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Intestinal microbial dysbiosis is associated with various intestinal and extraintestinal disorders. Fecal microbiota transplantation
(FMT), a type of fecal bacteriotherapy, is considered an effective therapeutic option for recurrent Clostridium difficile infection
(rCDI) and also has important value in other intestinal diseases including irritable bowel syndrome (IBS) and inflammatory bowel
disease (IBD). The purpose of this review is to discuss promising therapeutic value in extraintestinal diseases associated with gut
microbial dysbiosis, including liver, metabolic, chronic kidney, neuropsychiatric, allergic, autoimmune, and hematological diseases

as well as tumors.

1. Introduction

The gut microbiota is an “invisible organ” of the human body
important for health. There are diverse microbes in different
anatomical areas of the gut, throughout the proximal to distal
gastrointestinal (GI) tract. The large intestine harbors the
majority of the gut’s flora [1]. In addition to differences in the
geographical distribution of gut microbiota, dynamic micro-
bial population also develops with age, with rapid changes
until 2 to 3 years of age, when adult-like gut microbiota
composition and stability are established [2, 3]. Firmicutes,
Proteobacteria, and Bacteroidetes are the most abundant
phyla, together accounting for up to 95% of the sequences,
while Fusobacteria, Actinobacteria, Tenericutes, Verrucomi-
crobia, Synergistetes, and Cyanobacteria each account for
0.1%-5% of the sequences in a healthy adult [4, 5].
Microbiota plays a variety of roles and has various func-
tions in the gut [6]. In addition to breaking down foods and
synthesizing nutrients, microbiota plays an important role in
the immune system [7-9], provides colonization resistance

[10, 11], protects against epithelial injury [12], promotes both
angiogenesis [13, 14] and fat storage [15], modulates human
bone mass density [16], modifies the nervous system [17],
and metabolizes therapeutic agents into active compounds
[18].

Gut microbiota homeostasis can be disrupted by many
factors, including medications, diet, disease states, and vac-
cination [1]. Previous research suggested that gut micro-
bial alterations are associated with many intestinal disor-
ders and various extraintestinal disorders such as obesity,
metabolic dysfunction [19-21], neuropsychiatric conditions
[22], autoimmune diseases [23], and tumors [24]. Targeting
the gut microbiota is being considered as an option to
improve human health. Fecal microbiota transplantation
(FMT), which transfers fecal microbiota from healthy donors
to restore the gut microbiota of a diseased individual [25-
27], has attracted great interest in recent years and has
been occasionally used to treat Clostridium difficile infection
(CDI) with great success [28]. In this brief review, we will
summarize the relationship between gut microbiota and
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inter- or extraintestinal disorders, and current clinical use or
emerging applications of FMT in recent years (Figure 1).

2. FMT for Intestinal Disorders

2.1. Clostridium Difficile Infection (CDI). CDI is a common
cause of antibiotic associated with diarrhea, and its pathology
is mediated by toxins secreted by bacteria [29]. Increasing
evidence, including meta-analyses, systematic reviews, and
randomized controlled trials (RCTs), has confirmed that
FMT is effective for the treatment of recurrent Clostridium
difficile infection (rCDI) [30-33]. According to the 2016
European consensus conference on FMT in clinical practice,
EMT is considered as a therapeutic option for both mild
and severe rCDI (quality of evidence: high. Strength of
recommendation: strong), and it can also be considered as
a treatment option for refractory CDI (quality of evidence:
low. Strength of recommendation: strong). However, there
is not enough evidence emphasizing that it can be used as
a single therapy for CDI (quality of evidence: low. Strength
of recommendation: weak) [34]. In one randomized trial
investigating the effectiveness of FMT in rCDI patients using
microbiological and/or clinical resolution, a combination of
FMT and vancomycin was found to be superior to a treatment
regimen of vancomycin or fidaxomicin [35].

2.2. Inflammatory Bowel Disease (IBD). Although IBD eti-
ology and pathogenesis are unclear, genetic links to host
pathways suggest an underlying role of aberrant immune
responses to intestinal microbiota [36, 37]. IBD patients

showed a decrease in microbial diversity, reduced abundance
of several taxa in the Firmicutes phylum, and increased
Gammaproteobacteria abundance [38, 39]. However, it is
unclear whether these differences are a cause or consequence
of IBD development.

