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A B S T R A C T   

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 and 
caused the coronavirus disease 2019 (COVID-19) pandemic, took the world by surprise with an unprecedented 
public health emergency. Since this pandemic began, extraordinary efforts have been made by scientists to 
understand the pathogenesis of COVID-19, and to fight the infection by providing various preventive, diagnostic 
and treatment opportunities based on either novel hypotheses or past experiences. Despite all the achievements, 
COVID-19 continues to be an accelerating health threat with no specifically approved vaccine or therapy. This 
review highlights the recent advances in COVID-19 infection, with a particular emphasis on nanomedicine ap-
plications that can help in the development of effective vaccines or therapeutics against COVID-19. A novel 
future perspective has been proposed in this review based on utilizing polymersome nano-objects for effectively 
suppressing the cytokine storm, which may reduce the severity of COVID-19 infection.   

1. Introduction 

In December 2019, an outbreak of severe pneumonia resulting from 
an unknown cause occurred in Wuhan, Hubei province, China (He et al., 
2020). A few days later, the causative agent of this mysterious pneu-
monia was identified as severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2). The corresponding infectious disease was 
named coronavirus disease 2019 (COVID-19) by the World Health Or-
ganization (WHO) (He et al., 2020). SARS-CoV-2 rapidly spread 

worldwide to become a serious health threat, and on March 11, 2020, 
WHO declared a global SARS-CoV-2 pandemic (WHO, 2020b). Since 
January 21, 2020, when the virus began to spread outside China, 
including countries such as South Korea, Japan, and Thailand, the WHO 
started releasing daily situation reports. So far, there are more than 62 
million confirmed COVID-19 cases worldwide, with more than 1.45 
million deaths (WHO, 2020b). 

A wide range of clinical manifestations is seen in patients with SARS- 
CoV-2, ranging from mild to moderate to severe and rapidly progressive 
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and fulminant disease (Wu et al., 2020b). As most of the patients 
infected with SARS-CoV-2 display mild or moderate symptoms, this 
makes it difficult to detect them, as they may present either no symp-
toms at all or symptoms highly similar to conventional flu (Wu et al., 
2020b). The common clinical features of COVID-19 include fever, 
cough, sore throat, headache, fatigue, myalgia and breathlessness, as 
well as conjunctivitis (Singhal, 2020) (Fig. 1). 

The current healthcare strategies for COVID-19 patients are limited 
to bed rest and supportive treatments including immunomodulating 
therapy, organ function support, respiratory support, bronchoalveolar 
lavage (BAL), blood purification, and extracorporeal membrane 
oxygenation (ECMO) (Wu et al., 2020b). In addition, some protocols use 
antiviral therapeutics and antibiotics as auxiliary approaches, but 
without clear mechanisms of action against SARS-CoV-2 (Wu et al., 
2020b). According to the ‘COVID-19 treatment and vaccine tracker’ 
report provided by the Milken Institute, as of September 3, 2020, there 
were 237 vaccine candidates and 319 therapeutic substances being 
studied against COVID-19 over the world (COVID-19 treatment and 
vaccine tracker, 2020). So far, however, there have been no approved 
vaccines or antiviral drugs against SARS-CoV-2. This implies that iden-
tifying the drug treatment options as soon as possible is critical for an 
appropriate response to the COVID-19 outbreak (Lu, 2020). Therefore, 
there is a serious need for a vaccine or an effective antiviral drug to cope 
with this pandemic outbreak. 

Although many reports have discussed a variety of nanomedicine 
applications that may help in the fight against COVID-19, the majority of 
them have emphasized the diagnostic rather than the therapeutic or 
vaccination approaches. This review represents the recent advances in 
the use of nanomaterials in development of vaccines and therapeutics 

against COVID-19. A novel approach for using polymersomes to sup-
press the cytokine storm, which may reduce the severity of COVID-19 
infection, has been proposed as a future perspective. 

2. SARS-CoV-2 structure and mode of infection 

SARS-CoV-2 is a single-strand positive-sense RNA virus that origi-
nated in bats, albeit with the intermediate host remaining unknown. 
During coughing or sneezing, SARS-CoV-2 is transmitted by the aerosol 
droplets produced and disseminated in the air by infected patients 
(Rothe et al., 2020). These aerosol droplets can spread up to 2 m in 
distance, and the virus can retain infectivity on surfaces for a few days in 
the absence of mechanical attrition or chemical attack. Via direct 
inhalation or by touching the nose, mouth or eyes after touching the 
surfaces contaminated with the infected droplets, the virus enters the 
host body and targets the type I and II alveolar epithelial cells expressing 
the angiotensin-converting enzyme 2 (ACE2) (Singhal, 2020), which has 
been reported as the receptor for SARS-CoV-2 (Sun et al., 2020). During 
COVID-19 infection, the trimeric spike (S) glycoprotein on the virion 
surface mediates receptor recognition and membrane fusion (Yan et al., 
2020). 

2.1. Virus structure and cell fusion 

Both SARS-CoV-2 and SARS-CoV are human Betacoronavirus strains 
that use transmembrane serine protease 2 (TMPRSS2) to prime the S 
protein prior to ACE2 cellular ligand (Hoffmann et al., 2020a; Mousa-
vizadeh and Ghasemi, 2020). Among RNA viruses, coronaviruses have 
the largest genome ranging from 26 to 32 kilobases (kb) (Perrotta et al., 

Fig. 1. COVID-19 symptoms according to WHO classification (WHO, 2020a).  
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2020) and consisting of structural and non-structural proteins. Many 
non-structural proteins, including RdRP, are involved in RNA replica-
tion and transcription processes (Ashour et al., 2020; Narayanan et al., 
2015). Meanwhile, structural proteins consist of four major proteins, 
including S, envelope (E), membrane (M), and nucleocapsid (N) proteins 
(Chen et al., 2020b; Malik, 2020). Apart from constructing a complete 
viral particle, these four major proteins (S, E, M and N) have their 
respective functions in mediating the viral pathogenesis and the repli-
cation cycle. The conserved order of their genome is replicase S, E, M 
and N genes (Graham and Baric, 2010) with numerous open reading 
frames (ORFs) in-between the 5′ cap and the 3′ poly (A) tail structure 
(Fehr and Perlman, 2015). While 5′ cap encodes for structural proteins, 
3′ tail encodes for accessory proteins including polyproteins pp1a and 
pp1b that further divided for non-structural proteins (Anastasopoulou 
and Mouzaki). Some coronaviruses also contain the hemagglutinin 
esterase (HE) protein (Belouzard et al., 2012; Wang et al., 2020b). 

