
ARTICLE

Received 22 Jan 2015 | Accepted 13 Mar 2015 | Published 24 Apr 2015

A dominant role for the methyl-CpG-binding
protein Mbd2 in controlling Th2 induction by
dendritic cells
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Dendritic cells (DCs) direct CD4þ T-cell differentiation into diverse helper (Th) subsets that

are required for protection against varied infections. However, the mechanisms used by DCs

to promote Th2 responses, which are important both for immunity to helminth infection and

in allergic disease, are currently poorly understood. We demonstrate a key role for the protein

methyl-CpG-binding domain-2 (Mbd2), which links DNA methylation to repressive

chromatin structure, in regulating expression of a range of genes that are associated with

optimal DC activation and function. In the absence of Mbd2, DCs display reduced phenotypic

activation and a markedly impaired capacity to initiate Th2 immunity against helminths or

allergens. These data identify an epigenetic mechanism that is central to the activation of

CD4þ T-cell responses by DCs, particularly in Th2 settings, and reveal methyl-CpG-binding

proteins and the genes under their control as possible therapeutic targets for type-2

inflammation.

DOI: 10.1038/ncomms7920 OPEN

1 Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M3 9NT, UK. 2 Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3BF, UK. 3 Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of
Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK. 4 Medical Research Institute, Ninewells Hospital and Medical School, University of
Dundee, Dundee, DD1 9SY UK. 5 Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH UK. Correspondence and requests for
materials should be addressed to A.S.M. (email: andrew.macdonald@manchester.ac.uk).

NATURE COMMUNICATIONS | 6:6920 | DOI: 10.1038/ncomms7920 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:andrew.macdonald@manchester.ac.uk
http://www.nature.com/naturecommunications


D
endritic cells (DCs) are specialized innate immune cells
with an unparalleled ability to respond to inflammation
and pathogens and initiate adaptive T-cell immunity1. In

this antigen-presenting cell (APC) role, DCs are centrally
involved in directing the character of the developing CD4þ

T-cell response, influencing the range and dominance of the
cytokines they produce2.

Type-2 immunity is a defining feature of allergic responses and
parasitic helminth infection3,4. Although T-helper (Th)2
cytokines can mediate protection and wound healing in the
context of extracellular pathogens such as helminths, excessive
Th2 inflammation can cause substantial damage to the host in
either helminth infection or allergic disorders5. It is clear that
DCs are required for Th2 priming in both of these settings6–8.
However, the specific molecular mechanism(s) that they employ
to induce Th2 responses are poorly understood and much
debated3,4,9.

Exposure of DCs to bacterial, viral or protozoal antigens
triggers their dynamic activation and the release of pro-
inflammatory cytokines that are vital for Th1/Th17 T-cell
polarization1. In contrast, a hallmark of Th2-inducing DCs is a
low-level or muted activation, distinct from that of Th1/17
DCs2,9. In particular, helminths generally fail to provoke
DC pro-inflammatory cytokine release and induce minimal
changes in DC messenger RNA (mRNA) expression profiles9.
Perhaps, because of this, one theory that has been proposed
is that Th2 induction may represent a ‘default’ pathway that
occurs when DCs fail to be markedly activated10. However,
a range of molecules have been associated with the ability of
DCs to generate optimal Th2 immunity, including CD40
(ref. 11), CD80/86 (ref. 12), OX40L13,14, CCL17 (ref. 15),
RELMa16, ERK, c-Fos17 and NF-kB18. In addition, the
transcription factors Irf4 (refs 19,20) and STAT5a/JAK2
(ref. 21) have recently been suggested to be important for
successful Th2 induction by DCs. Collectively, this highlights that
Th2 priming by DCs responding to allergens or helminths is a
complex process, and that our current understanding of the
specific and dominant regulatory mechanisms involved is
incomplete.

In recent years, it has become clear that ‘epigenetic’ mechan-
isms, which alter gene expression without changing underlying
DNA sequence, play an important role in regulating multiple
aspects of T-cell differentiation and function22,23. Although much
less is known about epigenetic control of innate cells, it has
recently been shown that histone methylation can regulate
fibroblast and DC antiviral responses24, as well as myeloid cell
differentiation and activation25.

Methyl-CpG-binding proteins are required for normal gene
regulation during development26,27. The methyl-CpG-binding
domain protein, Mbd2, links DNA methylation to transcriptional
silencing via the nucleosome remodelling and histone deacetylase
(NuRD) complex28. Although Mbd2 is widely expressed in
immune cells29 and has previously been implicated in control of
T-cell differentiation30–33, no role has yet been identified for it in
innate immune cells such as DCs.

We have assessed whether epigenetic control of gene expres-
sion is important for DC activation and function, and in the
promotion of Th2 responses. Our results reveal that Mbd2
regulates DC expression of a suite of immunologically relevant
genes and plays a dominant role in regulating the ability of DCs
to prime type-2 responses in vitro and in vivo, against either
helminths or allergens. This requirement for Mbd2 provides
further evidence that Th2 priming by DCs is more than a passive
‘default’ process and highlights methyl-binding domain proteins,
and the genes under their control, as novel therapeutic targets for
Th2 inflammation.

