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Breast cancer has recently been known as the first lethal malignancy in women

worldwide. Despite the existing treatments that have improved the patients’

prognosis, some types of breast cancer are serious challenges to treat.

Therefore, efforts are underway to provide more efficient therapy.

Cryptotanshinone (CPT) is a liposoluble diterpenoid derivation of a

traditional Chinese herbal medicine called Salvia miltiorrhiza Bunge. It has

been considered in the past decades due to its vast therapeutic properties,

including anti-tumor, anti-inflammatory, and anti-fibrosis. Recently, studies

have found that CPT showed a significant anti-breast cancer effect in vivo

and in vitro through different physiological and immunological mechanisms.

This study summarized the latest research findings on the antitumor effect of

CPT in breast cancer. Further, the main molecular mechanisms based on breast

cancer types and combination with other drugs were reviewed to provide

essential evidence for future longitudinal research and its clinical application in

breast cancer treatment.
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Introduction

Breast cancer (BRCA) is one of women’s most commonly diagnosed malignancies

worldwide. The incidence of BRCA has increased gradually in recent years, becoming

the top rank in 2021. (Ma and Jemal, 2013; DeSantis et al., 2014; Harbeck and Gnant,

2017; Sung et al., 2021). Based on evaluation of different biomarkers, including

presence of hormone receptors (HR) [such as estrogen receptor (ER)] and

overexpression of human epidermal growth factor receptor 2 (HER2), BRCA is

divided into four main molecular subtypes: HR+/HER2-, HR+/HER2+, HER2+ and

triple negative (TNBC) (Loibl et al., 2021). HR positive BRCA is less malignant than

other subtypes. Although there are various BRCA risk factors related to lifestyle (Brody

et al., 2007; Kaiser, 2013), medical condition (Anothaisintawee et al., 2013),

carcinogenic genes (Gage et al., 2012), etc., it is well known that estrogen and ERs

play a pivotal role in the initiation, development, and progression of breast cancer
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(Platet et al., 2004; Yager and Davidson, 2006). Three types of

ER have been identified in BRCA cells, ERα and ERβ, and a

G-protein coupled estrogen receptor (GPER) (Girgert et al.,

2019).

The successful medical treatments for breast cancer,

including surgery, chemotherapy, and radiation therapy,

have been associated with better prognosis, causing a

dramatic increase in the survival rate of BRCA patients

(Abderrahman and Jordan, 2018). However, in some

subtypes of BRCA the prognosis is poor (Tong et al., 2018).

Success in controlling the progression and treatment of breast

cancer with chemotherapy drugs such as tamoxifen and anti-

estrogens depends on the presence of ERs, especially ERα. Thus,
the treatment of ERα-negative BRCA, accounting for 40% of

BRCAs, is challenging. A subgroup of ERα- breast cancer

overexpress the HER2, and there are few drugs for its

treatment. Another group is TNBC which is so malignant to

be treated, resulting in a poor prognosis (Tong et al., 2018;

Girgert et al., 2019). Also, treatment obstacles, such as

multidrug resistance (MDR), decrease the clinical efficacy of

treatment in BRCA patients (Merikhian et al., 2017).

Therefore, more studies have been conducted to explore an

effective therapeutic agent to improve the prognosis of different

subtypes of BRCA, especially by targeting estrogen signaling (Li

et al., 2015). Herbal products are a treasure for pharmaceutical

development, providing novel biological and natural

compounds to develop new medications (Cragg and

Newman, 2009). These drugs are known as valuable and safe

resources in the treatment of various diseases due to their low

price, low adverse effects, and high public availability (Balaña-

Fouce et al., 1998).

Cryptotanshinone (CPT) is a liposoluble diterpenoid

derivation, that mainly exists in plants of the genus Salvia,

including Salvia przewalskii Maxim, Salvia tebesana Bunge., S.

miltiorrhiza Bunge., among which S. miltiorrhiza Bunge, well-

known as Danshen, has rich contents of diterpenes (Wu et al.,

2020). Recently, CPT has been considered due to its vast range

of therapeutic properties, including anti-tumor effects (Jiang

et al., 2017), anti-inflammatory (Tang et al., 2011), anti-

fibrosis, etc. (Wu et al., 2020). For anti-tumor activity, CPT

inhibited the growth of various kinds of tumor cells, including

lung cancer (Lee et al., 2008), prostate cancer (Shin et al.,

2009), cervical cancer (Ye et al., 2010), leukemia (Kim et al.,

2011), and breast cancer (Park et al., 2012). CPT, besides its

cytotoxic effect, could prevent cancer cell proliferation and

increase anti-tumor immunity simultaneously (Han et al.,

2019). Therefore, this study summarized the latest research

findings on the anti-breast cancer activity of CPT.

