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Bioluminescence imaging (BLI) is a relatively new noninvasive technology used for quantitative assessment of tumor growth
and therapeutic effect in living animal models. BLI involves the generation of light by luciferase-expressing cells following
administration of the substrate luciferin in the presence of oxygen and ATP. In the present study, the effects of hypoxia,
hypoperfusion, and pH on BLI signal (BLS) intensity were evaluated in vitro using cultured cells and in vivo using a xenograft
model in nude mice. The intensity of the BLS was significantly reduced in the presence of acute and chronic hypoxia. Changes
in cell density, viability, and pH also affected BLS. Although BLI is a convenient non-invasive tool for tumor assessment, these
factors should be considered when interpreting BLS intensity, especially in solid tumors that could be hypoxic due to rapid growth,
inadequate blood supply, and/or treatment.

1. Introduction

In vivo bioluminescence imaging (BLI) is a technology that
is frequently used in the study of animal tumor models [1].
It has been successfully used to follow many different types
of tumors, such as prostate, breast, colon, ovarian, and lung
cancers [2–8]. The in vivo BLI method is based on the action
of luciferase on luciferin which produces light emission
within the xenograft [9, 10]. The light-producing reaction
requires molecular oxygen and ATP for the oxidation of
luciferin to oxyluciferin. The light produced is transmitted
through tissue and detected by a sensitive charge-coupled
device (CCD) camera; the acquired data can be presented
as qualitative pseudocolor images or as quantitative photon
counts.

A significant advantage of in vivo BLI is the ability
to noninvasively obtain several data points from the same
group of animals by repeated monitoring. In addition, the

sensitivity of in vivo BLI permits the detection of very small
tumors or metastases [8, 11]. A major concern is that solid
tumors frequently outgrow their oxygen supply and can
develop central hypoxia [12]. Alternatively, tumor hypoxia
can develop as a result of treatment [13]. In these settings,
oxygen available for the BLI reaction could be reduced to
limiting levels, which would result in a reduced BLI signal
(BLS) and underestimation of the actual tumor size [14].

In the process of developing an in vivo BLI-based mouse
model of U87 glioma cells for evaluation of radiotherapy, we
noted that these solid tumors frequently become transiently
or chronically hypoxic and that, in this situation, tumor
growth determined by BLI may be an underestimate. We
therefore present the effect of oxygen, hypoxia, pH, and
cellular viability on the BLS in this model. The in vitro and in
vivo results indicate that the development of hypoxia or pH
changes could impact the use of BLI in quantitative studies of
tumor growth and treatment response.

http://dx.doi.org/10.1155/2013/287697
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Figure 1: Flank xenograft growth by caliper measurement and BLI. U87-Luc flank xenografts were measured by calipers (a) and BLI (b)
twice per week for 3 weeks.The tumors were allowed to achieve a large size to create central hypoxia. The tumors were segregated into upper,
middle, and lower tertiles based on their BLS on day 17. For each tertile group, the average BLS on day 21 relative to day 17 was quantified as
a fold change (c).

2. Materials and Methods

2.1. Cell Lines. U87 human malignant glioma cells were
obtained from ATCC (Manassas, VA) and were transfected
with the cDNA encoding firefly luciferase to produce U87-
Luc cells. These were maintained in DMEM medium (Invit-
rogen, Grand Island, NY) supplemented with 10% fetal
bovine serum (JRH Biosciences, Lenexa, KS) and 1% peni-
cillin/streptomycin (Invitrogen).

2.2. Xenograft Tumors. Xenograft tumors were generated in
female nude mice 7-8 weeks old. Five million U87-Luc cells
in 100 𝜇L PBS were injected subcutaneously in the dorsal side
of the upper hind limb of female mice using insulin syringe.
Xenografts were allowed to grow for 10 days when the initial
measurement was made with calipers and with BLI. Tumor
volume measurements were calculated using the formula for
an oblong sphere: volume= (width2 × length).Themicewere
handled in accordance with IACUC guidelines; experiments

were approved by the institutional Committee for Animal
Research.