The M protein is the most abundant structural protein and it acts as a 
central organizer that forms budding with other structural proteins to 
allow for virus assembly (Neuman et al., 2011; Schoeman and Fielding, 
2019). The E protein is a small integral membrane protein involved in 
morphogenesis and pathogenesis. Without E gene, recombinant coro-
naviruses exhibit defective virions (Schoeman and Fielding, 2019). 
Meanwhile, N protein protects the viral genome by packaging it into 
helical ribonucleoprotein complexes. It also interacts with RNA and 
mediates transcription and translation (McBride et al., 2014). 

In coronaviruses, S protein serves as the most prominent feature for 
the virion structure by giving a crown-like appearance on the surface; 
hence the name, coronavirus (Fehr and Perlman, 2015). The extended 
structure of S protein on the virus surface is leading the viral entry into 
host cells. Currently, S protein is targeted for COVID-19 vaccine research 
as well as drug treatment due to its role in virus entry, which leads to 
subsequent pathogenesis effects. The S protein comprises two subunits: 
S1 and S2 (Astuti and Ysrafil, 2020; Walls et al., 2020) with a combined 
length of 1273 amino acids (Wu et al., 2020a). The S1 contains the 
receptor-binding domain (RBD), which directly binds to the peptidase 

domain (PD) of ACE2, while S2 mediates membrane fusion (Li et al., 
2005). When S1 binds to the host receptor ACE2, another cleavage site 
on S2 is exposed and is cleaved by host proteases, a process that is 
critical for viral infection (Belouzard et al., 2009). 

It is interesting to note that the S2 subunit of SARS-CoV-2 consists of 
furin-like cleavage site, which is lacking in SARS-CoV (Coutard et al., 
2020). Thus, the high expression of furin in the lungs is being exploited 
by SARS-CoV-2 to activate the S protein and hence enter the host cells 
via ACE2 receptor, causing respiratory failure. 

2.2. Replication of SARS-CoV-2 in host cell 

After successful internalization, SARS-CoV-2 begins its life cycle in 
the host cells (Fig. 2). Conformational changes after the binding of S 
protein to ACE2 receptor facilitate the virus-cell fusion. Once the viral 
envelope fuses with the cellular membrane, the viral RNA is released 
inside the host cell cytoplasm. The virion genomic RNA is then trans-
lated to generate replicase polyproteins pp1a and pp1b, which get 
further cleaved into smaller proteins by viral proteinases (Kumar et al., 
2020; Shereen et al., 2020). Viral RNA replication produces both 
genomic and many smaller sub-genomic RNAs through negative-strand 
intermediates by discontinuous transcription for relevant viral proteins 
translation (Kumar et al., 2020; Malik, 2020). The latter serve as a 
template for structural proteins (S, E, N and M) and several accessory 
proteins which are known to be at least six, including 3a, 6, 7a, 7b, 8, 
and 10 (Kim et al., 2020). However, there is some discrepancy between 
recent studies regarding the accessory proteins of the SARS-CoV-2 
genome. For instance, Gordon et al. have reported that only 5 canoni-
cal accessory proteins are involved (3a, 6, 7a, 7b and 8) (Gordon et al., 
2020). 

Subsequently, the translated viral RNA and proteins assemble in the 
endoplasmic reticulum (ER) and the ER-Golgi intermediate compart-
ment (ERGIC) into new particles. Virions are then transported via ves-
icles prior to their being released out of the host cells via exocytosis by 
the plasma membrane fusion (Kumar et al., 2020; Shereen et al., 2020). 

Fig. 2. Schematic mechanism of repli-
cation of SARS-CoV-2 in a host cell. S 
protein on the surface of SARS-CoV-2 
recognizes the ACE2 receptor on the 
cellular membrane of the host cell. The 
conformational changes at the S1 and 
S2 subunits facilitate the virus-cell 
fusion via endosomal pathway. The 
viral genome is released into the cyto-
plasm and translated through ribosomal 
frame shifting to generate replicas of 
polyproteins pp1a and pp1b. Following 
the genomic and sub-genomic synthesis, 
the viral proteins and the genomic RNA 
are inserted into virions and assembled 
in the ER-Golgi intermediate compart-
ment (ERGIC) and then transported in 
the vesicles to the plasma membrane 
before being released out via exocytosis 
(Al-Hatamleh et al., 2020).   

M.A.I. Al-Hatamleh et al.                                                                                                                                                                                                                     



European Journal of Pharmacology 896 (2021) 173930

4

Despite previous replication and transcription studies that have been 
done on other coronaviruses, studies have been conducted to determine 
the new SARS-CoV-2 transcriptome and identify possibly other un-
known components in this specific organization of the genome. Identi-
fying these elements could help in the design of therapies specific to this 
novel coronavirus. 

3. The immune response against SARS-CoV-2 

Studies have indicated a defensive function of both cell-mediated 
and humoral immune responses in patients diagnosed with COVID-19 
(Baruah and Bose, 2020; Li et al., 2020). Accumulated evidence sug-
gests that a subgroup of patients with severe COVID-19 could deregulate 
the immune response that allows the development of viral hyper-
inflammation (Lagunas-Rangel, 2020). In terms of laboratory analyses, 
it has been noted that most of the COVID-19 patients have lymphopenia 
with increased levels of infection-related biomarkers (Qin et al., 2020). 
A report of 99 cases showed increased total neutrophils (38%) along 
with decreased total lymphocytes (35%) (Zhou et al., 2020). This status 
was also reported in another study and correlated with disease severity 
and death (Wu et al., 2020c). In addition, a decrease in CD4+ T cells, 
CD8+ T cells, B cells, and natural killer (NK) cells are common among 
patients with COVID-19 (Qin et al., 2020; Wang et al., 2020a). At the 
same time, the pro-inflammatory cytokines including interleukin-6 
(IL-6), tumor necrosis factor (TNF) and IL-1, and chemokines (IL-8) 
are elevated, especially in severe cases (Qin et al., 2020). It is also re-
ported that patients infected with SARS-CoVs have high secretion of 
TNF, IL-10, IL-2, IL-7, interferon gamma-induced protein-10 (IP-10), 
granulocyte colony-stimulating factor (G-CSF), monocyte chemo-
attractant protein-1 (MCP-1), and macrophage inflammatory protein-1 
alpha (MIP-1α). The abruptly acute increase in the levels of 
pro-inflammatory cytokines causes a severe infection state known as the 
cytokine storm syndrome, which is suggested to be related to the 
severity of COVID-19 infection (Conti et al., 2020; Wong et al., 2004). 
However, the current data on the status of innate immunity of COVID-19 
patients are still limited. 