Results
Mbd2 regulates key DC pathways associated with APC function.
To determine the importance of Mbd2 in DC development and
function, we generated bone marrow-derived DCs (BMDCs) from
wild-type (WT) and Mbd2� /� mice and compared
their mRNA expression profiles (Fig. 1). Although they developed
similarly to WT in vitro and in vivo (Fig. 1a; Supplementary
Fig. 1), Mbd2� /� BMDCs displayed strikingly altered mRNA
expression, with 70 genes significantly downregulated (4twofold,
Po0.05) and 49 genes significantly upregulated (4twofold,
Po0.05), compared with WT (Fig. 1b; Supplementary Data 1).
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and
GO (Gene Ontology) term analysis of the Mbd2� /� BMDC
mRNA signature identified transcripts associated with several
pathways crucial for DC function (Fig. 1c,d; Supplementary Data
2). A range of these expression changes was verified by the analysis
of mRNA (quantitative reverse transcription PCR (qRT–PCR))
and protein levels (flow cytometry and enzyme-linked immuno-
sorbent assay (ELISA); Fig. 1e). Further, many of the gene
expression and phenotypic differences evident in immature
Mbd2� /� BMDCs (Fig. 1) were also apparent following their
exposure to strong Th2 or Th1/17 antigens (soluble egg antigen
(SEA) from the parasitic helminth Schistosoma mansoni, or heat-
killed Salmonella typhimurium (St) (Supplementary Fig. 2).
Transcripts that were downregulated in Mbd2� /� BMDCs
encompassed several important immunological processes,
including antigen presentation (H2-Aa, Ciita) and co-stimulation
(Tnfrsf9 (4-1BB), Cd40, Cd80 and Cd86). Since these molecules
are directly required for T-cell activation by APCs2, this
suggested that Mbd2� /� DCs may be less able to initiate
CD4þ T-cell responses. Pathway analysis of mRNA
transcripts upregulated in Mbd2� /� BMDCs identified genes
such as Mrc1 (mannose receptor), Stab1 (stabilin receptor), Cd68,
Slc11a1 and Ifi30, all of which are primarily linked with antigen
uptake and processing pathways34–39. This demonstrates that
Mbd2 is crucial for governing the optimal expression of genes that
are important for a variety of DC functions, many of them related
to APC ability.

A recent study using biotin-tagged Mbd2 and mouse
embryonic stem cells confirmed that the primary determinant
of Mbd2 binding is methylated-CpG dinucleotides40. Thus,
most Mbd2 is not targeted to specific genomic locations,
but globally tracks the density of DNA methylation, which
occurs on average once per 150 bp (ref. 40). Mbd2 acts as a reader
of the methyl-CpG signature, then recruits the NuRD
co-repressor complex, to reinforce transcriptional silencing
through the nucleosome remodelling and histone deacetylase
activity of NuRD26,40. As available antibodies, including
those generated in-house, did not permit chromatin
immunoprecipitation (ChIP) sequencing analysis of Mbd2
in DCs (data not shown), we instead used an antibody
against H3K9/K14ac, an epigenetic marker of active gene
transcription22,28, to assess the levels of histone acetylation near
transcriptional start sites (TSSs) of significantly down- or
upregulated genes from Mbd2� /� BMDCs in comparison with
WT. Genes for which mRNA expression was decreased
by twofold or greater in Mbd2� /� BMDCs showed reduced
H3K9/K14 acetylation at their TSS (Fig. 2a; Supplementary Fig. 3;
Supplementary Data 3), and this was particularly evident for
Ccl17, Cd40 and Irf4 (Fig. 2b; Supplementary Fig. 3b). In contrast,
upregulated genes showed unaltered H3K9/K14 acetylation
in Mbd2� /� BMDCs (Fig. 2a; Supplementary Fig. 3;
Supplementary Data 4). This indicates that Mbd2 controls DC
expression of a wide range of immunologically relevant genes,
and that this process may involve modulation of H3K9/K14
acetylation.
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Mbd2 expression is required for optimal DC function. We next
addressed whether these alterations in H3K9/K14 acetylation,
which accompanied decreased expression of genes associated
with antigen presentation and co-stimulation of T cells and
increased expression of genes associated with antigen uptake
(Figs 1 and 2; Supplementary Fig. 3), translated into altered DC
function.

To assess DC ability to stimulate T-cell proliferation in vitro,
BMDCs were pulsed with ovalbumin (OVA) peptide, which binds

directly to major histocompatibility complex-II (MHC-II), or
OVA protein, which requires processing for presentation of OVA
peptides on MHC-II, then cultured with OVA-specific OT-II
CD4þ T cells. Analysis of OT-II proliferation showed that
Mbd2� /� BMDCs were significantly less able to stimulate T-cell
division compared with WT BMDCs when pulsed with OVA
peptide (Fig. 3a) or protein (Fig. 3b).

Mbd2� /� BMDCs also displayed reduced expression of
Icam-1 at both the transcript and the protein level (Fig. 1c).