2.3. Bioluminescent Imaging. BLI was performed using the
IVIS-200 Imaging System (Xenogen Corporation, Berkeley,
CA). Mice were anesthetized by inhalation of 2% isoflurane
(Abbott Laboratories, Chicago, IL). Each set of mice were
positioned in the special imaging chamber and injected
subcutaneously (dorsal midline) with 150mg/kg D-luciferin
(Xenogen; PerkinElmer, Waltham, MA) in approximately
200𝜇L. The luminescent camera was set to 1min exposure,
medium binning, f/1, blocked excitation filter, and open
emission filter. The photographic camera was set to 2 s
exposure, medium binning, and f/8. The field of view was
set at 22 cm distance to image up to 5 mice simultaneously
or 4–12.9 cm to view plates and tubes. Images were acquired
in sequence at 1min intervals (60 s exposure, no time delay)
for 30min. The intensity of BLS in the luminescent area of
the tumor, which is also described as the region of interest
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Figure 2: Impact of cell number and cell viability on BLS. Aliquots of U87-Luc cells (500 × 103 cells/𝜇L) were pelleted in conical tubes, and
BLI was performed ((a) image; (b) quantification). Two equal aliquots of U87-Luc cells were evaluated by BLI after one sample was sonicated
for 1min (c).

(ROI), was determined by Living Image 3D software (version
1; Xenogen). BLS was plotted as photon/sec/m2 against time
as an indicator of tumor burden.

2.4. BLI after Acute Ischemia. A nude mouse with bilateral
thigh U87-Luc xenografts underwent BLI as described above.
While under the same general anesthesia, a rubber band
was firmly tightened around the right thigh proximal to the
tumor. 2min after application of the band, BLS was collected
for 1min. The band was then removed; 2min later, BLS was
collected again for 1min.

2.5. BLI after Systemic Hypoxia. A nude mouse with right
thigh U87-Luc xenografts was kept in a hypoxia chamber
(Bactrox, SHEL LAB, Sheldon Manufacturing Inc., Cor-
nelius, OR) for 10min in 95% N

2
/5% CO

2
. The mouse was

injected SC with 150mg/kg D-luciferin. General anesthesia

was induced by IP injection of 10mg/kg ketamine.Themouse
was then put into a sealed transparent bag and transferred to
the imaging chamber; BLI was performed as described above.
Complete euthanasia was achieved by CO

2
inhalation while

still in the sealed bag. BLI was performed before and after
1mL air was injected into the tumor using an insulin syringe.

2.6. In Vitro Hypoxia. Oxyrase (Oxyrase Inc., Mansfield,
OH), which consumes oxygen directly, was used to induce
acute hypoxia in the tissue culturemedia (final concentration
50–250mU/mL).

3. Results and Discussion

Figure 1 compares the growth of U87-Luc flank xenografts
when measured by calipers (Figure 1(a)) or BLI (Figure 1(b))
and allowed to grow to a large size. The two evaluations of
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Figure 3: Effect of acute hypoxia and reoxygenation on BLS. U87-Luc cell pellets (a) or monolayers (b) were exposed to Oxyrase for 5min to
induce acute hypoxia before addition of luciferin and BLI. After Oxyrase addition and BLI, monolayers were reoxygenated by bubbling 1mL
of air through the media in each well; subsequent BLI is shown in (b) and results for the 200mU/mL Oxyrase treatment are quantified in (c).
Monolayers and cell pellets treated with Oxyrase that had been heat inactivated (boiling for 10min) were assessed by BLI (d).

tumor volume were similar through day 17, but subsequently
a drastic reduction in BLS was noted while volume calculated
using caliper measurements continued to increase. As shown
in Figure 1(c), the fold change in BLS on day 21 relative to
day 17 was dependent on tumor size. Specifically, tumors that
had the weakest BLS on day 17 (lower tertile) demonstrated,
on average, a 38.7% increase in BLS on day 21. Conversely,
tumors with the most intense BLS on day 17 (upper tertile)
showed an average of 55.8% reduction in BLS on day 21.