Using FMT for ulcerative colitis (UC) treatment dates
back to 1988, when the first idiopathic UC patient received
treatment with FMT and was cured [40]. Furthermore, in a
separate study, 6 relapsing UC patients experienced complete
clinical, colonoscopic, and histological improvement after
FMT [41]. Meta-analyses of FMT for IBD patients performed
by Anderson et al. [42] showed that 63% of UC patients
achieved remission, 76% could stop taking medications for
IBD, and 76% experienced a decrease in GI symptoms. In a
double-blinded RCT of FMT in active UC case, Moayvyedi et
al. [43] reported that 9 patients treated with FMT (24%) and
2 treated with placebo (5%) achieved remission at 7 weeks.
Additionally, a recent randomized, double-blinded, placebo-
controlled trial of multidonor, intensive-dosing FMT in
patients with active UC [44] confirmed the primary outcome
(steroid-free, clinical remission with endoscopic remission or
response) was achieved after 8 weeks in 11 (27%) of 41 patients
allocated to FMT versus 3 (8%) of 40 participants assigned
to the placebo group (p=0.021). In another single-center,
double-blinded, randomized, proof-of-concept clinical trial,
Rossen et al. [45] suggested that, in the intention-to-treat
analysis, 7 of 23 patients who were treated with FMT from
healthy donors (30.4%) as well as 5 of 25 controls (20.0%)
achieved the primary endpoint (p=0.51) in per protocol
analysis, and 7 of 17 patients who received fecal transplants
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from healthy donors (41.2%) and 5 of 20 controls (25.0%)
achieved the primary endpoint (p=0.29). In the phase 2 trials
[45], there were no statistically significant differences in both
clinical and endoscopic remission between UC patients who
were treated with fecal microbiota from healthy donors or
their own fecal microbiota. Thus far, it is difficult to make
robust conclusions about the FMT’s efficacy and safety for
IBD due to a lack of uniformity in the therapy protocols
and delivery approaches used in each study. The patient
populations assessed in each study varied with respect to dis-
ease type, severity, phenotype, and concomitant medications.
Additionally, although the donors were screened, they were
not otherwise standardized or well characterized [46].

Borody et al. [47] suggested Crohn’s disease (CD) is less
effective to FMT than UC. Nonetheless, several case reports
have demonstrated FMT as a promising treatment option for
CD [48-50]. He et al. [51] suggested that sequential fresh
FMT might be a strong treatment option to induce and
maintain clinical remission in patients with CD complicated
by an intraabdominal inflammatory mass. CD patients could
be treated with a second FMT less than 4 months after the
first course for maintaining beneficial effects [52]. After 1
month following FMT in CD patients, only 13.6% of mild
adverse events occurred, including increased frequency of
defecation, fever, abdominal pain, flatulence, hematochezia,
vomiturition, bloating, and herpes zoster. No adverse events
beyond 1 month were observed [53].

2.3. Irritable Bowel Syndrome (IBS). Many studies have sug-
gested that gut microbial alterations (reduced biodiversity
and abundance of Bacteroidetes) are associated with IBS
subsets [54, 55]. Germ-free mice treated with fecal transplants
from diarrheal IBS (IBS-D) patients with or without anxiety
experienced more rapid gastrointestinal transit, gut bar-
rier dysfunction, anxiety-like behavior, and innate immune
activation compared to mice treated with fecal transplants
from healthy controls [56]. Holvoet et al. [57] conducted
FMT in 12 patients with refractory IBS (Rome III criteria)
experiencing intermittent diarrhea and severe bloating to find
that 9 patients (75%) achieved the primary endpoint, 12 weeks
after FMT. Responders were continually monitored to find
that 7/9 (78%) still achieved IBS symptom relief after 1 year,
suggesting a long-lasting efficacy of FMT. These results sup-
port promising microbiota-targeted therapies in IBS patients.
A pilot study reported by Ge et al. [58] confirmed that
FMT combined with fiber could also improve constipation
in IBS patients by regulating gut microbiota. However, some
studies offered different voices [59]. In a randomised double-
blinded placebo-controlled study [60], FMT changed gut
microbiota in patients with IBS, but patients in the placebo
group experienced greater symptom relief compared with the
EMT group. Therefore, a deeper understanding of the altered
microbiota of patients with IBS and more rigorous trials are
warranted before the utility of FMT for IBS.