Although the ACE2 receptor is expressed in a limited amount by 
macrophages/monocytes in the lungs, the virus can probably enter the 
host cells through other, not yet discovered mechanisms (Rokni et al., 
2020). Wang et al. proved that SARS-CoV-2 could infect T lymphocytes 
through the S protein-mediated membrane fusion (Wang et al., 2020c). 
As a result, the lymphocytopenia with abnormally low lymphocyte 
levels was reported and associated with the severity and mortality rate 
of COVID-19 (Zeng et al., 2020; Zheng et al., 2020). However, it is still 
unclear whether SARS-CoV-2 can replicate in the infected T lympho-
cytes. It is known, for example, that neither SARS-CoV nor MERS-CoV 
are able to replicate in T lymphocytes (Chu et al., 2016). 

It is essential to clarify the characteristics of lymphocyte subsets in 
COVID-19. This could provide novel insights regarding the immune 
mechanisms and be an independent predictor for disease severity and 
treatment efficacy. Also, since the infected cells induce innate inflam-
mation in the lungs, which is mediated mainly by pro-inflammatory 
secretions, good general health may not be advantageous for patients 
who have advanced to the severe stage. Therefore, efforts should be 
made to suppress inflammation and to manage the symptoms. As an 
essential step towards this aim, it is required to understand the innate 
immunity in patients infected with COVID-19 fully. 

4. Why SARS-CoV-2 dangerous? 

In the early 1960s, during a diagnosis of an adult with a common 
cold, Tyrrell and Bynoe reported the first coronavirus (B814) infected 
human respiratory system (Tyrrell and Bynoe, 1966). During these 60 
years, several strains of coronaviruses have been discovered and sub-
sequently recognized as causative agents of various respiratory and 
enteric diseases in humans and animals. Among the most important 

coronaviruses, SARS-CoV and Middle East respiratory syndrome coro-
navirus (MERS-CoV) were discovered in 2003 and 2009, respectively 
(Ramadan and Shaib, 2019). The first case of infection with SARS-CoV 
was reported in Guangdong, China and it is believed that the virus 
was transmitted to the human from a bat. The number of confirmed 
cases of SARS-CoV infection is 8,096, with 10% mortality rate. In 
contrast, MERS-CoV emerged in Saudi Arabia and the spread is thought 
to have occurred from infected camels. With 2519 confirmed cases, the 
infection rate of MERS-CoV was lower than that of SARS-CoV, but, in 
turn, its mortality rate was higher at whole 34.4% (Rabaan et al., 2020). 
SARS-CoV-2 is genetically more similar to SARS-CoV (79%) than to 
MERS-CoV (50%), with the major structural difference being that the 
spike protein of SARS-CoV-2 is longer than that in SARS-CoV (Lu et al., 
2020). 

Although the mortality rate for SARS-CoV-2 is still lower than those 
for SARS-CoV and MERS-CoV (Wu et al., 2020b), SARS-CoV-2 is 
considered more critical because of its rapid spread across the world. It 
was reported that the binding affinity of SARS-CoV-2 to ACE2 receptor is 
10–20 times higher compared to that of SARS-CoV (Wrapp et al., 2020), 
with a more compact and stable conformation at the RBD-ACE2 inter-
face (Shang et al., 2020). Furthermore, studies have shown that 
SARS-CoV-2 is implicated in the upregulation of autophagy, apoptosis, 
and p53 pathways in human peripheral blood mononuclear cells (Xiong 
et al., 2020). 

Generally, during the reproduction of living or non-living organisms, 
such as viruses, slight errors, called mutations, can occur in the genetic 
code. Viruses comprising RNA genome instead of a DNA one are less 
genetically stable because they do not have a self-correcting mechanism 
for those errors (Bolis et al., 2016). A prior analysis of the mutation rates 
in 23 different viruses showed that it ranged from 10− 6 to 10− 4 nucle-
otide substitutions per site per year (ns/s/y) for RNA viruses, while for 
DNA viruses it was 10− 8 to 10− 6 ns/s/y (Sanjuan et al., 2010). Coro-
naviruses are a large family of positive-strand RNA viruses encoding a 
complex dependent RNA polymerase involving a 3′ exonuclease domain 
(Smith et al., 2014). Compared to their host cells, the mutation rate of 
RNA viruses is usually a million times higher, enhancing their evolv-
ability and virulence (Duffy, 2018). 

So far, the estimated mutation rate in the SARS-CoV-2 genome is 
about 1.05 × 10− 3 to 1.26 × 10− 3 ns/s/y (Pawelczyk and Zaprutko, 
2020). This is in the similar range to the mutation rates estimated for 
SARS-CoV and MERS-CoV, namely 0.80 × 10− 3 - 2.38 × 10− 3 ns/s/y and 
1.12 × 10− 3 ns/s/y, respectively (Cotten et al., 2014; Zhao et al., 2004). 
These rates are considered similar to some extent and consistent with 
other RNA viruses. Towards a better understanding of the viral evolu-
tion, researchers focus on the rate of mutation and production of new 
strains as a critical parameter with important practical implications 
(Sanjuan et al., 2010). However, the mutation rate in the SARS-CoV-2 
genome is changeable for as long as the virus is mutating, whereas 
one favorable effect is its comparatively slow mutation due to a rela-
tively large RNA genome, given the earlier established negative corre-
lation of the mutation rate with the genome size (Sanjuan et al., 2010). 
For example, although influenza viruses as the most common causes of 
respiratory infections are also RNA viruses, they have smaller 
negative-strand RNA genomes. Thus, their mutation rates are relatively 
higher (Bouvier and Palese, 2008). 

