDA-MB-231 cells and treated with sulconazole or vehicle. The dose of drug used was 10 mg/kg
once a week. Tumor volume was measured at the indicated time points using a caliper and calculated
as (width2

× length)/2 and are reported (Mean ± SE). (B) The effect of sulconazole on tumor weights
was evaluated. Tumor weights were assayed after sacrifice. Photographs were taken of isolated tumors
from control or sulconazole-treated mice. * p < 0.05 and *** p < 0.05 vs. the control.

3.3. Effect of Sulconazole on the Properties of BCSCs

To examine whether sulconazole inhibits mammosphere formation, we treated mammospheres
derived from breast cancer cells (MCF-7 and MDA-MB-231) with different concentrations of sulconazole.
Sulconazole inhibited mammosphere formation. The number of mammospheres declined by 90%,
and mammosphere size also decreased (Figure 3A,B). CD44+/CD24- cancer cells were assessed under
sulconazole treatment. Sulconazole reduced the percentage of CD44+/CD24- cells from 14.23% to 3.53%
(Figure 4A). Additionally, we performed an ALDEFLUOR assay to examine the effect of sulconazole
on ALDH-positive cells. Sulconazole reduced the ALDH-positive cell percentage from 3.2% to 1.5%
(Figure 4B). Our data show that sulconazole inhibits BCSCs.
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Figure 3. Effect of sulconazole on the mammosphere-forming ability of breast cancer cells. (A, B) Effect
of sulconazole on the mammosphere formation of breast cancer cells. To establish mammospheres,
MCF-7 and MDA-MB-231 cells were seeded at a density of 4 × 104 and 1 × 104 cells/well, respectively,
in ultralow attachment 6-well plates containing 2 mL of complete MammoCultTM medium (StemCell
Technologies) which was supplemented with 4 µg/mL heparin, 0.48 µg/mL hydrocortisone, 100 U/mL
penicillin, and 100 µg/mL streptomycin. Mammospheres were cultured with sulconazole (10 or 20 µM)
solubilized in 0.05% DMSO or 0. 1% DMSO. The breast cancer cells were incubated with sulconazole in
CSC culture medium for 7 days. A mammosphere formation assay evaluated mammosphere formation
efficiency (MFE, % of control), which corresponds to the number of mammospheres per well/the
number of total cells plated per well ×100 as previously described (scale bar = 100 µm) [22]. The data
are presented as the mean ± SD; n = 3 independent experiments;* p < 0.05 vs. the control (0. 1% DMSO).
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Figure 4. Effect of sulconazole on CD44+/CD24−-and ALDH-positive cell populations. (A) The
CD44+/CD24− cell population treated with sulconazole (20 µM) was assayed by flow cytometry.
For FACS analysis, 10,000 cells were assayed. Gating was based on binding of the control antibody (Red
cross). (B) ALDH-positive cells were detected by using an ALDEFLUOR kit. A representative flow
cytometry dot plot is shown. The right panel indicates ALDH-positive cells treated with the ALDH
inhibitor DEAB (7.5 µM), and the left panel shows ALDH-positive cells without DEAB treatment.
The ALDH-positive population was gated in a box (red dot line box).



Cells 2019, 8, 1007 7 of 13

3.4. Sulconazole Inhibits Mammosphere Formation Through the Inhibition of p65 Nuclear Translocation

To understand the molecular mechanism of sulconazole in mammosphere formation, the nuclear
translocation of p65 was evaluated in mammospheres. Our data showed that nuclear phosphor-p65
and p65 levels were reduced significantly in a dose-dependent manner under sulconazole treatment
(Figure 5A). Because caffeic acid phenethyl ester (CAPE) inhibits the nuclear translocation of p65 and the
activation of the NF-κB signaling pathway [23], we evaluated mammosphere formation after treatment
with CAPE. CAPE inhibited mammosphere formation. As a result of the use of sulconazole and
CAPE, we showed that the inhibition of p65 nuclear translocation blocked mammosphere formation
(Figure 5C). To examine p65 function in BCSCs, we tested the effect of NF-kB using a p65-specific
siRNA. siRNA-p65 inhibited mammosphere formation in breast cancer (Figure 5B). In conclusion,
we show that NF-κB regulates CSC formation and a CSC survival factor (Figure 5).
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Figure 5. Sulconazole inhibits mammosphere formation through disruption of NF-κB activity. (A)
Cancer cells were treated with sulconazole for 24 h. Nuclear and cytosolic proteins were run on a 10%
SDS-PAGE gel, followed by immunoblotting with anti-p65 and anti-pp65 antibodies. (B) The effect
of knocking down p65 expression using a siRNA specific for p65 on mammosphere formation was
evaluated. The p65-knockdown effect was confirmed by immunoblotting using an anti-p65 antibody.
(C) The effect of caffeic acid phenethyl ester, an NF-κB-specific inhibitor, on mammosphere formation
was evaluated. A mammosphere formation assay evaluated mammosphere formation efficiency (MFE)
(scale bar = 100 µm). The data are presented as the mean ± SD; n = 3 independent experiments;* p <

0.05 vs. the control.