Cell surface markers

Chemokines and receptors

WT Mbd2 –/–

Ccl17

Ccl5
Ccr7

Icam1

Cd86
Tnfrsf9

Il1r2

Cd40
Cd80

WT Mbd2 –/–

WT 1

WT 2

WT 3

Mbd2 –/– 1

Mbd2 –/– 2

Mbd2 –/– 3

1,000

800

600

400

200

0S
ur

fa
ce

 a
re

a 
(μ

M
2 )

WT Mbd2 –/–

CD11c

%
 O

f m
ax

WT Mbd2 –/–

Antigen presentation
H2-Aa Cd151

H2-M2
H2-DMb2

Ciita

Other

Jak-STAT signalling

Socs2

Jak2
Asb2

Irf4

Retnla

Cell surface markers

Antigen processing

WT Mbd2 –/–

Ifi30

Antigen uptake

Sort1

Cd68
Arpc5

Mrc1
Stab1

Fcgr4

Slc11a1

1.5

1.0

0.5

0

C
cl

17
 (

a.
u.

)

WT Mbd2 –/–

* 150

100

50

0C
C

L1
7 

(n
g 

m
l–1

)

WT Mbd2 –/–

****

1,500

500

1,000

0

C
D

86
 (

gM
F

I)

WT Mbd2 –/–

****2,000

500

1,500

1,000

0

C
D

80
 (

gM
F

I)

WT Mbd2 –/–

***

4,000

1,000

3,000

2,000

0

M
H

C
-I

I (
gM

F
I)

WT Mbd2 –/–

**

180

160

140

120

100

80

C
D

40
 (

gM
F

I)

WT Mbd2 –/–

* 1.5

0.5

1.0

0

M
rc

1 
(a

.u
.)

WTMbd2 –/–

**2.0

0.5

1.0

1.5

0

C
d6

8 
(a

.u
.)

WT Mbd2 –/–

**3.0

1.0

2.0

0

S
or

t1
 (

a.
u.

)

WT Mbd2 –/–

**

Cell surface markers

Chemokines and receptors Antigen presentation

1.5

1.0

0.5

0

Ja
k2

 (
a.

u.
)

WT Mbd2 –/–

* 1.5

1.0

0.5

0

Ir
f4

 (
a.

u.
)

WT Mbd2 –/–

**2.5

2.0

0.5

1.0

1.5

0

S
oc

s2
 (

a.
u.

)

WT Mbd2 –/–

**

Jak-STAT signalling

2.5
2.0

0.5

1.0

1.5

0

R
et

nl
a 

(a
.u

.)

WT Mbd2 –/–

**

Other

4

3

1

2

0

Ifi
30

 (
a.

u.
)

WT Mbd2 –/–

*

Antigen processing Antigen uptake

Log2 normalized intensity
8 10 12 14

8 10 12

8 9 10

8 9 1011

9 10 11

8 9 1110

8 9 10

8 9 10 11

8 9 10 11

Figure 1 | Mbd2 regulates expression of several key DC pathways associated with APC function. (a) WT or Mbd2� /� BMDCs cultured on

multichamber glass slides were stained with phalloidin (green) and 4,6-diamidino-2-phenylindole (blue) and surface area analysed by confocal microscopy.

Photomicrographs are representative images from five fields in one experiment of three (scale bars, 38 mM (top panel) and 7 mM (bottom panel)).

CD11c staining on WT (blue) and Mbd2� /� (red) BMDCs (one of six experiments) was assessed by flow cytometry. (b) Heat map showing the mRNA

signature of WT versus Mbd2� /� BMDCs (119 genes, log2 normalized intensity, twofold change-filtered, Po0.05 (moderated t-test), three biological

replicates per genotype). (c) Heat map showing 18 downregulated Mbd2� /� versus WT BMDCs genes selected based on putative function following

network analysis. (d) Heat map showing nine upregulated Mbd2� /� versus WT BMDCs genes selected based on putative function following network

analysis. (e) To validate microarray data, mRNA expression of genes of interest were assessed by qPCR (normalized against Hprt, a.u.), surface protein

expression measured by flow cytometry and secreted protein by ELISA, comparing WT and Mbd2� /� BMDCs. Results are meanþ s.e.m. (three replicate

wells, one of at least six experiments). *Po0.05, **Po0.01, ***Po0.001, ****Po0.0001 (Student’s t-test). a.u., arbitrary units; gMFI, geometric mean

fluorescence intensity.
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ICAM-1 (intercellular adhesion molecule 1) has been shown to be
important for controlling the duration of DC–T-cell interac-
tions41, and Mbd2� /� BMDCs bound a significantly reduced
number of activated CD4þ T cells compared with WT BMDCs
under conditions of shear flow in vitro (Fig. 3c).