3. FMT for Extraintestinal Disorders

3.1 Liver Disease. Changes in the intestinal microbiota are
important for determining the occurrence and progression of

chronic liver disorders such as alcoholic liver disease (ALD)
[61-64], nonalcoholic fatty liver disease (NAFLD) [65-67],
nonalcoholic steatohepatitis (NASH) [68-70], cirrhosis [71-
73], and hepatocellular carcinoma (HCC) [74]. Research from
a Chinese cohort in an open-label and single-blinded trial
demonstrated that FMT could induce HBeAg clearance in
a significant proportion of the cases with persistent positive
HBeAg even after long-term antiviral treatment [75]. Ferrere
et al. [76] found ALD was prevented in mice treated with
alcohol-induced liver lesions by fecal transplantation from
alcohol-fed mice resistant to ALD or with prebiotic (pectin).

Le Roy et al. [77] generated a mouse model to address
the role of gut microbial communities in NAFLD devel-
opment. The authors divided the conventional mice into
responder and nonresponder groups, according to their
response to high-fat diet (HFD), and showed that germ-free
mice treated with FMT from different donors (responder
or nonresponder) developed comparable results to the HFD
group. The germ-free group treated with fecal transplants
from the responders addressed steatosis and harbored larger
abundance of Roseburia and Barnesiella. The content of
Allobaculum was increased in the other group.

Hepatic encephalopathy (HE) is a decline in brain func-
tion that occurs as a result of severe liver disease. Gut
microbial dysbiosis could be linked to minimal hepatic
encephalopathy (MHE) in cirrhotic patients, especially with
the ammonia-increasing phenotype in MHE. The intestinal
urease-containing Streptococcus salivarius was absent in con-
trol group but present in cirrhotic patients with and without
MHE. Streptococcus salivarius could be a promising target in
cirrhotic patients with MHE [78]. Recurrent HE is common
in cirrhotic patients despite the standard of care and may
lead to irreversible neurocognitive injury [79]. HE patients
have gut microbiota dysbiosis, which is partially driven by
frequent antibiotic use, resulting in further HE recurrence
[80]. Bajaj et al. [81] conducted an open-label, randomized
clinical trial with a 5-month follow-up in outpatient cirrhotic
men diagnosed with recurrent HE and found that FMT
could reduce hospitalization and improve cognition as well
as microbial dysbiosis in these patients.

3.2. Metabolic Diseases. Ridaura et al. [20, 21] demonstrated
that gut microbial communities from obese or lean individ-
uals induced similar phenotypes in mice and, more remark-
ably, that the microbiota from lean donors could invade and
reduce adiposity gain in obese recipient mice. Fisher et al.
[82] found no clinically relevant changes in recipient BMIs
following a single FMT among patients with CDI, regardless
of the donor BMI, within 12 months after FMT. FMT has
also been tested in insulin resistance. Overweight patients
with metabolic syndrome received microbiota from either
their own feces (autologous transfer) or from lean healthy
controls (allogeneic transfer). After 6 weeks, the allogeneic
fecal transfer group had improved hepatic and peripheral
insulin sensitivity by 119% and 176%, respectively, as shown
using a euglycemic-hyperinsulinemic clamp technique [83].

Tang et al. [84], who performed two prospective clinical
studies enrolling 4007 participants, as well as Wang et al.
[85], who designed a cohort of 1876 subjects, found that the



production of trimethylamine oxide (TMAO) from dietary
phosphatidylcholine is dependent on metabolism by gut
microbial communities and that increased levels of the
microbial metabolite TMAO are associated with an elevated
risk of incident major adverse cardiovascular events. In
addition, TMAO increases risk of platelet hyperreactivity and
thrombosis, and microbial transplantation suggests throm-
bosis is a transmissible trait [86]. Subsequently, Wang et
al. [87] further discovered that a nonlethal inhibition of
intestinal microbial trimethylamine production can be used
to treat atherosclerosis.

Studies have also indicated that gut microbial dysbiosis is
associated with type 2 diabetes (T2D) [88, 89]. The abundance
of bacterial genera producing butyrate was found to be lower
in metformin-untreated T2D patients compared to nondia-
betic controls. Conversely, the increase in Lactobacillus pre-
viously observed in patients with T2D, without accounting
for the treatment regimen, was eliminated when controlling
for metformin treatment [88]. Wu et al. [90] conducted a
placebo-controlled, randomized, double-blind study in indi-
viduals with newly diagnosed T2D who received metformin
or placebo for 4 months and found that metformin had a
strong impact on intestinal microbiota. They then transferred
human fecal microbiota to germ-free mice in order to explore
the role of metformin-altered microbiota on host glucose
metabolism. They confirmed that altered gut microbiota
could mediate the antidiabetic effects of metformin.