Furthermore, the main molecular mechanisms based on

breast cancer subtypes and combination with other drugs

were reviewed to provide essential evidence for future

longitudinal research and possible CPT clinical application

in breast cancer treatment.

Results

The crucial characteristic of an ideal anti-tumor drug is the

fewest cytotoxic effect on normal cells while the most

cytotoxicity on cancer cells. Studies have demonstrated that

CPT has such an anti-tumor effect (Zhang et al., 2018).

Regarding anti-breast cancer treatment, CPT could affect

different breast cancer cell lines through various mechanisms

(Table 1). Zhou et al. (2020) showed that CPT has dose-

dependent cytotoxicity on ERα-positive BRCA cells (MCF-

7 cells) and ERα-negative BRCA cells (MDA-MB-231),

decreasing the survival and proliferation of cancerous cells.

Li et al. (2021) showed that CPT in any concentration inhibits

the rate of proliferation time/concentration-dependent in

MCF-7 and MDA-MB-231 BRCA cells. Also, their

experiments on transwell invasion and cell migration

demonstrated that MCF-7 cells are more sensitive to CPT

than MDA-MB-231 cells. CPT inhibited the invasive ability

of BRCA cells in a dose-dependent manner. At the same

concentration of CPT, the migration distance of MCF-7 cells

is lesser than MDA-MB-231 cells; additionally, increasing the

concentration of CPT results in more potent inhibition in the

cells migration.

Cryptotanshinone against estrogen
receptor alpha-positive breast cancer
cells (MCF-7 cell line)

ERα is a ligand-regulated transcription factor that binds to

the estrogen hormone and activates a pathway, which triggers

the transcription of ER target genes via binding to the estrogen-

responsive elements (EREs) on their gene promoters (Klinge,

2001; Osborne et al., 2001; Deroo and Korach, 2006). Around

70%–75% of BRCAs express ERα in their cells, known as

estrogen receptor alpha-positive breast cancer (ERα-positive
BRCA) (Cleator et al., 2009; Johnston, 2010)

Cryptotanshinone, a homogeneous chemical structure with

estrogen, inhibited cell viability and proliferation in ERα-
positive cells more effectively than in ERα-negative cells in a

dose-dependent manner (Gong et al., 2012; Li et al., 2015; Pan

et al., 2017; Li et al., 2021).

Pan et al. (2017) demonstrated that the CPT-ERα binding

affinity is close to estrogen and roughly half of the Tamoxifen,

presenting the anti-estrogen potential of CPT. Therefore, CPT

could inhibit cell survival, growth, invasion, and migration of

ERα-positive BRCA (MCF-7) cells via different mechanisms

through competitive binding to ERα. CPT inhibited the ERα-
mediated IGF-1/AKT/mTOR signaling and suppressed the

IRS-1/AKT cascade. Thus, CPT inhibited the AKT-mTOR

cascade in MCF-7 BRCA cells. Figure 1 demonstrates the

regulatory effect of CPT on ERα-positive BRCA cell survival

and proliferation.
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Another study by Li et al. (2015) indicated that though CPT

slightly downregulated ERα expression levels, CPT-ERα
competitive binding is more pivotal than downregulating ERα
protein expression. CPT could significantly inhibit the viability

and proliferation of breast cancer cells due to the reduction of

ERα target genes transcription via competitive binding to ERα
protein. Thus, it has more efficacy in the treatment of ERα-
positive rather than ERα-negative BRCA.

To find out other anti-cancer mechanisms of CPT, the

differentially expressed genes (DEGs) were identified on both

ERα-positive and -negative BRCA cell lines (Li et al., 2021). The

results suggested three main DEGs. The Estrogen Receptor Gene

(ESR1), the Cyclin-Dependent Kinase 1 (CDK1), and CCNA2.