In addition to decreased expression of molecules associated
with T-cell interaction and stimulation, Mbd2� /� BMDCs
showed increased expression of a range of mRNA transcripts
related to antigen uptake (Fig. 1). To determine the functional
impact of increased expression of these genes, DCs were cultured
with DQ-OVA, which is internalized by macropinocytosis via
Mrc1 (ref. 42). In keeping with their increased Mrc1 mRNA
expression (Fig. 1), Mbd2� /� BMDCs displayed significantly
increased capacity to take up DQ-OVA compared with WT
BMDCs (Fig. 3d).

Together, these data reveal that Mbd2 is centrally involved in
the ability of DCs to take up, process and present antigen and
activate CD4þ T cells, highlighting the importance of epigenetic
regulation, via methyl-binding domain proteins, in controlling
optimal DC APC function.

CD11cþ cell Mbd2 is vital for optimal Th2 responses. Having
identified that Mbd2 plays a key role in regulating the multiple
aspects of basic DC function, we next wanted to specifically
assess its importance during CD4þ T-cell polarization. To first
determine the general influence of Mbd2 over this process, we
injected Mbd2� /� mice with eggs from S. mansoni (a potent
Th2 stimulus)8 or heat-killed St (for promotion of Th1/17
polarization)43 and measured responses in the draining lymph

nodes (LNs) 7 days later. As in many complex Th2 settings, along
with Th2 cytokines, S. mansoni eggs induce low-level interferon-g
(IFNg), and minimal interleukin (IL)-17, in C57BL/6 mice44,45.
While antigen-specific IL-4 was similar following S. mansoni egg
injection of Mbd2� /� mice, other Th2 cytokines were
significantly decreased (Fig. 4a). Further, in contrast to Th2
cytokines, Mbd2� /� mice showed intact IFNg following
injection with S. mansoni eggs (Fig. 4a) or IFNg/IL-17 in
response to St (Fig. 4b). This demonstrated that global deficiency
of Mbd2 results in defective Th2 rather than Th1/17 polarization,
but did not distinguish whether this is attributable to a direct or
indirect effect of Mbd2 on T cells or DCs.

Several of the genes that we identified as being dysregulated in
Mbd2� /� BMDCs (Fig. 1) have previously been linked to Th2
priming (for example, Cd40 (ref. 11), Cd80/Cd86 (ref. 12),
Retnla16, Jak2 (ref. 21) and Ccl17 (ref. 15)), suggesting that Mbd2
may play a key role in governing the ability of DCs to prime Th2
responses. To directly address this possibility, mice with loxP sites
flanking the first exon of Mbd2 were generated and bred with
mice that express Cre recombinase in DCs (CD11c-Creþ )46 to
delete Mbd2 in CD11cþ DCs (Mbd2DDC; Supplementary Fig. 4).
Mbd2 transcripts in sorted splenic CD11chi cells from Mbd2DDC

mice were reduced compared with CD11c-Cre� littermate
controls (Supplementary Fig. 4g), while splenic DC
development was equivalent (Supplementary Fig. 4h). Mbd2DDC

mice displayed significantly impaired Th2 cytokine production in
response to S. mansoni egg challenge (Fig. 4c), but unaltered IFNg
priming following egg injection (Fig. 4c) or IFNg/IL-17 in
response to St (Fig. 4d). As expected, S. mansoni eggs induced
IL-17 at negligible levels in WT, Mbd2� /� or Mbd2DDC mice
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(Fig 4b,d). Thus, these data reveal that expression of Mbd2 by
DCs is vital for promotion of optimal Th2 immunity, but is not
fundamentally required for Th1/17 induction, in vivo.

Given the complexity of schistosome egg challenge in vivo,
we next focused on the influence of Mbd2 on the ability of DCs
to direct CD4þ T-cell polarization in vitro. WT BMDCs
co-cultured with CD4þ T cells from KN2xIL-10eGFP (enhanced
green fluorescent protein) or KN2xIL-13eGFP reporter
mice16,47,48 (Fig. 5a) promoted eGFP (IL-10 or IL-13) or
huCD2 (IL-4) expression (Fig. 5b), and secretion of IL-10 and
IL-13 (Fig. 5c) in Th2 polarizing conditions. In comparison,
Mbd2� /� DCs displayed a marked impairment in Th2 inductive
ability (Fig. 5b,c), while WT or Mbd2� /� BMDCs induced
similar IFNg, IL-17 and IL-10 in Th1/Th17 settings (Fig. 5d,e),
in vitro. In addition, Mbd2� /� DCs pulsed with SEA from S.
mansoni displayed a strikingly reduced ability to prime antigen-
specific Th2 cytokines in vivo following adoptive transfer into
naive WT recipients (Fig. 5f,g). Along with the data presented in
Fig. 4, these results strongly suggest that DC expression of Mbd2
is particularly important for optimal Th2 response induction both
in vitro and in vivo.