Regardless of tumor size on day 21, maximal BLS intensity
always occurred at the center of the tumor. Additionally,
some tumors were removed and sectioned immediately after
euthanasia; these did not show any gross evidence of central
necrosis. These findings suggest that the reduction in BLS on
day 21 was not a result of central tumor necrosis. Thus, the
correlation of change in BLS with tumor size suggests that the
BLS is impacted by physiologic tumor changes that correlate
with increasing size, such as hypoxia and/or pH change. In
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Figure 4: Effect of chronic hypoxia on BLS. U87-Luc cells were grown in 96-well plates either in normoxia or hypoxia (95% N
2
/5% CO

2
)

for 5 d (phase contrast microscopy, (a)). BLI was performed on triplicate wells at 1, 3, and 5 d and quantified at 1min (b). The impact of 5 d
of hypoxia on cell number and BLS was compared quantitatively (c). For cells treated with hypoxia for 5 d, BLI was repeated 5min and 24 h
after re-oxygenation and quantified at 1min (d).

order to investigate this phenomenon, we performed a series
of studies using BLI on cultured cells in vitro.

It is well established that BLS intensity correlates with
cell number. To demonstrate this for U87-Luc cells, aliquots
pelleted in conical tubes were assessed by BLI (Figure 2(a)).
Intensity of the BLS correlated with total cell number
(Figure 2(b)). To test the effect of viability on signal genera-
tion, equal volumes of either healthy, viable or sonicated cells
were exposed to luciferin and the BLS was collected for 1min.
Sonicated cells showed no light emission indicating that only
intact cells can produce BLS (Figure 2(c)).

In order to investigate the effect of hypoxia on BLS from
cultured cells, Oxyrase was used to create acute hypoxia.
Oxyrase is a mixture of membrane monooxygenases and

dioxygenases that removes dissolved oxygen rapidly from
aqueous and semisolid environments [15, 16]. U87-Luc cell
pellets and monolayers were exposed to Oxyrase for 5min to
induce acute hypoxia. Subsequent BLI is shown in Figure 3.
Oxyrase caused a dose-dependent reduction in BLS with
Oxyrase treatment. This reduction was reversed by reoxy-
genation (Figures 3(b) and 3(c)), which was performed by
bubbling air through the media. Heat-inactivated Oxyrase
did not impact BLS (Figure 3(d)).

To evaluate the effect of chronic hypoxia on BLI in vitro,
U87-Luc cells were grown in either a normoxic or hypoxic
environment for 5 days (Figure 4(a)) and BLI was performed
at 1, 3, and 5 days. Cells grown in hypoxia showed statistically
significant reduction in BLS compared to cells grown in
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Figure 5: Influence of pH on BLS. U87-Luc monolayers were incubated in media with the indicated pH for one min. BLS images and
quantification over time are shown in (a) and (b), respectively.

normoxia (Figure 4(b)).While BLSwas substantially reduced
after 3 and 5 d in hypoxia, cell number also decreased; how-
ever, the reduction in BLSwasmuch greater than the decrease
in cell number, 25-fold versus 5-fold, respectively, suggesting
a direct effect of hypoxia on the BLS (Figure 4(c)). At 5min
after reoxygenation, intensity of the BLS had quadrupled
(𝑃 < 0.05) and it continued to dramatically increase for 24 h
after reoxygenation (Figure 4(d)). The rapid early increase in
BLS with re-oxygenation is not attributable to proliferation
and represents the reversible impact of hypoxia on the
luciferase reaction resulting in reduced light emission. Thus,
the cell number is underestimated by the light emission under
hypoxic conditions. At 24 h after re-oxygenation, further
recovery of the BLS was noted and is likely attributable to
both increased oxygen availability leading to “correction” of
the BLS and also to proliferation in response to normoxia.

Hypoxia and acidosis may coexist in solid tumors, and
many cellular processes are pH dependent, including enzy-
matic activity and cell proliferation [17]. In general, tumors
are more acidic than normal tissues with median pH values
of about 7.0 in tumors and 7.5 in normal tissues [18–20], and
considerable variation in tissue pH at different regions of the
same tumor has been observed [18]. Figure 5 demonstrates
the impact of acidity on BLS from U87-Luc monolayers. BLS
wasmaximal between pH6 and pH8, with a gradual decrease
in BLS as the pH increased across this range.