CPT intervention decreased the expression of CCNA2 and

CDK1 in both cell lines, predominantly in ERα-positive
BRCA cells, while no changes were observed in the ESR1 gene

expression in either of the two cell lines (Pagano et al., 1992; Stein

and Yang, 1995; Wang et al., 2011; Li et al., 2021).

Pharmacological interventions, which can induce

prolonged endoplasmic reticulum stress (ER-stress), has been

recently suggested as a possible method for tumor therapy

(Healy et al., 2009). Park et al. (2012) realized that CPT

induces ER-stress markers by generating reactive oxygen

species (ROS). Further, the apoptosis biochemical markers

(the phosphorylation level of eIF2a and protein levels of

CHOP, GRP94, and GRP78), increase of sub-G1 DNA, and

induction of DNA fragmentation were found in theMCF-7 cells

exposed to CPT. All suggested that CPT as a natural compound

induces ER-stress -mediated apoptosis in MCF-7 breast cancer

cells.

Zhou et al. (2014) investigated the novel anti-tumor

therapeutic role of CPT. They showed that CPT could perform

its anticancer effect by stimulating the immune system, through

CD4+ T cells by promoting secretion of IFN-γ or perforin. CPT

acts like IL-12 and causes the release of perforin from CD4+ T cells

through the phosphorylation of the JAK2/STAT4 pathway, mainly

inhibited the growth of breast cancer cells.

Cryptotanshinone against estrogen
receptor alpha-negative breast cancer
cells (MDA-MB 231, SKBR-3, Bcap37 cell
lines)

ERα-negative breast cancer treatment is a big challenge

due to its poor prognosis. Previous studies demonstrated the

TABLE 1 The anti-breast cancer effects of CPT in estrogen-receptor dependent or independent manner.

Author Estrogen
receptor

Breast cancer
cell line

CPT inhibiting
effect

CPT inducing
effect

Main mechanism

Zhou et al.
(2020)

Positive MCF-7 Glycolysis, Cell proliferation, Cell
migration, Cell invasion

— Downregulation of the PKM2/β-catenin axis

Negative MDA-MB-231

Park et al.
(2012)

Positive MCF-7 Cell viability Apoptosis, Cell
sensitivity to
chemotherapy drugs

Inducing ER stress-mediated apoptosis
through generating reactive oxygen species

Li et al.
(2015)

Positive ZR-75-1, MCF7,
MDA-MB-231,
MDA-MB-435

ERα-mediated transcriptional activity,
Cell growth, Cell survival, Cell
proliferation, In vivo tumor growth

— Competitive binding to Estrogen receptor

Negative

Pan et al.
(2017)

Positive MCF-7, T47D, MCF-
7/ADR, MDA-MB-
231, MDA-MB-435

Cell proliferation, Cell viability, In
vivo tumor growth

Cell sensitivity to the
Tamoxifen

Downregulation of ERa-dependent IGF-1/
AKT/mTOR pathwayNegative

Li et al.
(2021)

Positive MCF-7 Cell viability, Cell proliferation, Cell
invasion, Cell migration

— Reducing CCNA2 and CDK1 expression

Negative MDA-MB-231

Shi et al.
(2020)

Negative SKBR-3 Cell viability, Cell proliferation Cell cycle arrest Downregulated GPER mediated PI3K/AKT
signaling pathway, Regulated the expression
levels of cell cycle-associated proteins

Liu et al.
(2016)

Negative Bcap37 Cell proliferation, Cell migration Cell apoptosis Inducing mitochondria-derived ROS/
FOXO1 pathway

Liu et al.
(2020)

Negative 4T1 Breast cancer lung metastasis, cell
invasion, Cell migration, In vivo
tumor growth

— Increased bioavailability of nanoparticles co-
loaded with silibinin and CPT

Zhang et al.
(2015)

Positive MCF-7 Cell viability Cell apoptosis Induction of endoplasmic reticulum stress
after exposure to CPT combined with arsenic
species

Ni et al.
(2021)

Positive MCF-7 Efflux function of BCRP, Export of
chemotherapy drugs from the cancer
cells

Cell sensitivity to
chemotherapy drugs

Inhibiting oligomer formation of BCRP on
the cancer cell membraneNegative MDA-MB-231