DC Mbd2 is necessary for initiation of lung allergic
inflammation. House dust mites (HDM) are among the most
common allergens in humans and potent inducers of bronchial
inflammation in mice, with a strong Th2 involvement49,50.
Sensitization by intranasal transfer of BMDCs that have been
exposed to HDM (HDM-DCs), followed by intranasal challenge
with HDM antigen, is a non-invasive system to induce murine
allergic lung pathology (Fig. 6a)51,52. Using this approach, we
next assessed whether Mbd2 is required for DCs to initiate
Th2 allergic airway inflammation. WT HDM-BMDCs capably
sensitized recipients to generate a robust inflammatory response
on HDM challenge, with concomitant recruitment of
mononuclear cells, neutrophils and eosinophils evident in
bronchoalveolar lavage (BAL) fluid and lung tissue (Fig. 6b,c;
Supplementary Fig. 5a). In contrast, recipients that had been
sensitized with Mbd2� /� HDM-BMDCs had significantly
reduced numbers of these cells in BAL fluid and lung, and a
significantly reduced Th2 cytokine response in BAL fluid and
lung tissue (Fig. 6d,e). Impaired immune priming was also
evident in reduced numbers of both effector and regulatory lung
CD4þ T cells in mice sensitized with Mbd2� /� HDM-BMDCs
(Fig. 6f; Supplementary Fig. 5b). Finally, histology showed much
less marked lung inflammation in mice sensitized with Mbd2� /�

HDM-BMDCs versus WT HDM-BMDCs (Fig. 6g). Thus, DC
expression of Mbd2 is essential for initiation of a strong allergic
pulmonary response against HDM in vivo.

Discussion
Despite Th2 immunity mediating pathogenic allergic disorders and
controlling protection to large extracellular pathogens, the central
mechanisms that DCs employ to initiate Th2 polarization are
poorly understood. We now provide a clear demonstration that
epigenetic mechanisms play a dominant role in DC induction of
type-2 immunity against both helminth antigen and allergens,
regulating expression of key target genes. Furthermore, DC
expression of Mbd2 appears to be less important in Th1/17
settings, as Mbd2� /� BMDCs retained the ability to initiate Th1
and Th17 responses both in vitro and in vivo, even though they
displayed a basally impaired capacity to stimulate proliferation of,
and adhere to, CD4þ T cells in vitro.

Mbd2 is thought of as a reader of the mCpG signature that
recruits or associates with the NuRD co-repressor complex, which
in turn reinforces transcriptional silencing26,40. Thus, a surprising
result from our work was that Mbd2� /� BMDCs in fact
displayed a larger number of downregulated, rather than
upregulated, mRNA transcripts (Fig. 1). This suggests that
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Figure 3 | Mbd2 regulates DC antigen uptake and interaction with CD4þ
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Mbd2 is likely to function in a more dynamic manner than
simply through direct transcriptional silencing of genes that
impede Th2 promotion. Since many transcripts were significantly
downregulated in Mbd2� /� BMDCs (Fig. 1), some of which had
an accompanying reduction in H3K9/K14 acetylation levels
(Fig. 2; Supplementary Fig. 2), it is possible that Mbd2 may act in
a more indirect fashion, regulating expression of transcriptional
repressors that, when released from control in Mbd2� /� DCs,
reduce transcription of their target genes. However, this was not
obviously the case, with the genes identified by pathway analysis
as being significantly upregulated in Mbd2� /� BMDCs being
primarily associated with increased antigen uptake and
processing, rather than inhibition of transcription (Fig. 1).
Another alternative is that Mbd2 could enhance, as well as
repress, gene expression in DCs. This dual function for Mbd2
would be in line with a recent study, which showed that genes
bound by Mbd2 alone are transcriptionally repressed, while genes
that are bound by both Mbd2 and Mbd3 (another methyl-CpG-
binding domain family member) require Mbd2 for activation53.
In this case, loss of Mbd2 alone could result in downregulated
expression of that subset of target genes. These models are not
mutually exclusive, and further work is required to identify which

pathway dominates in Mbd2 regulation of DC function.
Irrespective of this, our study provides strong evidence that
DC-mediated induction of type-2 immunity is not a passive
default process, instead requiring active regulation of gene
expression.

Although displaying many similarities, the immunological
events that lead to allergic responses are very different to helminth
infections3,5, yet we have identified that both types of immune
challenge require DC expression of Mbd2 for initiation of an
optimal Th2 response. Mbd2� /� BMDCs were less able to bind
and activate CD4þ T cells in vitro (Fig. 3), likely due to reduced
expression of Icam-1, MHC-II and co-stimulatory molecules
(Cd40, Cd80/Cd86 and 4-1BB) (Fig. 1). While MHC-II, CD40 and
CD80/86 have been previously shown to be required for DC-
mediated Th2 induction11,12,54, our data now suggest new roles for
ICAM-1 and 4-1BB in this process. Supportive of this possibility,
ICAM-1-deficient animals display reduced Th2 cell numbers in a
murine model of systemic sclerosis55, while antibody engagement
of 4-1BB on T cells inhibits allergic responses56. In addition,
Mbd2� /� BMDCs showed reduced mRNA expression for the
chemokines CCL5 and CCL17 (Fig. 1), chemoattractants involved
during lung inflammation52. In particular, CD11bþ DC secretion
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of CCL17 is thought to be an important contributor to pulmonary
allergic responses, required for recruitment of Th2 cells15. Our data
highlight that Mbd2 regulates BMDC CCL17 expression and
secretion (Fig. 1), supporting the importance of this chemokine for
optimal Th2 immunity against either allergens or helminth
antigens.