3.5. Sulconazole Inhibits the NF-κB Signaling Pathway and Production of Extracellular IL-8 in Mammospheres

To analyze the biological function of sulconazole, we examined NF-κB signaling and the
extracellular IL-8 level in mammospheres treated with sulconazole. Compared with a vehicle,
sulconazole reduced nuclear p65 protein levels (Figure 6A). We checked NF-κB binding with
sulconazole-treated nuclear proteins using an IRDye 800-NF-κB probe that binds an NF-κB
oligonucleotide with high affinity. Sulconazole reduced the ability of p65 to bind to the IRDye 800-NF-κB
probe (Figure 6B, lane 3). NF-κB/IRDye 800-NF-κB probe specificity was confirmed using a 10-fold
increased concentration of self-competitor oligonucleotides (Figure 6B, lane 4). Sulconazole decreased
the DNA-binding capacities of NF-κB. Extracellular IL-6 and IL-8 have essential functions in CSC
formation [13]. NF-κB regulated the transcription of the IL-6 and IL-8 genes, binding to the promoter
regions of the IL-6 and IL-8 genes. To assess the transcriptional levels of IL-6 and IL-8 under sulconazole
treatment, we performed real-time RT-qPCR analysis of mammospheres using IL-6- and IL-8-specific
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primers. The transcript data showed that sulconazole reduced the transcript level of IL-8 but not that of
IL-6 (Figure 6C). After using a siRNA targeting p65, the transcript data showed that sulconazole reduced
the transcript level of IL-8 (Figure 6D). To test the level of extracellular IL-8, we performed cytokine
profiling of the culture medium from mammospheres. After sulconazole treatment, the cytokine
profiling data showed that sulconazole reduced the level of extracellular IL-8 but not that of IL-6
(Figure 6E).
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Figure 6. Effect of sulconazole on the NF-κB and IL-8 signaling pathways. (A) Cancer cells were treated
with sulconazole for 24 h. Nuclear proteins were resolved on a 10% SDS-PAGE gel, followed by western
blotting with anti-pStat3, anti-Stat3, anti-p65, and anti-Lamin B antibodies. (B) An electrophoretic
mobility shift assay (EMSA) was used to assess nuclear lysates from mammospheres treated with
sulconazole. The nuclear proteins were incubated with an IRDye 800-NF-κB probe and separated by
6% PAGE. Lane 1: probe only; lane 2: nuclear proteins with probe; lane 3: sulconazole-treated nuclear
proteins with probe; lane 4: 10× self-competition. The arrow indicates the DNA/NF-κB interaction
in the nuclear lysates. (C,D) Transcriptional levels of the IL-6 and IL-8 genes were determined in
sulconazole-treated mammospheres and p65-knockout samples treated with a siRNA specific for p65.
IL-6- and IL-8-specific primers were used for real-time RT-PCR. β-actin acted as an internal control.
The data are presented as the mean ± SD; n = 3 independent experiments; * p < 0.05 vs. the control.
(E) The cytokine profiles of conditioned media from mammosphere cultures were determined with
cytokine-specific antibodies and cytokine beads. Sulconazole reduced extracellular IL-8 levels in the
mammosphere cultures.

3.6. Sulconazole Inhibits Stem Cell Marker Gene Expression and Mammosphere Growth

To determine whether sulconazole regulates stem cell marker genes, we tested the transcription
of stem cell marker genes. Sulconazole inhibited the expression of genes such as Nanog, c-Myc,
and CD44 in BCSCs (Figure 7A). To verify that sulconazole reduces mammosphere growth, we added
sulconazole to a mammosphere culture and counted the mammosphere cells. Sulconazole induced
cell death in the mammospheres. These data showed that sulconazole led to a dramatic reduction
in mammosphere growth (Figure 7B). These data showed that NF-κB signaling was essential for
regulating mammosphere growth and that sulconazole inhibited mammosphere formation through
deregulation of the NF-κB/IL-8 signaling pathway.
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Figure 7. Effects of CSC loads on breast cancer. (A) The transcriptional levels of Nanog, C-myc,
and CD44 were assayed in sulconazole- and 0.1% DMSO-treated mammospheres using specific
primers. β-actin acted as an internal control. The data are presented as the mean ± SD; n = 3
independent experiments;* p < 0.05 vs. the control. (B) Sulconazole prevented mammosphere growth.
Sulconazole-treated mammospheres were dissociated into single cells and plated in 6-well plates with
equal numbers of cells. The cells were counted in triplicate 1, 2, and 3 days after plating and the mean
value was plotted. The data shown represent the mean ± SD of three independent experiments. (C) The
proposed model for CSC death induced by sulconazole is shown.