MCF-7/ADR
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ERα-negative breast cancer resistance against anticancer

drugs (Lappano et al., 2014; Bhat et al., 2015). Thus, finding

an effective treatment for ERα-negative BRCA is crucial. Some

subgroups of ERα-negative BRCA cells, such as SKBR-3 cells,

are membrane G protein-coupled estrogen receptor (GPER)

positive (Steiman et al., 2013). In vitro research claimed that

GPER might function as a tumor suppressor in BRCA cells

(Ariazi et al., 2010; Weißenborn et al., 2014). Recent studies

revealed that GPER and its mediated signaling pathway

[phosphatidylinositide 3-kinase (PI3K)/AKT] have a vital role

in the proliferation of BRCA cells (Molina et al., 2017; Hsu et al.,

2019).

It has been demonstrated that CPT treatment

significantly downregulated the GPER-mediated PI3K/AKT

signaling pathway of the ERα-negative human breast cancer

cells, SKBR-3, in a dose and time-dependent manner. CPT

might arrest the cell cycle associated with GPER-mediated

G1-phase block. In addition, the expression of cyclin and

CDK, which modulate the cell cycle regulation, obviously

decreased after CPT treatment in a dose-dependent manner

(Shi et al., 2020).

Bcap37 cells, as an ERα-negative BRCA cell line, have more

migration and invasion than ERα-positive BRCA cells. CPT can

potentially be an apoptosis inducer, anti-proliferative, and

tumor-migration inhibitor drug in the ERα-negative BRCA

cell lines. Liu et al. (2016) indicated that CPT could inhibit

the proliferation and migration of Bcap37 cells and could induce

apoptotic pathways in a dose- and time-dependent manner by

arresting the cell cycle at the S phase during interphase. The main

responsible for the cytotoxic effects of CPT in the ERα-negative
BRCA cells is the inhibitory effect on FOXO1 (Thannickal and

Fanburg, 2000; Akasaki et al., 2014).

FIGURE 1
In the PI3K/AKT/mTOR pathway, IGF-1 activates IGF-1R, and some cytokines activate GPER in the cell membrane. IGF-1R and GPER activate
PI3K. The activated PI3K has a catalytic effect on the phosphorylation of PIP2 to produce PIP3. PIP3 drives AKT. The activated AKT phosphorylates
target proteins in the cytoplasmic fluid and cell nucleus. Finally, phosphorylation of AKT target proteins regulates cell survival and replication. On the
other hand, PTEN (a PIP3 phosphatase) changes PIP3 to PIP2, suppressing the PI3K/AKT/mTOR pathway. The ERα is another receptor, activating
PI3K through stimulating IRS1. CPT exerts its inhibitory effect on the PI3K/AKT/mTOR pathway by inhibiting ERα (Miricescu et al., 2020). IGF-1,
insulin-like growth factor 1; IGF-1R, insulin-like growth factor receptor 1;GPER, G protein-coupled receptor; IRS1, Insulin receptor substrate 1; PI3K,
Phosphatidylinositol 3-Kinase; PIP2, Phosphatidylinositol (4,5)-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PTEN, phosphatase
and tensin homolog; AKT, serine/threonine protein kinase;mTORC, mammalian Target of Rapamycin complex; FOXO1, Forkhead box other 1; ERE,
estrogen-responsive element.
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Cryptotanshinone in combination with
other drugs

Breast cancer metastasis is a complex condition in which the

tumor microenvironment plays an important role. Therefore,

modulation of the tumor microenvironment through various

biochemical pathways can have an anti-metastatic effect (Gao

et al., 2009). Silibinin (SLB) is an herbal product that constrains

tumor angiogenesis and reduces epithelial-mesenchymal

transition (Deep and Agarwal, 2010; Deep and Agarwal,

2013). By modulating the tumor microenvironment via

different pathways, SLB, as well as CPT, are known as anti-

metastatic natural products.