Analysis of Mbd2� /� BMDCs also identified reduced mRNA
expression of a range of genes involved in core signalling
pathways, including Jak2, Irf4 and Socs2. Both Jak2 and Irf4 have
recently been implicated in DC Th2 function: Jak2 was shown to
be important for STAT5a signalling in DCs and upregulating
expression of co-stimulatory molecules, chemokines and their
ability to induce Th2 responses following exposure to TSLP
(thymic stromal lymphopoietin)21, while Irf4 may be a general
requirement for efficient CD4þ T-cell priming57, with its
conditional deletion in CD11c expressing cells reducing type-2

immunity to helminth infection19 and HDM elicited allergic
responses20. Our study further supports the hypothesis that DCs
require Jak2 and Irf4 to prime type-2 immunity, but provides the
novel insight that expression of these signalling proteins is under
epigenetic control by Mbd2. Furthermore, our data indicate that
Socs2, which has previously been shown to influence DC
responses to lipopolysaccharide by limiting STAT3
phosphorylation after TLR (Toll-like receptor) ligation58, may
also play a key role, downstream of Mbd2, in modulating DC
ability to prime Th2 cells.

In summary, we propose that Mbd2 controls low-level
expression of a network of core molecules that together enable
DC promotion of optimal Th2 immunity. Whether Mbd2/NuRD
regulates expression of downstream co-stimulatory molecules and
chemokines directly, or indirectly via signalling molecules such as
Jak2, Irf4 and Socs2, remains a question requiring further study.
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However, our work goes beyond profiling to emphasize how
epigenetic mechanisms can be crucial for determining not only
activation status, but also function of innate immune cells. It also
identifies in Mbd2 a single protein that is central for Th2
induction by DCs, providing a platform for future development of
interventions targeting DCs, Mbd2 or associated proteins, to
enable therapeutic manipulation of allergic inflammation and
anti-helminth host defence.

Methods
Animals. Mbd2� /� (ref. 59), KN2xIL-10eGFP16,47, KN2xIL-13eGFP47,48,
IL-10eGFP60 and OT-IIxLy5.1 (ref. 16) mice all on a C57BL/6 background were
maintained in the School of Biological Sciences, University of Edinburgh, or the
Faculty of Life Sciences, University of Manchester, in compliance with the UK
Home Office Animals (Scientific Procedures) Act 1986. C57BL/6 mice were either
bred in-house or obtained from Charles River. Age- and sex-matched male or
female mice aged 6–20 weeks were used in the experiments.

Mice containing loxP sites flanking exon1 of Mbd2 (Mbd2fl/fl) were generated
using a targeting vector (pBSIIskþMbd2_cKO_3_C6) consisting of two
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qPCR (normalized against Hprt, a.u.). (f) Proportions of TCRbþCD4þFoxp3þ Treg cells (Treg) and activated effector TCRbþCD4þFoxp3�CD44þ

CD69þ T cells (Teff) in lung tissues were assessed by flow cytometry. (g) Representative lung sections from recipients of WT or Mbd2� /� HDM-BMDCs,

stained with hematoxylin and eosin (scale bar, 50mM). Bar graphs show meanþ s.e.m. (three to six mice per group, one of six experiments). *Po0.05,

**Po0.01, ***Po0.001, ****Po0.0001 (ANOVA). a.u., arbitrary units.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7920

8 NATURE COMMUNICATIONS | 6:6920 | DOI: 10.1038/ncomms7920 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


overlapping fragments (A and B) covering 9,247 kb of genomic DNA including
exon1 of Mbd2. Fragment A (2,679 bp) was PCR amplified from genomic DNA
from 129 ola mice embryonic stem cells and fragment B (6,683 bp) from BAC DNA
(129/Sv mice; Supplementary Fig. 4). Gene targeting with E14TG2a embryonic
stem cells was performed as previously described61. Correctly targeted clones were
identified by PCR screening and confirmed by Southern blotting as performed
previously61, injected into C57BL/6 blastocysts and transferred to pseudopregnant
recipient females. Chimeras were identified by coat colour and tested for germline
contribution by mating to C57BL/6 mice. Heterozygotes were bred to produce
homozygous Mbd2fl/fl mice and genotype was confirmed by Southern blot
(Supplementary Fig. 4) and PCR (Supplementary Table 1). Mbd2 protein
expression was unaltered in Mbd2fl/fl mice, confirmed by western blot using the
R593 anti-Mbd2 (ref. 59; Supplementary Fig. 4). To generate animals lacking Mbd2
in CD11cþ cells (Mbd2DDC mice), Mbd2fl/fl mice were bred with Cd11c-Creþ

mice46, resulting in a mixed 129/Ola�C57BL/6 background. Controls were
Mbd2fl/flCd11c-Cre� littermates. Mbd2 levels in splenic DCs were measured by
qPCR (Supplementary Fig. 4).