3.3. Chronic Kidney Disease (CKD). Studies using 16S se-
quencing and microarray method have been initiated to
explore the microbiota-kidney disorder axis. Significant dif-
ferences in the microbiota composition were discovered
in end-stage renal disease (ESRD) patients compared with
healthy controls [91]. To investigate the effect of uremia on
the microbiota, differences in the gut microbiota composition
between ESRD patients and healthy individuals have been
delineated [92]. ESRD patients exhibit an enriched micro-
biota with urease and uricase enzymatic activities, which
could contribute to the elevated metabolism of urea linked
with CKD. In contrast, Barros et al. [93] discovered no signif-
icant differences in the intestinal microbial profiles between
a small cohort of CKD patients and healthy individuals.
Indoxyl sulfate (IS) is a toxin that increases in plasma when
the function of the kidneys declines, contributing to CKD
progression [94-97]. Devlin et al. [98] identified a widely
distributed family of indole-producing tryptophanases in
commensal intestinal microbiota. They then engineered bac-
teria to control the in vivo production of the downstream
product, the uremic toxin (IS). These results support a new
option for CKD treatment by directing microbiota. Although
this approach is far from clinical applications, future studies
are needed to determine whether IS or other uremic solutes
are true uremic toxins and potential therapeutic targets or
simply biomarkers of advanced CKD [99, 100].

3.4. Neuropsychiatric Disorders. The intestinal microbiome
plays major roles in immune, neuroendocrine, and neural
pathways [101]. The brain-gut-microbiota axis is one of the
most important pathways, whereas the gut microbiome can
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recruit bidirectional communication network to regulate
the brain function, development, and even behavior [22,
102]. Experimental and clinical investigations underscore the
important role of the gut microbiome in stroke pathogenesis
[103, 104]. Based on these insights, targeting the intestinal
microbiome is a potential treatment option for patients
suffering from stroke [105].

Parkinsons disease (PD) is a progressive, chronic, and
disabling neurodegenerative disease that begins in mid to
late life. Li et al. [106] analyzed fecal microbial composition
in 14 healthy volunteers and 24 PD patients using bacterial
16S rRNA sequencing. This study suggested that structural
alterations in the intestinal microbiome in PD are character-
ized with reduced putative cellulose degraders and increased
putative pathobionts. This could potentially decrease short-
chain fatty acids (SCFAs) and produce more neurotoxins and
endotoxins, which may be associated with the PD pathology
development. In a previous study [107], Blautia was found to
be markedly reduced in fecal samples and Faecalibacterium
was decreased in colonic mucosal of PD patients. The first
report in using FMT for PD treatment was from Austrian
Professor Borody [108], who described a male PD patient
suffering from chronic constipation where FMT eased the
symptoms of PD. In a mouse model of PD [109], human «-
synuclein protein is expressed at high levels in mice brains.
These mice have disease characteristics including movement
abnormalities, a-synuclein aggregation in neurons express-
ing the neurotransmitter dopamine, an immune response in
the brain that includes the microglial cells activation, and
the production of potentially neurotoxic cytokine molecules.
When Sampson et al. [110] removed the intestinal microbiota
from mice, the severity of disease symptoms was reduced. If
PD mice lacking gut bacteria received FMT from diseased
people, mice developed movement abnormalities that did
not occur when fecal bacteria from healthy individuals were
transplanted instead. In addition, using wild-type mice for
the same transplant experiments did not result in movement
abnormalities [111].

Alzheimer’s disease (AD) is a severe and increasing
socioeconomic burden. Harach et al. [112] showed a remark-
able alteration in the fecal microbiota from an A3 precursor
protein (APP) transgenic AD mice model as compared to
nontransgenic wild-type group. Colonization of germ-free
APP transgenic mice with gut microbiome from conven-
tionally raised APP transgenic animal elevated the cerebral
Ap pathology, while microbiota colonization from wild-type
mice was less responsive for elevating cerebral Af3 levels.