Overall, researchers argue that the high level of similarity between 
SARS-CoV-2 and SARS-CoV suggests the convergent evolution of the 
RBD structures in both of these viruses to improve the binding affinity to 
the same ACE2 receptor, even though SARS-CoV-2 does not cluster 
within SARS-CoV in the Betacoronavirus genus (Lan et al., 2020; Tai 
et al., 2020). Data show a higher affinity of the SARS-CoV-2 RBD (four 
folds) for receptor binding than that demonstrated by the SARS-CoV 
RBD (Hatmal et al., 2020). The SARS-CoV-2 RBD binds to ACE2 with 
an affinity in the low nanomolar (nM) range, with the dissociation 
constant (KD) for ACE2 and the SARS-CoV-2 RBD being 4.7 nM, 
compared to 31 nM for that between ACE2 and the SARS-CoV RBD, 
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indicating that the RBD is the key functional component within the S1 
subunit responsible for the binding of SARS-CoV-2 to ACE2 (Hoffmann 
et al., 2020b; Lan et al., 2020; Rowland and Yoo, 2003; Wrapp et al., 
2020). The S1/S2 processing sites (needed for priming) exhibit different 
motifs among coronaviruses; many of them display cleavage sites after a 
basic residue. It is, thus, likely that the priming process is ensured by 
different host-cell proteases, the choice of which depends on the 
sequence of the S1/S2 cleavage site. Accordingly, the MERS-CoV S 
protein that contains the RSVRSV motif can be cleaved by furin during 
viral egress (Millet and Whittaker, 2014; Zhang et al., 2020c). The 
SARS-CoV-2 S protein contains a putative furin recognition motif 
(PRRARSV) similar to that of MERS-CoV. The higher affinity of S protein 
for ACE2 and the presence of additional potent furine-like cleavage sites 
might be the key reasons why SARS-COV-2 is more contagious. 

5. Nanomedicine amid COVID-19 pandemic 

In the recent two decades, nanomedicine provided a variety of ap-
plications and approaches that utilize nanomaterials in the development 
of vaccine candidates and antiviral drugs (Demento et al., 2012; Pati 
et al., 2018). In addition to this role as a vehicle for encapsulated or 
conjugated vaccine components (i.e., antigens, RNAi or mRNA- and 
DNA -coding antigens, fragments of proteins and peptides, or proteins) 
or antiviral drugs, nanomaterials can promote the sustained release of 
these components, protect them from degradation and prolong their 
bioavailability, while also occasionally boosting the immunity towards 
better immune homeostasis (Demento et al., 2012; Pati et al., 2018). 

By either suppressing or stimulating the immune system response, 
various nanomaterials have shown immunomodulatory effects (Al-Ha-
tamleh et al., 2019a; Mohamud et al., 2017). From this point, the 
concept of ‘nanoimmunity-by-design’ has recently been proposed by 
Gazzi et al., which aims to provide the next generation of nano-based 
immunotherapeutics via the rational design and characterization of 
different physicochemical properties of nanomaterials, followed by 
functionalization to achieve precise targeting of different components of 
the immune system (Gazzi et al., 2020). One of the important ap-
proaches in protection against viral infections is that of targeting the T 
cell-mediated immune response. Studies have shown that nanovaccines 
have the potential for cross-presentation of antigens to cytotoxic T cells 
(Kim et al., 2019). Therefore, nanomaterials such as self-assembled 
nanostructures, liposomes, nanocrystals, dendrimers, nanosuspensions, 
nanoemulsions, polymeric nanostructures, micelles and nanoparticles 
comprising lipids, carbohydrates or other organic molecules may 
emerge as promising tools in fighting COVID-19 (Lembo et al., 2018; Six 
and Ferji, 2019), especially in terms of enhancing vaccine development 
and therapeutic efficiency of the repurposed or novel antiviral drugs. A 
variety of nanomedicine-based strategies for development of therapeu-
tics and vaccines are being actively tested, developed or simply being 
proposed as of use in the combat against the COVID-19 infection (Fig. 3). 

5.1. Nanomedicine in vaccine formulations 

Florindo et al. [84] have discussed the possibility of encapsulation or 
conjugation of potential vaccine components against SARS-CoV-2 in 

Fig. 3. Potential nanomedicine-based approaches for therapeutic and vaccine formulation against COVID-19.  
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lipid and polymeric nanoparticles as delivery systems. Among nine 
promising vaccine candidates were entered Phase III of clinical trials, 
there are two lipid nanoparticle-formulated mRNA vaccine candidates 
(i.e., mRNA-1273 and BNT162). The search for a promising COVID-19 
vaccine candidate reached a milestone for the first time when the 
mRNA-1273 vaccine candidate from Moderna Inc. started Phase III trial 
(ModernaTX, 2020). The move indicates that the pharmaceutical com-
pany and the National Institutes of Health, which are partners in the 
study, maybe a step away from getting the vaccine to the public and 
commercial markets. This vaccine candidate is a novel lipid 
nanoparticle-encapsulated mRNA-based vaccine, which encodes for a 
full-length, prefusion stabilized S protein of SARS-CoV-2 (National 
Institute of Allergy and Infectious Diseases, 2020). Since the S protein 
complex is crucial for membrane fusion and host cell infection, it has 
been the vaccine target against coronaviruses, including SARS-CoV and 
MERS-CoV. The mRNA-1273 drug substance is loaded into lipid nano-
particles comprising the patented ionizable lipid (SM-102) and three 
other commercially available lipids (cholesterol, DSPC and 
PEG2000DMG) (National Institute of Allergy and Infectious Diseases, 
2020) (Fig. 4). 

Similar to Moderna’s vaccine candidate, BNT162 vaccine candidate 
from Pfizer Inc. and BioNTech SE also emerged as lipid nanoparticle- 
encapsulated nucleoside modified mRNA-based vaccine that encodes 
for S protein of SARS-CoV-2 (Mulligan et al., 2020). Another interesting 
mRNA vaccine candidate utilizing a nanomaterial, specifically a 
lipid-enabled and unlocked nucleic acid-modified RNA (LUNAR) 
nanoparticle-based delivery system, is ARCT-021, which is being 
developed using the STARR™ technology for self-replicating RNA, to 
prolong its otherwise short half-life, which boosts the expression of 
SRS-CoV-2 S protein (Arcturus Therapeutics, 2020a). LUNAR is 
considered a safe, effective and reproducible lipid nanoparticle for 
mRNA delivery and it includes four lipids: cholesterol, a PEGylated 
commercial lipid, and a phospholipid 1,2-distearoyl-sn-glycero-3-phos-
phocholine, in addition to a special ionizable lipid produced by 
Arcturus Therapeutics (ATX) (Ramaswamy et al., 2017). 