Cell culture and isolation. BMDCs were generated with granulocyte–macrophage
colony-stimulating factor as previously described54 with the omission of 2-ME.
In brief, 2� 105 bone marrow cells were seeded in 10 ml complete medium (RPMI-
1640 (Sigma) containing 20 ng ml� 1 recombinant granulocyte–macrophage
colony-stimulating factor (Peprotech), 10% foetal calf serum (Sigma), 2 mM
L-glutamine (Gibco), 50 U ml� 1 penicillin and 50 mg ml� 1 streptomycin (Life
Technologies)). Cells were cultured at 37 �C in a humidified atmosphere of 5%
CO2. On day 3, 10 ml of complete medium was added and on days 6 and 8, 9 ml of
media was gently aspirated and replaced with 10 ml of fresh complete medium.
Following 10 days of culture, DCs were harvested and replated at 2� 106 cells per
ml for further assays. To assess morphology, 5� 105 FACS-sorted CD11cþ

BMDCs (495% purity, BD FACS Aria II) were cultured on chambered coverglass
(VWR) for 18 h, then fixed, permeabilized and stained with BODIPYFL phallacidin
(Life Technologies) and 4,6-diamidino-2-phenylindole in ProLong Fade Gold
(Invitrogen) mounting media. Slides were examined by confocal microscopy (Leica
SP5 II, 405 and 488 nm, � 63, using LAS AP software), with 450 images assessed
for each condition, rendered and analysed using Volocity software (Improvision).
To assess antigen uptake, 2� 105 BMDCs were incubated with 10 mg DQ-OVA
(Life Technologies) for 20 min at 37 or 4 �C before staining for flow cytometric
analysis. To assess DC responses to antigen exposure, 2� 106 BMDCs were
incubated with 5 mg ml� 1 heat-killed St (aroA attenuated strain of S. enterica
serovar Typhimurium SL3261) or 25 mg ml� 1 SEA54 for 6 h at 37 �C before flow
staining and qPCR as described below.

For some experiments, mononuclear lung and spleen preparations were
obtained using a similar method as previously described for splenic single cell
suspensions8, with incubation at 37 �C for 15 min (spleen) or 30 min (lung).
Digested lung was then passed through a 70-mM cell strainer with the aid of a
syringe plunger, red blood cells lysed and cells counted before resuspension to the
required concentration. Splenic CD11chiMHCIIþ cDCs were pre-enriched using
Dynal DC negative selection kit (Life Technologies) and FACS sorted (495%
purity) for subsequent analysis by qPCR.

mRNA microarray and reverse transcription qPCR. RNA was extracted from
BMDCs using TRIzol, Pure Link RNA Mini Kits and DNase-treated (all from Life
Technologies). For microarrays, RNA was then labelled using TotalPrep RNA
Amplification kits (Life Technologies) and hybridized with Illumina MouseWG-6
BeadChip arrays (MouseWG6_V2_0_R3_11278593_A) with three biological
replicates each for WT and Mbd2� /� BMDCs. All analyses were conducted in R
using Bioconductor62. A total of six arrays were QC (quality control) analysed
using arrayQualityMetrics in Bioconductor63. Raw data that passed QC were
transformed using a variance-stabilizing transformation method before
normalization across all arrays by the robust spline normalization method, using
the lumi package in Bioconductor64. Pairwise group comparisons were undertaken
using linear modelling. Subsequently, empirical Bayesian analysis was applied,
including vertical (within a given comparison) P value adjustment for multiple
testing, which controls for false-discovery rate, using the limma Bioconductor
package. Functional-enrichment analyses were performed for KEGG pathways and
GO terms using the appropriate packages. Focused ‘genes of interest’ lists were
assembled from the literature and other publically available resources. The
microarray data discussed in this publication were deposited in NCBI’s Gene
Expression Omnibus65, accessible through GEO Series accession number
GSE66096.

For RT–qPCR of tissue, complementary DNA was generated from extracted
RNA using SuperScript-III and Oligo-dT (all from Life Technologies). Relative
quantification of genes of interest was performed by qPCR analysis using Roche
LightCycler 480, with LightCycler SYBR Green I Master mix, compared with a
serially diluted standard of pooled complementary DNA. Expression was
normalized to hypoxanthine–guanine phosphoribosyltransferase (Hprt) or
(Gapdh). Primers are listed in Supplementary Table 1.

Chromatin immunoprecipitation and sequencing. ChIP was performed as
described previously66 with modifications. Cross-linked chromatin from 3–6� 106

BMDCs was incubated with anti-IgG (Abcam) or anti-H3ac (Millipore).
Immunoprecipitated DNA was analysed by high throughput Illumina HiSeq 2,000
sequencing, following standard protocols. Illumina data were mapped to the mouse
genome (NCBIm37) using BWA67 with reads mapping to multiple locations
filtered out. Mapped sequence data (WIG files) were analysed using tools developed
for DNA methylation analysis68, based on R and perl scripts interfaced with the
Galaxy server. Raw sequencing data was normalized to the average number of
mapped bases in each sample to account for variable sequence depth between
samples. ChIP sequencing density was determined by calculating the average
number of hits per base in 100-bp windows with a 20-bp slide using
normalized.WIG files over a 6-kb interval centred on the TSS (for promoters).
Composite profiles were generated by plotting median values in each window for
each sample.