Epilepsy contributes to seizure-related disability, mortal-
ity, comorbidities, stigma, and increased costs [113]. Recently,
He et al. [114] reported the first case using FMT in seizure-
related disability. This study found that FMT led to intestinal
and neurological symptom remission in a girl with CD and
a 17-year history of epilepsy. During a 20-month follow-up,
FMT proved its effectiveness on preventing the relapse of
seizures after withdrawal of antiepileptic medications.

Autism spectrum disorders (ASDs) are neurodevelop-
mental conditions, characterized by social and behavioral
impairments. Wang et al. [115] analyzed 38 studies, including
25 animal studies and 15 human reports (2 studies were
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conducted in both), and concluded that probiotics [Bifi-
dobacterium (e.g., B. breve, B. infantis, and B. longum) and
Lactobacillus (e.g., L. thamnosus and L. helveticus)] showed
efficacy for easing psychiatric disorder-related behaviors such
as anxiety, depression, ASD, obsessive-compulsive disorder,
and memory abilities. Several reports have disclosed an
aberrant gut microbiota in ASD [116-120]. There is report of
autistic symptom remission in two children after FMT [121].
In a small open-label clinical trial with 18 ASD-diagnosed
children, Kang et al. [122] suggested that FMT could alter
the gut microbiota by increasing bacterial diversity and
improving both gastrointestinal and autism symptoms. Paral-
lel results have also been presented in an ASD mouse model,
in which Bifidobacterium fragilis could improve anxiety-like
behavior, sensory gating, and communicative behavior [17].

Depression is a common and heterogeneous disor-
der responsible for significant disability. Kelly et al. [123]
recruited 34 depressed patients and 33 matched healthy
individuals and confirmed that depression is associated with a
decrease in intestinal microbiota abundance and biodiversity.
FMT from patients with depression to microbiota-depleted
rats could induce behavioral and physiological features
characteristic of depression in the recipient rats, including
anhedonia and anxiety-like behaviors, as well as alterations
in tryptophan metabolism.

There is also emerging evidence showing that the intesti-
nal commensal microbiome has an important role in the
pathogenesis of multiple sclerosis (MS) [124-127]. Three MS
patients treated with FMT for constipation eventually expe-
rienced both normal defecation and complete normalization
of neurological symptoms, improving their life quality [124].
Borody et al. [128] presented a case report of a young woman
with myoclonic dystonia and chronic diarrhea. These symp-
toms had codeveloped since she was 6 years old and gradually
developed in severity. FMT resulted in improvements in
diarrhea, myoclonus dystonia, and an improved ability to
perform tasks requiring dexterity such as holding a cup and
fastening buttons

Myalgic encephalomyelitis/chronic fatigue syndrome
(ME/CEFS), characterized by unexplained persistent fatigue, is
commonly accompanied by sleeping disturbances, cognitive
dysfunction, fever, orthostatic intolerance, lymphadenopa-
thy, and IBS. Alterations in intestinal microbiota have also
been explored in CFS patients [129]. The population of E.coli
was decreased in CFS patients compared to healthy controls
(49% vs 92.3%). ME/CEFS is associated with microbial dys-
biosis and distinct bacterial metabolic disturbances that may
influence disease severity [130]. A recent study performed
using a larger cohort with 60 CFS patients experiencing
gastrointestinal symptoms who had undergone FMT [131]
showed that 42/60 (70%) patients responded to FMT and 7/12
(58%) achieved a complete symptoms resolution after a 15-20-
year follow-up. These results indicate that FMT could be used
in the treatment of CFS.

3.5. Autoimmune Diseases. There are many publications indi-
cating a relationship between intestinal microbiota altera-
tions and autoimmune disorders including idiopathic throm-
bocytopenic purpura (ITP), systemic lupus erythematosus

(SLE), arthritis, Sjogren’s syndrome, and Hashimoto's thy-
roiditis [132]. In a case of UC with comorbid ITP, ITP
symptoms have been shown to disappear, and platelet levels
have been normalized after treatment with FMT [132]. While
there is ample evidence [133, 134] indicating a relationship
between the immune system and microbiota, a role for gut
microbial dysbiosis in autoimmune disorders would not be
surprising.

3.6. Allergic Disorders. Information about using FMT in
allergic disorders such as food allergies and allergic asthma
has not yet been reported. However, there is strong evidence
suggesting that gut microbiome dysbiosis plays an important
role in the etiopathogenesis of these disorders [135, 136]. The
application of FMT appears to be promising and valuable
for restoring immune homeostasis by transferring a complex
bacteria community that is stable and easy to colonize [137].