In 2014, promising findings emerged from a study aimed at syn-
thesizing SARS-CoV and MERS-CoV spikes-like nanoparticles. Combined 
with adjuvants, these nanoparticles were injected in mice, where they 
enhanced the immune response and the neutralizing antibodies count 
(Coleman et al., 2014). Based on these findings and the genetic simi-
larity between those viruses and SARS-CoV-2, Hashemzadeh et al. sug-
gested that this strategy could be effective against SARS-CoV-2 too 
(Hashemzadeh et al., 2020). Furthermore, two current vaccine candi-
dates are using coronavirus-like particles (CoVLPs). First, Medicago’s 
vaccine candidate has been proposed based on producing CoVLPs 

derived from Nicotiana benthamiana plant-based S protein, with the 
adjuvants being Dynavax’s CpG 1018™ and GlaxoSmithKline’s 
pandemic adjuvant technology, separately (Medicago Begins Phase I, 
2020). Second, AdaptVac/ExpreS2ion’s vaccine candidate composed of 
CoVLP-based S2 protein is derived from insect cell expression systems 
(ExpreS2ion’s joint venture AdaptVac, 2020). Recently, Nie et al. have 
shown that based on its ability to be inserted into the gaps of virion 
glycoproteins, the short spikes (5–10 nm size) are fixed on nano-
structures and can preferentially attach to influenza A virus (IAV) vi-
rions relative to smooth nanoparticles (Nie et al., 2020). They also 
demonstrated that using nanostructures coated with the erythrocyte 
membrane to target the IAV virion can inhibit the virus infection by 
blocking the binding of the virion to the host cell surface and thus 
reduced the virus replication rate by more than 99.9% (Nie et al., 2020). 
Therefore, such types of nanoinhibitors hold a great potential against 
SARS-CoV-2. 

Further, Raghuwanshi et al. loaded specific plasmid DNA onto bio-
tinylated chitosan nanoparticles, which were designed to target the 
nasal resident DCs as the nasal immunization route against the N protein 
of SARS-CoV in mice (Raghuwanshi et al., 2012). Also, Sekimuka et al. 
used gold nanoparticle (AuNPs) adjuvants in conjunction with the re-
combinant S protein, not only as an antigen carrier, but also as an 
effective adjuvant in the immunization of mice (Sekimukai et al., 2020). 
However, although this vaccine candidate (AuNP-adjuvanted S protein) 
induced antigen-specific IgG response against SARS-CoV, it was unable 
to enhance the effectiveness of the vaccine or to decrease eosinophilic 
infiltration due to the strong allergic inflammatory responses (Sekimu-
kai et al., 2020). Overall, by confirming the efficiency of nanomedicine 
in the development and delivery of low-dose DNA vaccines that enhance 
immunogenicity, these studies combined have presented baselines for 
the further understanding of noninvasive immunization strategies 
against SARS viruses. Such understanding of fundamental concepts 
governing the interaction between nanoparticles and SARS viruses is 
foreseen as the grounds from which new technologies for preventing the 
infection with SARS-CoV will be made possible (Uskoković, 2020). 

5.2. Nanomedicine in therapeutic formulations 

As far as the use of nanomaterials as facilitators of treatment mo-
dalities against COVID-19 are concerned, several studies have reported 
on a greater efficacy of antiviral medications when they were delivered 
by specific nano-carriers. For example, after the promising results of 
using dexamethasone in patients infected with COVID-19, Lammers 
et al. have proposed to improve the efficacy of this drug as a safe anti- 
inflammatory against COVID-19 complications by nano-formulating it 

Fig. 4. Commercial lipids used to encapsulate mRNA-1273 vaccine candidate from Moderna Inc.  
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(Lammers et al., 2020). Due to the severity of COVID-19 could be 
affected by the commensal microbiome and dietary patterns, researchers 
also highlighted the potential role of nanomedicine in designing intel-
ligent drugs and functional foods that could target problematic bacterial 
strains in the gut as a form of auxiliary therapy for COVID-19 (Kalan-
tar-Zadeh et al., 2020). Another one of the hypothesized approaches 
pertains to the use of nanostructured lipid carriers (NLCs) for the 
intra-pulmonary delivery of salinomycin (SAL) in patients infected with 
SARS-CoV-2 (Pindiprolu et al., 2020). SAL is a potential antiviral drug 
whose mechanism of action is based on a pH-dependent process that 
prevents the membrane fusion with SARS-CoV-2 and thus the virus entry 
into the host cells (Jang et al., 2018; Ko et al., 2020). Owing to its small 
size with good tolerability for drug delivery, along with the ability to be 
aerosolized into droplets that adhere to the mucosal surface of the lungs 
and get retained there for prolonged periods of time (Pindiprolu et al., 
2020), NLCs are considered prospective for improvement of the thera-
peutic potentials of SAL against SARS-CoV-2. 

Researchers have also proposed several nanomedicine-based ap-
proaches to deactivate SARS-CoV-2 or inhibit its binding with the ACE2 
receptor on the host cells (Nasrollahzadeh et al., 2020). A study by 
Zhang et al., for example, successfully utilized two types of cellular 
nanosponges synthesized from the plasma membrane of the human cells 
(macrophages and type II alveolar epithelial cells) as an antiviral ther-
apeutic agent that can neutralize SARS-CoV-2 in-vitro (Zhang et al., 
2020b). The main idea behind this study was that these nanosponges 
could display the same protein receptor (e.g., ACE2) as that expressed on 
the host cells and required by SARS-CoV-2 for binding and the cell entry 
(Zhang et al., 2020b). Therefore, these nanosponges were able to bind to 
SARS-CoV-2 and neutralize it, and thus block the virus entry into the 
host cells. 

In a study that used the porcine epidemic diarrhea virus (PEDV) as a 
SARS-CoV model in conjunction with cultured Vero cells, the antiviral 
properties of stable cationic carbon dots (CCM-CDs) as a nanomaterial 
for the delivery of curcumin was assessed (Ting et al., 2018). The results 
suggested that CCM-CDs suppressed the synthesis and budding of viral 
negative-strand RNA, changed the structure of viral surface proteins 
which leads to inhibition of the viral entry into the host cells, and sup-
pressed the accumulation of reactive oxygen species (ROS) by PEDV 
(Ting et al., 2018). High levels of ROS can be generated in the host cells 
due to viral infection, and the excessive levels of ROS can lead to 
biphasic activation of cellular apoptotic signaling pathways (mitoge-
n-activated protein kinase (MEK) and extracellular signal-regulated ki-
nase (ERK)). Activation of these pathways increases the virus expansion 
and the DNA damage, and it also stimulates the production of 
pro-inflammatory cytokines and the activation of interferon-stimulating 
genes (ISGs) (Hung et al., 2016; Lin et al., 2016; Ting et al., 2018; Wong 
et al., 2016), all of which adversely affects the host cell fate. Another 
similar study on the use of PEDV as a model for SARS-CoV showed that 
glutathione-capped silver sulfide (Ag2S) nanoclusters (NCs) can also 
directly suppress the synthesis and budding of viral negative-strand 
RNA, which may inhibit the virus replication (Du et al., 2018). How-
ever, the authors reported that Ag2S–NCs positively regulate the 
expression of pro-inflammation cytokines and the generation of ISGs, 
and thus they suggested that Ag2S–NCs activate antiviral innate im-
munity (Du et al., 2018). Altogether, these findings refer to the large 
potential of inorganic nanostructures, such as CCM-CDs and Ag2S–NCs, 
in the inhibition of SARS-CoV-2 replication, proliferation and infection. 