Liu et al. (2020) assessed the bioavailability and anti-

metastatic efficacy of oral nanoparticles for administrating the

SLB and CPT lung metastasis in a 4T1 breast cancer tumor-

bearing nude mouse model. They demonstrated that Silibinin-

and cryptotanshinone-co-loaded nanoparticles (S/C-W-LPNs)

significantly induced cell toxicity compared to SLB-co-loaded

nanoparticles (S-W-LPNs) or CPT-co-loaded nanoparticles

(C-W-LPNs) alone. Further, in vitro anti-metastasis study

showed that S/C-W-LPNs markedly inhibited cell invasion

and migration; with a relative cellular migration rate of

8.6% ± 1.38% which was less than those for C-W-LPNs and

S-W-LPNs (15.5% ± 3.58%, 19.9% ± 3.35%, respectively).

Arsenic trioxide (As2O3) is known as a successful treatment

for acute promyelocytic leukemia worldwide (Zhu et al., 1997).

Zhang et al. (2015) explored a new therapeutic method for the

treatment of ER-positive breast cancer. They exposed the MCF-7

BRCA cell line to three arsenic species, namely inorganic arsenite

(iAsIII), its intermediate metabolites monomethylarsonous acid

(MMAIII), and dimethylarsinous acid (DMAIII) either alone or in

combination with CPT and investigated their anti-breast cancer

effects. The findings suggested that the combination of MMAIII

with CPT has a remarkable synergic cytotoxic effect on cell

viability. Further, they reported that MMAIII with CPT induces

cellular apoptosis significantly (apoptosis rates up to 40%)

compared to the combination of iAsIII or DMAIII with CPT,

through changing the proapoptotic proteins Bax, Bak, and cyt c

in the cytoplasm and mitochondria of BRCA cells (Zhang et al.,

2015).

Cryptotanshinone and conventional
therapies

Recent significant progression in the cancerous cells’ drug

resistance is a prominent obstacle for clinicians during

chemotherapy. One of the solutions is using compounds that

can synergize with conventional chemotherapy drugs. Park et al.

(2012) evaluated the alone and the synchronic cytotoxic effects of

CPT and chemotherapy drugs such as 5-FU, TNFα, etoposide,
and cisplatin. They observed that lonely exposure to CPT or each

antitumor drug has minimal effect on MCF-7 BRCA cells’

viability and has not any noticeable induction of ER-stress or

apoptotic markers. On the other hand, synchronic use of CPT

and antitumor drugs showed a prominent antitumor synergism

with the promotion of apoptotic markers, indicating that CPT

exerts its synergistic effect through potentiation of the apoptotic

activity of different antitumor drugs via the stimulation of ER-

stress (Park et al., 2012).

A study of treating C57 mice with cancerous MCF-7 cells

with CPT or Taxol revealed that CPT remarkably inhibited the

cancerous cells’ growth from day 13 compared to non-treatment

mice. However, the therapeutic effect of CPT was minimally less

than Taxol. But their findings suggested that CPT, along with

conventional chemotherapy drugs, could have a synergic effect

on breast cancer treatment (Zhou et al., 2014).

Cryptotanshinone and multi-drug
resistant breast cancer

Multi-drug resistance (MDR) in breast tumors is a condition

that reduces the efficacy of chemotherapy drugs (Wang et al.,

2017b). Often it occurs following long-term anti-estrogen

chemotherapy and ERα-negative breast cancers. MDR has a

tight association with breast cancer resistance protein (BCRP).

BCRP is a membrane protein that causes efflux of chemotherapy

drugs from tumor cells, therefore making cancer cells less

affected by chemotherapy drugs (Mao and Unadkat, 2015; Li

et al., 2016).

Thus, Ni et al. (2021) stated that BCRPmight have a vital role

in regulating the CPT transportation across the breast cancer

cells membrane. They found that although CPT could not affect

the intracellular protein and mRNA levels of BCRP/ABCG2, but

inhibited the efflux function of BCRP in MCF-7 cells by reducing

the BCRP expression on the cell membrane, which was ERα-
dependent (Figure 2). BCRP is primarily of dimer and oligomer

formation on the MCF-7 cell membrane. To find whether CPT

was synergistic with BCRP-mediated efflux of anticancer drugs

or not, they investigated the effect of CPT along with two of the

most common BCRP drugs, MX and TOPO, compared with

treatment with MX or TOPO alone. The findings showed that

CPT increased the efficacy of chemotherapy drugs that can be

effluxed by BCRP from tumor cells, reversing MDR (Ni et al.,

2021).