In vitro and in vivo T-cell activation and polarization. To assess T-cell pro-
liferation, CD4þ T cells were negatively selected from the spleen and LN of
OT-IIxLy5.1 T-cell receptor transgenic mice (Dynal, Life Technologies), labelled
with CFSE (carboxyfluorescein succinimidyl ester) as described previously16, and
cultured with 5� 104 WT or Mbd2� /� BMDCs in the presence of 0.01 mg ml� 1

OVA323–339 peptide or 5 mg ml� 1 OVA protein (Sigma; endotoxin depleted in-
house). Cultures were incubated at 37 �C for 4 days before assessment of CFSE
dilution by flow cytometry.

For measurement of DC–T-cell adhesion, based on previous work69, WT or
Mbd2� /� BMDCs were seeded onto Ibidi m-slide VI0.4 plates (30ml per well at
6� 106 cells) and adhered for 18 h. CD4þ T cells were positively selected from WT
spleens and LN (Miltenyi Biotec). T cells (1� 106 cells per ml in adhesion medium;
RPMI plus 0.1% BSA, 40 mM HEPES and 2 mM MgCl2) were stimulated with
200 nM PdBu for 5 min to activate their integrins, and flowed over the DCs at a rate
of 0.3 dynes per cm2 using a Multi-phaser NE-1,000 (New Era Pump Systems Inc.)
for 10 min, with manual counting of adhered T cells in the field of view at 2-min
intervals.

For DC polarization of T cells in vitro, CD4þGFP� T cells were FACS sorted
from KN2xIL-10eGFP, KN2xIL-13eGFP or IL-10eGFP mice and cultured with WT
or Mbd2� /� BMDCs, 1 mg ml� 1 anti-CD3 (grown in-house), in the presence or
absence of IL-4 (20 ng ml� 1, Peprotech) for Th2 conditions, as described
previously16, or IL-12 (20 ng ml� 1, Peprotech) for Th1 conditions, or IL-6
(20 ng ml� 1), transforming growth factor-b (1 ng ml� 1) and IL-23 (10 ng ml� 1,
all Peprotech) for Th17 conditions. To assess Th1/Th17 or Th2 priming in vivo,
25 mg heat-killed St or 2.5� 104 S. mansoni eggs were injected subcutaneously per
foot into recipient mice. Draining popliteal LNs were harvested 7 days later, and
restimulated as described previously54,70. In some experiments, mice were injected
subcutaneously with 2.5� 105 BMDCs that had been cultured for 6 h with
25 mg ml� 1 SEA or medium alone. popliteal LNs were harvested 7 days later and
cultured as described above. In other experiments, based on previous work51,
BMDCs were cultured for 18 h with 100 mg ml� 1 HDM (Dermatophagoides farina,
Df, Greer Laboratories). Mice were then sensitized intranasally with 1� 104

BMDCs in 50 ml PBS, challenged with 5 mg Df intranasally on days 14 and 15 and
euthanized on day 17. Cytospins were prepared from BAL for differential cell
counts (200 cells per slide), following Diff Quick staining (Reagena). Standard
hematoxylin and eosin stain staining was performed on the lung lobe sections to
assess gross pathology, and portions of the lung collected into TRIzol for RNA
extraction and qPCR.

Flow cytometry and ELISA. Cells were first stained with LiveDead aqua or blue
(Life Technologies). Following FcR-Block (2.4G2), cells were stained using the
following monoclonal antibodies (all used at 1:200 dilution): CD3-APCe780,
CD4-APC or A700, CD8a-PE/Cy7, CD11c-APC or BV421, MHC-II-PerCP/Cy5.5
or eFlour450, CD11b-BV711 or PE, CD19-e780, CD80-PerCP/Cy5.5, CD40-PE,
CD44-BV570, CD69-FITC CD86-AF488, Foxp3-e450, F4/80-PE/Cy7, Gr1-FITC,
HuCD2-PE, IgM-APCe780, SiglecF-PE and TCRb-APCe780 (BD Biosciences,
BioLegend or eBioscience). Foxp3 staining was performed with the eBioscience
FoxP3 staining kit. Samples were acquired using FACS LSR II or FACS Canto II
using BD FACSDiva software and analysed with FlowJo v.9 software (Tree Star).
Cytokines were measured in culture supernatants by ELISA using paired mono-
clonal antibody, and recombinant cytokine standards, or Duosets (eBioscience,
BD Biosciences, BioLegend, R&D Systems and Peprotech).

Statistical analysis. Statistical analyses were carried out using GraphPad Prism 6.
The Student’s t-test or ANOVA (analysis of variance) was used to determine
significant differences between the sample groups (in figures, *Po0.05, **Po0.01,
***Po0.001 and ****Po0.0001).
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