Cells 2019, 8, 1007 10 of 13

4. Discussion

Breast cancer is a female cancer that develops in the breast tissue. Breast cancer treatment using
chemotherapy and radiotherapy eradicates the primary tumor, resulting in an increased survival rate
in breast cancer patients [24]. Cancer metastasis and relapse have been attributed to CSC existence
after chemotherapy [25]. BCSCs remain incompletely understood and are potential targets for breast
cancer therapies [26]. The minimum biomarkers for BCSCs are the cell-surface markers CD44+/CD24-
and CD44 upregulation is linked to tumor formation [27].

Our data show that sulconazole has potential as an antitumor and anti-CSC agent for breast cancer
therapy. Sulconazole inhibits breast cancer hallmarks (Figure 1) and BCSC hallmarks (Figures 3 and 4).
It is well known that the maintenance of BCSC properties is regulated by Stat3 [19,28,29]. We checked
the Stat3 signaling pathway in the context of sulconazole treatment, but sulconazole did not regulate
the Stat3 signaling pathway (Figure 6). The involvement of the NF-κB signaling pathway has been
observed in primary AML samples, and elevated or constitutive NF-κB signaling activation is known
to be present in many solid tumor types [30]. A high level of nuclear p65 is an essential feature of CSC
formation [31]. As the NF-κB signaling pathway is important for BCSC survival, we examined the
localization of the p65 subunit. Our results showed that sulconazole inhibited the translocation of p65.
The inhibition of p65 translocation induced the inhibition of BCSC formation. CAPE is a strong specific
inhibitor of NF-κB and prevents the nuclear translocation of p65 [32]. CAPE inhibited the translocation
of p65 and pp65 and induced the inhibition of mammosphere formation. A siRNA specific for p65
inhibited mammosphere formation. Pyrrolidinedithiocarbamate (PDTC), another NF-κB pathway
inhibitor, is known to inhibits CSC formation [33]. The imidazole-class drug BMS-345541 IKK inhibitor
as an NF-kB inhibitor reduced their stem cell concentrations and self-renewal capacity in lung cancer
cells. The nuclear levels of p65 and NF-κB signaling are important for BCSC survival.

Tumor progression and CSC survival can be regulated by the cytokines IL-6 and IL-8 in an
autocrine or paracrine manner [10,34,35]. The JAK2/STAT3/IL-6 pathway is hyperactivated in several
types of cancer and important to the growth of BCSCs [28]. This hyperactivation is related to a
poor prognosis [36]. Extracellular IL-8 is overexpressed in triple-negative breast cancer (TNBC) and
is an important therapeutic target in TNBC [37]. IL-8 signaling is an important key for targeting
BCSCs [14]. We know that NF-κB can regulate the transcriptional regulation of the IL-6 and IL-8
genes in BCSCs. We assessed IL-6 and IL-8 gene transcripts in BCSCs treated with a p65 translocation
inhibitor, sulconazole, and a siRNA specific for p65 that induced p65 downregulation. Both conditions
showed that the RNA level of IL-8 was lower in treated samples than in control samples, but the
RNA level of IL-6 was not changed between the treated samples and the control samples (Figure 6).
Sulconazole reduced CSC formation through downregulation of NF-κB/IL-8 in breast cancer.

Sulconazole is an antifungal and antibacterial medicine in the imidazole class and is available as a
cream to treat skin infection. Sulconazole inhibits the growth of common pathogenic dermatophytes
by blocking sterol 14α-demethylase (CYP51) [38]. In this study, we first showed that sulconazole
has cytotoxicity against breast cancer cells and reduces BCSC characteristics. These results support
sulconazole as an important therapeutic agent to inhibit breast cancer and BCSCs.

5. Conclusions

In this study, we found that sulconazole—an antifungal medicine in the imidazole class—inhibited
cell proliferation, tumor growth, and CSC formation. This compound also reduced the frequency
of cells with the CSC marker phenotype of CD44+/CD24− as well as the expression of ALDH and
self-renewal-related genes. Sulconazole inhibited mammosphere formation and reduced the protein
level of nuclear NF-κB. NF-κB knockdown using a p65-specific siRNA reduced CSC formation
and secreted IL-8 levels in mammospheres. Sulconazole reduced nuclear NF-κB protein levels and
extracellular IL-8 levels. These new findings showed that sulconazole blocked the NF-κB/IL-8 signaling
pathway and CSC formation. NF-κB/IL-8 signaling is important for CSC formation and may be an
important therapeutic target for BCSC treatment.
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