In order to demonstrate the effect of acute ischemia on
in vivo BLI, a tourniquet was applied on the leg of a nude
mouse proximal to an established U87-Luc thigh xenograft.
BLI performed 2min after placement of the tourniquet
demonstrated substantially reduced BLS on the side of the

tourniquet with stable BLS on the contralateral side. Within
2min after releasing the tourniquet and restoring blood
flow to the tumor, a strong BLS was present; the BLS was
greater after reperfusion than prior to tourniquet placement
(Figure 6(a)). Thus, acute ischemia results in underestima-
tion of tumor size by BLI in an in vivo thigh xenograft tumor
model. While the decreased blood flow following tourniquet
placement undoubtedly leads to reduced substrate delivery to
the tumor, adequate substrate was present to produce a strong
BLS immediately prior to tourniquet placement (Figure 6(a)).
Thus, the dramatic reduction in BLS following tourniquet
placement is predominantly due to reduced oxygen tension
in the tumor. This concept is supported by the finding
that augmentation of tumor blood flow can enhance the
BLS. Figure 6(b) shows the BLS over time of U87-Luc thigh
xenografts. At 30minwith declining BLS, themicewere given
an intraperitoneal injection of nicotinamide, a peripheral
vasodilator that increases tissue perfusion. Immediately after
injection, BLS increased in all tumors, indicating that blood
flow augmentation increases BLS.

To further evaluate the significance of substrate delivery
versus oxygenation, BLI was performed in a systemically
hypoxic mouse, a dead mouse, and a dead mouse after
intratumoral air injection. The results are shown in Figure 7.
Prior to hypoxia, a strong BLS was noted (Figure 7(a)). After
10min in the hypoxia chamber, the BLS was completely
abolished (Figure 7(b)). When luciferin was injected prior
to termination, the postmortem mice exhibited no BLS
(Figure 7(c)). However, direct injection of air into the tumor
resulted in a strong BLS similar to the premortem tumor.This
demonstrates that, despite the lack of active perfusion and
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Figure 6: Effect of acute ischemia and reperfusion on in vivo BLS. (a) BLS was collected for 1min in a nude mouse bearing bilateral U87-Luc
subcutaneous thigh xenografts 5min after injection of D-luciferin.Themousewas treatedwith a right thigh tourniquet proximal to the tumor.
BLI was performed 2min after tourniquet application and then 2min after tourniquet removal. (b) BLS was collected at 1min intervals for
60min in nude mice bearing bilateral U87-Luc subcutaneous thigh xenografts. At 30min, nicotinamide was administered via IP injection.

continuous substrate delivery that occurs in the post-mortem
state, a BLS could still be generated by manual oxygenation.
This suggests that a decrease in the BLS of hypoperfused
tumors is not solely due to reduced substrate availability
and that hypoxia plays an important role in reducing the
BLS. Based on the previous data, tumors or treatments that
involve hypoxia, hypoperfusion, or substantial pH changes

may yield unreliable data when assessed by BLI. This may
be especially important for tumors located in deep tissues
[21]. It is assumed that the BLS will increase as the tumor
volume increases, but this relationship may not hold in the
setting of hypoxia. In certain cases, this may not lead to
misinterpretation of treatment outcomes. For example, when
solid tumors necrose centrally in response to therapy, the BLI
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Figure 7: In vivoBLI after acute systemic hypoxia and cessation of bloodflow.Anudemousewith aU87-Luc thigh xenograft tumor underwent
BLI (a) before transfer to a hypoxic chamber (95%N
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/5%CO

2
) for 10min followed by BLI in a sealed bag (b). After euthanasia, BLI was

performed (c). 1mL of air was then injected into the tumor and BLI was repeated (d).

signal will fall due to the hypoxia and necrosis, consistent
with the “death” of a portion of the tumor despite the overall
external tumor size continuing to enlarge as measured by
calipers. In these cases, BLI may be more representative of
treatment effect and caliper measurements may be mislead-
ing. Unfortunately, tumors that are simply hypoxic may also
appear smaller by BLI, despite being adapted to grow at
low oxygen tension. Tissue necrosis and death also affect
the optical properties of tissues and thus affect scattering
and absorption of light, which may additionally impact the
interpretation of BLI.

4. Conclusions

The use of BLI in xenografts provides a convenient method
for non-invasive monitoring of in vivo tumors; this is par-
ticularly useful when tumors are not accessible to calipers.
Many solid tumors undergo a certain degree of hypoxia
and pH changes with growth and/or treatment, which can
significantly reduce the BLS. Thus, caution should be used in
interpretation of BLI results when tumor hypoxia is present.
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