Moreover, Chen et al. used graphene oxide (GO) sheets with silver 
NPs (GO-AgNPs) to inhibit feline CoV (FCoV), which may be of rele-
vance for SARS-CoV-2 therapies (Chen et al., 2016). This study showed 
that GO-AgNPs inhibited 25% of FCoV infection in Felis catus whole 
fetus-4 (fcwf-4) cultured cells through the attachment of GO to FCoV 
lipid tails, which resulted in the aggregation entailing the binding of 
AgNPs to the sulfhydryl (thiol) group of E protein and the subsequent 
rupture (Chen et al., 2016). Considering the pervasive clinical use of 
AgNPs as inorganic antimicrobial agents, it is foreseeable that this 

material, along with GO, will be at the frontier of the efforts to create 
therapeutic platforms based on materials with intrinsic inhibitory 
properties with respect to SARS-CoV-2 (Ahmed et al., 2020). 

Ansari et al. have discussed the potential of using nanoformulation- 
based drug delivery to improve the efficacy of repurposed antiviral 
drugs against COVID-19 infection (Ansari et al., 2020). The authors 
emphasized the potential role of lipid-based nanoparticles conjugated 
with cell-penetrating peptides for the delivery of drugs or vaccines 
against COVID-19. This type of nano-systems has displayed several 
attractive features due to its bioavailability, cellular permeability, up-
take propensity and stability of the loaded therapeutic agent, along with 
the ability to be tailored for a kinetically precise and sustained drug 
release (Ansari et al., 2020). In addition to the direct potential of 
mesenchymal stem cell (MSC) transplantation to cure patients infected 
with COVID-19 (Leng et al., 2020), Pinky et al. discussed the advantages 
of exosomes derived from MSCs, as compared with other synthetic 
nano-vesicles (Pinky et al., 2020). Specifically, the MSCs-derived exo-
somes are said to be safe and highly biocompatible, without causing 
considerable levels of immunogenicity. They are also effective for cell 
targeting and thus could play a promising role as nano-based drug de-
livery systems towards fighting COVID-19 (Pinky et al., 2020). 

Weiss et al. recently presented a promising future perspective based 
on using nanomaterials against COVID-19, focusing in detail on the 
antiviral activities of several metal NPs, including Ag and copper (Cu) 
(Weiss et al., 2020). The antiviral properties of AgNPs were extensively 
assessed against a variety of viruses, including human immunodefi-
ciency virus (HIV), herpes simplex virus (HSV), and the hepatitis B virus 
(HBV), and it is conceivable that the same antiviral mechanism of action 
attributable to the ROS and the toxicity of Ag+ ions released by AgNPs 
(Weiss et al., 2020) would apply to SARS-CoV. In short, it was hypoth-
esized that these ionic species might interact with the virus surface 
proteins causing the virus damage and/or accumulate in the host cell 
and further interact with specific enzymes, leading to inhibition of virus 
replication (De Gusseme et al., 2010; Joe et al., 2016; Zodrow et al., 
2009). Furthermore, based on similar mechanisms of action (Han et al., 
2005), previous reports showed the potential antiviral activity of Cu 
nanoparticles against HuCoV-229E, SARS-CoV and SARS-CoV-2 (Han 
et al., 2005; van Doremalen et al., 2020; Warnes et al., 2015). Corre-
spondingly, the authors suggested that AgNPs, CuNPs and CuONPs may 
express disinfectant properties against SARS-CoV-2. 

Moreover, among the emerging materials which have been discussed 
by Weiss et al. to be utilized in the future fight against COVID-19 are 
graphene derivatives and photocatalytic NPs (Weiss et al., 2020). 
Studies have reported that GO, reduced GO (rGO), and sulfated GO 
sheets showed antiviral effects against orthopoxvirus, HSV, PEDV, 
enterovirus-A71 (EV-A71), and influenza A virus (H9N2). While the 
antiviral activity was attributed to the viral binding and shielding po-
tential of these sheets due to their sharp edges and binding promoted by 
the electrostatic attraction between the negative surface charge of GO 
and the positive charge of the nucleocapsid shell of the viral particles 
(Sametband et al., 2014; Song et al., 2015; Ye et al., 2015). Furthermore, 
regardless of the paucity of research on the antiviral effect of titanium 
dioxide (TiO2), the most described photocatalytic NPs in the literature, a 
study showed that a titanium apatite filter (PTAF) could inactivate 
SARS-CoV when exposed to the UV light for 6 h, which was hypothesized 
to have caused damage to the S protein, resulting in diminished virus 
infectivity (Han et al., 2004). Therefore, it is indisputable that 
nano-formulations of the materials mentioned in this section could play 
promising roles in the context of drug design and vaccine development 
against COVID-19. 

6. Future directions based on polymersomes 

Lacking a universal vaccine along with the increase in the number of 
cases opens the door for virus inhibitors to be recognized as powerful 
tools to suppress virus infection. On the other hand, in addition to a long 
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time and high costs that are still required to reach the targeted safe and 
effective vaccine against COVID-19, the recently emerged reinfection 
dilemma has threatened the efforts and hopes for the ongoing COVID-19 
vaccine trials. Since the nanomedicine field has shown a variety of 
promising therapeutic applications against COVID-19, and previously 
against various viral infections and diseases, it is worth to emphasize 
that learning from the past can be an effective route towards thera-
peutics against COVID-19. Here we propose a novel approach based on 
using polymersomes (polymer-like liposomes) as potential nano-objects 
with a significant imprint in the field of nanomedicine. Despite their 
immense potential, they have not been employed in the fight against 
COVID-19 so far. 