In a similar study, Pan et al. (2017) used cancer cells with the

acquired multidrug resistance (MCF-7/ADR). The results

showed an undetected Tamoxifen cytotoxic effect on the

MCF-7/ADR cancer cells, while CPT had a significant

inhibitory effect. Moreover, CPT conjoined with Tamoxifen

plies a synergic effect on the MCF-7/ADR cells. These

findings indicated that CPT suppresses cell viability and

proliferation in the tamoxifen-resistant BRCA cells especially

combined with Tamoxifen.
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Cryptotanshinone inhibits the metabolism
of breast cancer cells

Cancerous cells have a higher metabolic rate to promote

tumor proliferation and progression (Fanciulli et al., 2000; Lu

et al., 2008). Expression of glycolysis-related proteins, like HK2,

LDHA, and PKM2, increases in breast cancer cells. PKM2, a poor

prognostic marker, is an enzyme that induces glycolysis in breast

cancer cells. CPT reduces the expression of PKM2 in both ERα-

positive and ERα-negative breast cancer cells, inhibiting

glycolysis. Glycolysis inhibition reduces metabolic rate and

increases the sensitivity of cancerous cells to chemotherapy

drugs (Zhou et al., 2020).

It is worth noting that some articles clarified that PKM2 also

could be translocated into the nucleus of breast cancer cells,

functioning as a transcription factor that transactivates β-
catenin. β-Catenin is one of the most important mediators of

angiogenesis, invasion, and cell migration in breast cancer (Yang

FIGURE 2
CPT interfereswith the oligomer formation of BCRP and inhibits the BCRP function in the efflux of chemotherapy drugswhich is associatedwith
MDR-BRCA.
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et al., 2011; Wang et al., 2017a). Therefore CPT inhibits the

invasion and migration of breast cancer cells by inhibiting the

PKM2/β-catenin axis in both ERα-positive and -negative breast

cancer cell lines (Zhou et al., 2020).

Conclusion

Breast cancer incidence is dramatically increasing year by

year in women worldwide. It has recently passed the other

malignancies and has become the most life-threatening female

cancer with the first rank (Sung et al., 2021). Despite various

treatments available for different severity of breast cancer,

including surgical resection, chemotherapy, and radiotherapy,

there are types of BRCA with poor prognosis, particularly triple-

negative breast cancer. While surgical resection is prescribed for

only a minority of BRCA patients, most patients undergo

chemotherapy which has increased the patients’ lifelong. A

beneficial drug causes minimal damage to healthy body cells

while having the most cytotoxicity to cancer cells. Therefore,

suggesting new anticancer medicine with greater efficacy and

fewer side effects is one of the hotspots for cancer treatment in

recent years.

Cryptothanshinone, a derivation of the plant S. miltiorrhiza

Bunge, has been recently considered by researchers due to its

numerous anti-inflammatory and antitumor activity in vivo and

in vitro. Notably, this Chinese herbal medicine is efficient in

cancer treatment through different mechanisms, including

targeting various molecular signaling pathways. In this study,

we focused on the anti-cancer activity of CPT against breast

cancer and summarized the various biological mechanisms

through which CPT affects different types of BRCA. Most

studies were conducted using ERα-positive and -negative

BRCA. But no study considered the TNBC type. Therefore,

evaluating the effects of CPT on the most challenging type of

breast cancer, TNBC, is recommended for future studies. For

ERα-Positive BRCA cells, studies have shown that CPT inhibits

proliferation, migration, invasion, and cell viability of tumor cells

in vivo or in vitro. Effects on estrogen receptor function,

regulation of gene expression, endoplasmic reticulum stress-

induced apoptosis, induction of the immune response, and

inhibition of glycolysis are mechanisms that are affected by CPT.

In the case of ERα-negative BRCA cells, in vivo and in vitro

studies have demonstrated that CPT provided its anti-cancer

effect through GPER-mediated pathways, apoptosis via reactive

oxygen species, and to a lesser extent through regulation of gene

expression. Also, CPT has shown a synergic effect, more

bioavailability, and more induced sensitivity to chemotherapy

when combined with other drugs such as Silibinin, arsenic

species, and conventional chemotherapy drugs. In summary,

cryptotanshinone should be recognized as herbal medicine

that offers many antitumor mechanisms and has considerable

potential for treating female breast cancer.
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