3.7 Hematological Diseases. Studies have demonstrated that
the gut microbiome has an impact on hematopoiesis [138,
139]. Antibiotics impair murine hematopoiesis by deplet-
ing the gut microbiota [140]. Furthermore, acute myeloid
leukemia (AML) patients, presenting a high degree of intrap-
atient temporal instability of biodiversity, showed increased
variability associated with adverse clinical outcomes [141].
Allogeneic stem cell transplantation (alloSCT) is one curative
therapy for most hematologic malignancies. The success
of this treatment is limited due to major complications,
including graft-versus-host disease (GVHD). Varelias et al.
[142] showed that recipient-derived IL-17A is critical for
the intestinal acute GVHD prevention and that elevated
susceptibility to acute GVHD could be transferred to wild-
type mice via cohousing with IL-17RA- or IL-17RC-deficient
mice.

3.8. Tumors and Gut Microbiota. A strong link has been
demonstrated between the gut microbiome and cancer. Such
examples are the links between Fusobacterium nucleatum and
colorectal cancer [24, 143] or Helicobacter hepaticus in hep-
atocarcinogenesis [144]. Chemoimmunotherapy enhances
antitumor effects via the synergism of chemotherapy and
immunotherapy [145, 146]. Gut microbes have ascended to
prominence as key modulators of host immunity, raising
the possibility that they could influence the treatment out-
come of cancer immunotherapy. Daillere et al. [147] showed
that the antitumoral efficacy of cyclophosphamide (CTX)
relies on two gut commensal species, Enterococcus hirae and
Barnesiella intestinihominis. These bacteria alter the tumor
microenvironment by reducing regulatory T cells and stim-
ulating cognate antitumor cytotoxic T cell (CTL) responses.
Vetizou et al. [148] found that the CTLA-4 blockade antitu-
mor effects depended on distinct Bacteroides species. In both
mice and patients T cell responses specific for Bacteroides
thetaiotaomicron or Bacteroides fragilis were markedly linked
to the efficacy of CTLA-4 blockade. Tumors with antibiotic-
treated or germ-free mice did not respond to CTLA blockade.
This defect was overcome by immunization with Bacteroides
fragilis polysaccharides, or by adoptive transfer of Bacteroides
fragilis-specific T cells. FMT from humans to mice further



suggested that the treatment of melanoma patients with anti-
bodies against CTLA-4 favored the outgrowth of Bacteroides
fragilis with anticancer properties. Sivan et al. [149] also found
that Bifidobacterium was associated with antitumor effects.
Oral administration of Bifidobacterium alone could improve
tumor control to the same degree as anti-PD-L1 therapy
(checkpoint blockade), and combination treatment nearly
abolished tumor growth. Recently, Wang et al. [150] reported
that immune checkpoint inhibitors- (ICI-) associated colitis
successfully treated along with FMT reconstituted the gut
microbiome and increased colonic mucosa-related regula-
tory T-cells. These findings indicate that manipulating the gut
microbiota may modulate cancer immunotherapy.

Radiation exposure in a mass casualty setting is a serious
military and public health concern [151]. Exposure to a
high dose of irradiation even in a short time can result
in both gastrointestinal and bone marrow toxicities, which
are considered as acute radiation syndrome (ARS) [152].
Cui et al. [153] discovered that the composition of gut
microbiota differed between female and male mice and was
also associated with susceptibility to radiation toxicity. They
further showed that FMT could increase the survival rate in
irradiated mice, increase peripheral white blood cell counts,
and also improve gut function and gut epithelial integrity
in irradiated animals. FMT might be a treatment strategy to
reduce radiation-related toxicity and improve prognosis after
radiotherapy.

4. Conclusions

FMT has become a well-established procedure and the most
effective treatment option for recurrent CDI. Beyond the
treatment of CDI, increasing studies have shown that FMT
also presents potential and promising clinical indications for
the treatment of many other disorders related to gut micro-
bial dysbiosis. Additionally, well-designed, high-quality RCT
researches are urgently needed to further identify the FMT’s
efficacy and safety for both inter- or extraintestinal disorders.
It is expected that the FMT standardization, including donor
selection, FMT material preparation, and administration
routes, will soon be established and its applications expanded.
Therefore, it is of great value to elucidate the effects of FMT as
a promising and alternative treatment for some other diseases
related to the intestinal microbiome.
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