Polymersomes are some of the most efficient nanomaterials for use as 
drug delivery systems with a special surface functionalization (Discher 
et al., 1999; Tuguntaev et al., 2016). They are artificial vesicles 
composed of amphiphilic block or grafted copolymers, and they 
emerged thanks to their high colloidal stability, strong membrane 
properties, as well as easy ligand conjugation with high biocompatibility 
(Ferji et al., 2015, 2018; Guan et al., 2015). Fig. 5 shows common 
amphiphilic block copolymers that are used to formulate polymersomes 
(Barnier Quer et al., 2011; Chun et al., 2018; Galan-Navarro et al., 2017; 
Scott et al., 2012). Polymersomes were designed to mimic the cell 
structure with an aqueous cavity, and they showed a high capacity for 
drug loading, especially as a co-delivery system upon loading hydro-
phobic and hydrophilic drugs in their exterior layers and cores, 
respectively (Kim et al., 2013; Li et al., 2016). Polymersomes have 
recently been exploited not only as vehicles for the delivery of various 
therapeutic compounds (Chun et al., 2018), but also based on their 
potential to regulate ROS (Kim et al., 2017). Owing to their immuno-
genic properties (Webster et al., 2013), polymersomes could play a vital 
role in improving subunit vaccines and therapeutics delivery against 
COVID-19 infection. 

In a previous study, for example, polymersomes were loaded with 
influenza hemagglutinin (HA) antigens and then used as an immune 
adjuvant (Barnier Quer et al., 2011). Notably, a superior increase of 
serum IgG and hemagglutination inhibition titers were reported upon 
immunization with polymersome-loaded HA relative to free HA, without 
causing any cellular toxicity (Barnier Quer et al., 2011). Therefore, 
polymersomes successfully enhanced the immunogenicity of HA, which 
indicated their potential not only as a delivery system, but also as an 
adjuvant for subunit vaccines. Furthermore, researchers have shown 
that loading specific protein antigens into the polymersome core can 
boost the antigen presentation by DCs in-vitro (Scott et al., 2012). While 
polymersomes enhanced strong T cell immunity to protein antigens and 
induce the activation of antigen-specific CD4+ T cells (Stano et al., 
2013), it has also been reported that polymersomes can regulate intra-
cellular ROS levels when used as a delivery system for antiviral thera-
peutics against H1N1 infection in-vitro (Kim et al., 2017). Their ability to 
reduce the ROS generation, which is normally increased during viral 
infection, could be one of the promising approaches in inhibiting viral 
replication, cell death, production of pro-inflammatory cytokines, and 
activation ISGs in the host (Drew et al., 2012; Hung et al., 2016; Lin 
et al., 2016; Reshi et al., 2014; Svegliati et al., 2005; Ting et al., 2018; 
Vlahos et al., 2012; Wong et al., 2016). As a result, polymersomes can 
play a vital role as ROS regulators that can assist in the suppression of 
SARS-CoV-2 propagation and disease severity, as well as increase the 
cell survival rate. 

In a study on Lassa virus (LASV) infected mice, recombinant LASV E 
protein was encapsulated inside oxidation-sensitive polymersomes as 
nanocarriers that induced intracellular drug transfer (Galan-Navarro 
et al., 2017). The results showed that immunization with 
polymersome-loaded LASV E protein, compared to the treatment with 
free LASV E protein, preferentially activated the humoral immune 
response. LASV E protein loaded polymersome immunization elevated 

Fig. 5. Amphiphilic block copolymers used to formulate polymersomes.  
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the antibody production with a higher binding affinity to the E protein of 
LASV virion, and also increased the production of IgG-secreting B cells 
and antiviral CD4+ T cells (Galan-Navarro et al., 2017). Another study 
used polymersomes to encapsulate two antivirals (favipiravir in the 
exterior layer and mir-323a in the core) for use in-vitro against H1N1 
infection (Chun et al., 2018). The surface density of polymersomes was 
controlled by functionalization via specific copolymers to maximize 
cellular uptake (Chun et al., 2018). This study showed promising syn-
ergistic effects upon using these functional polymersomes against H1N1 
infection. Together, these studies indicate the potential efficiency of 
polymersome-based delivery systems in improving the transfection of 
antiviral therapeutics and vaccine substances against COVID-19, which 
has not been studied yet nor proposed. 

We recently proposed a novel therapeutic approach for cancer based 
on nano-objects that have the capacity to target specific immune 
checkpoints along with the inhibition of DNA demethylation (Al-Ha-
tamleh et al., 2019b). Here we hypothesize that there could be benefits 
arising from the readjustment of this approach involving the use of 
polymersomes as promising nanocarrier-based systems against 
COVID-19. Based on the unique characteristics of polymersomes, it is 
possible to functionalize them and turn them into effective delivery 

systems for therapeutic substances or antibodies that block the 
pro-inflammatory cytokines or their cellular receptors. Owing to their 
potential for co-delivery of both hydrophobic and hydrophilic drugs, 
polymersomes are able to be loaded with DNA demethylation inhibitors 
along with cytokines blockers to cause a stronger blockage. Using spe-
cific DNA demethylation inhibitors such as histone deacetylase (HDAC) 
inhibitors, histone methyltransferase (HMT) inhibitors, and dimethyl-
tryptamine (DMT) inhibitors, might lead to epigenetic alteration and 
result in a decreased expression of genes encoding cytokines (e.g., IL-6, 
TNF, IL-10) and their respective receptors (i.e., IL-6 receptor, TNF re-
ceptors 1 and 2, and IL-10 receptor), and thus downregulate those cyto-
kines. Thus, the synergistic effects of cytokine blockers and DNA 
demethylation inhibitors loaded into polymersomes would be a prom-
ising approach in fighting COVID-19 by suppression of the cytokine 
storm in patients. 

More specifically, this approach can be tested first against IL-6, the 
most important member in the cytokine storm (Zhang et al., 2020a), but 
also against other cytokines in the advanced stages of the research. In 
the early days of the COVID-19 pandemic, researchers from Wuhan, 
China noted that levels of IL-6 were higher in critical cases than in severe 
and mild cases (Chen et al., 2020a). This report was confirmed later by 

Fig. 6. Potential cellular and molecular 
mechanism of actions of polymersomes 
loaded with IL-6 receptor (IL-6R) 
blockers and DNA demethylation in-
hibitors against COVID-19 infection. 
Polymersomes will be synthesized, 
loaded with IL-6 receptor blockers and 
DNA demethylation inhibitors, and then 
functionalized with specific ligands to 
target cells expressing IL-6. IL-6 recep-
tor blockers (e.g., a monoclonal 
antibody-based drug) would block the 
IL-6 receptor signaling pathway, while 
demethylation inhibitors might lead to 
epigenetic alteration, resulting in 
decreased expression of IL-6 receptor 
gene, thus downregulating IL-6 receptor 
in the targeted cell. Therefore, co- 
administration of these two therapeu-
tics might cause effective synergistic 
effects to calm down the cytokine storm, 
which results mainly from the interac-
tion of IL-6 and its receptor. The ADAMs 
(A disintegrin and metalloproteinases) 
are a family of transmembrane proteins 
that responsible for cleaving membrane- 
bound IL-6 receptor, resulting in soluble 
IL-6 receptor. Glycoprotein 130 (gp130) 
is a receptor for IL-6/sIL-6 receptor 
complex.   
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another similar study showing significantly higher levels of IL-6 among 
severe cases compared to mild cases (Gao et al., 2020). Interestingly, a 
retrospective study on data related to COVID-19 cases (68 mortality and 
82 recovered cases) showed that IL-6 levels were significantly higher in 
died cases compared to the survivors (Ruan et al., 2020). Therefore, 
employing IL-6 inhibitors in the treatment of COVID-19 is considered as 
a promising immunotherapeutic approach to control the infection. Some 
clinical trials are being conducted to repurpose the existing IL-6 in-
hibitors including anti-IL-6 antibodies (e.g., clazakizumab and siltux-
imab) and anti-IL-6 receptor antibodies (e.g., tocilizumab and 
sarilumab) against COVID-19 (Atal and Fatima, 2020). Overall, based on 
the above literature survey, we hypothesize that loading IL-6 receptor 
blockers along with DNA demethylation inhibitors into functionalized 
polymersomes might be a promising approach in fighting COVID-19 
(Fig. 6). 

Polymersomes could have specific advantages over other 
nanomaterial-based delivery systems (e.g., liposomes) for development 
of therapeutics and vaccines against COVID-19. A variety of highly 
reproducible and scalable production methods are used to produce 
polymersomes with low polydispersity, and the process became 
achievable within about 1 h (Poschenrieder et al., 2017). The ability of 
polymersomes to encapsulate hydrophobic, hydrophilic and amphi-
philic molecules makes them more suited for in-vivo studies compared to 
many other nanomaterials (Zhang and Zhang, 2017). Despite their 
similar amphiphilic nature, the bilayer thickness of polymersomes 
(5–50 nm) is greater compared with the bilayer of liposomes (3–5 nm), 
which causes more robust and impermeable wall (Rideau et al., 2018). 
Thus, polymersomes have considerably higher membrane stability than 
liposomes (Poschenrieder et al., 2017), which widely used nowadays in 
development of COVID-19 vaccines. The higher stability and versatility 
of polymersomes gives them advantages towards more sustained and 
controlled release, and the improved metabolic stability of the loaded 
therapeutic agent (Zhang and Zhang, 2017; Gurunathan et al., 2020). 
Furthermore, the immunogenicity of polymersomes can be reduced 
(stealthiness) if a dense PEG brush is used on the surface with relatively 
long PEG polymers, meanwhile their biological stability would be 
increased (Zhang and Zhang, 2017). Therefore, the use of a proper 
polymersome-based delivery system can help in reducing therapeutic 
doses, along with maintaining a constant concentration of drug in the 
targeted site or circulation for longer time. These factors support poly-
mersomes to be applicable and universal carrier-systems for medical 
applications, more specifically in the fighting against COVID-19. 

In addition to the potential polymersome-based system which is 
hypothesized above, polymersomes could have promising roles with 
other repurposed drugs that have regulatory effects on the immunity of 
COVID-19 patients, especially for severe cases. Among these drugs, 
anticoagulant treatments (e.g., heparin and nafamostat), that also could 
inhibit the cytokine storm and increase the percentage of lymphocytes 
(Shi et al., 2020; Tang et al., 2020; Yamamoto et al., 2020), as well as 
some other immune-based therapies (e.g., interferon alfa-2B) which also 
expected to have similar effects, but are still awaiting experimental 
evaluation (Khan et al., 2020). Also, other types of drugs are repurposed 
and currently being studied, such as antihypertensive drugs and 
non-steroidal anti-inflammatory drugs, but no scientific evidence 
proving the effectiveness of any drug or therapeutic compound against 
COVID-19 has been demonstrated so far. 

Moreover, the potential roles of polymersome-based delivery sys-
tems are not limited to boosting immunity and suppressing cytokine 
storm in COVID-19 patients. Polymersomes can be functionalized to 
deliver several types of repurposed drugs that showed potential antiviral 
effects against SARS-CoV-2, including antimalarial drugs (e.g., chloro-
quine), antimalarial and antibiotic combinations (e.g., hydroxy-
chloroquine and azithromycin), antiviral drugs (e.g., camostat, 
bromhexine, favipiravir, remdesivir and lopinavir), and antihelmintics/ 
antiparasitic agents (e.g., nitazoxanide and ivermectin) (Khan et al., 
2020; Rajoli et al., 2020; Santos et al., 2020). However, the clinical 

effectiveness of these drugs has not yet been fully evaluated, while 
several clinical trials are still underway (Singh et al., 2020). Future 
studies may also investigate potential polymersome-formulations for 
combination therapy (using repurposed drugs) to COVID-19 infection. 

7. Conclusion 

The current global public health emergency caused by COVID-19 
requires continued and urgent efforts by scientists to stop the 
spreading or at least reduce the number of deaths caused by the SARS- 
CoV-2 virus. Despite the large number of reports that address COVID- 
19 infection and fighting strategies, there is no approved solution to 
contain the pandemic. Since nanomedicine applications had promising 
roles in the development of vaccines and therapeutics against COVID- 
19, gathering the recent findings and suggesting promising approaches 
in a comprehensive review could be helpful for researchers and readers 
who are interested in this topic, and this exactly has been the goal of this 
review. On the other hand, various vaccine candidates and therapeutic 
substances were proposed against COVID-19 on the basis of nano-
materials. None of them have utilized polymersomes, despite their 
definite potentials against a variety of diseases, including viral in-
fections, as shown by previous studies. Therefore, in addition to 
addressing various aspects of COVID-19 vaccine and therapeutic 
development, this review has provided a future perspective on the use of 
polymersomes to suppress the cytokine storm and reduce the severity of 
COVID-19 infection. 
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