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Abstract

We here present a comparative genome, transcriptome and functional network analysis of three human cancer cell
lines (A431, U25TMG and U20S), and investigate their relation to protein expression. Gene copy numbers
significantly influenced corresponding transcript levels; their effect on protein levels was less pronounced. We
focused on genes with altered mRNA and/or protein levels to identify those active in tumor maintenance. We
provide comprehensive information for the three genomes and demonstrate the advantage of integrative analysis
for identifying tumor-related genes amidst numerous background mutations by relating genomic variation to
expression/protein abundance data and use gene networks to reveal implicated pathways.

Background

Human cancer cell lines have been an invaluable and
practical resource for cancer research. The availability of
genomic, transcriptomic and proteomic data on these
lines is expected to further increase their utility. To this
end, we conducted whole-genome and transcriptome
sequencing on three tumor cell lines (A431, U251MG
and U20S) for which there is a large body of proteo-
mics data [1]. The choice of these lines was also moti-
vated by their origin from different lineages (tumor cell
lines from mesenchymal, epithelial and glial tumors)
and abundance of literature.

A431 is used as a model cell line for epidermoid carci-
noma and there are currently 3,359 publications describ-
ing studies using this cell line. It was established from an
epidermoid carcinoma in the vulva of an 85-year-old
patient [2]. This cell line expresses high levels of epider-
mal growth factor receptor (EGFR) and is often used to
investigate cell proliferation and apoptosis. U251MG is a
commonly used glioblastoma cell line (over 1,200 pub-
lished articles) established from a male’s brain tissue [3].
U20S is an osteosarcoma cell line derived from a 15-
year-old female [4]. Osteosarcoma tumors arise from
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cells of mesenchymal origin that differentiate to osteo-
blasts. It is the most common form of bone cancer,
responsible for 2.4% of all malignancies in pediatric
patients, and its triggers are currently not known [5].
U20S is a common choice for osteosarcoma research:
35% of the articles associated with the osteosarcoma
Medical Subject Headings (MeSH) term in the PubMed
database have used this cell line.

Using modern technologies, we subjected these three
cell lines to genome and RNA sequencing in order to
identify genomic alterations and expression of messenger
and microRNAs. A review by Ideker and Sharan sum-
marized studies that demonstrate how genes with a role
in cancer tend to cluster together on well-connected
sub-networks of protein-protein interactions [6]. We also
earlier demonstrated that somatic mutations in a glio-
blastoma cancer genome produced a pathway-like pat-
tern of enriched connectivity in the gene interaction
network. Hence, in this work we analyzed functional rela-
tions between all detected somatic mutations, structural
variations (altered copy number) and allelic imbalances
of expression via network enrichment analysis (NEA)
[7,8]. A biological pathway could be seen as an area of
densely connected genes in a functional gene network.
The idea of NEA when applied to cancer-related genes is
that multiple key mutations (which are believed to be
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common in cancer genomes) could alter normal cellular
programs for proliferation, differentiation, cell death, and
so on, sometimes even producing quasi-pathways [9].
These altered pathways could then be detected as denser
and more enriched areas and evaluated by comparing
patterns formed by the same set of genes in biologically
meaningless (random) networks. Either the whole group
or members of such a pathway could have links to indi-
vidual master switches of oncogenesis, which may them-
selves have not been altered.

In particular, Dutta and co-authors developed a valuable
idea, according to which effects of driver genes might be
seen as differential (mMRNA or protein) expression of net-
work neighbors [10]. In the current work we pursue a
similar approach with the difference that we did not make
any prior assumptions about modular properties of driver
mutations and entirely summarized their relations to each
other and important pathways. This method is the closest
analog of gene set enrichment analysis (GSEA), with the
important novel option of analyzing single genes against
functional sets [11]. Apart from that, gene network infor-
mation enables much higher sensitivity, which we demon-
strate as well.

While different methods of network inference from
single or two data sources have been published [12], only
data integration networks have a broader scope and
include multiple molecular mechanisms required for our
analysis. For the highest completeness, we employed a
network of functional coupling that was drawn up using
the methodology of the data integration tool FunCoup
[13], and then merged with curated pathways from Kyoto
Encyclopedia of Genes and Genomes (KEGG), protein
complex data from CORUM, and a special network from
glioblastoma data. However, any state-of-the-art network
is likely incomplete or does not account for a specific
context and we thus complement the network analysis of
direct links with analogous statistics that accounts for
indirect links, that is, connections via third genes.

To enable a rigorous statistical evaluation, patterns of
potential functional couplings are compared to observa-
tions in a series of randomized networks that preserve
basic topological properties overall, but have no biological
function. This results in probabilistic estimates for every
tested hypothesis. As the analysis considers relative enrich-
ment rather than absolute signal strength, functional pat-
terns can be discerned in the presence of multiple
spurious mutations, which are referred to as passengers.
On the other hand, any computation-based gene network
would have a high number of individual false edges.
Again, looking at statistically significant enrichment pat-
terns instead of focusing on particular links allows ignor-
ing such false positive findings. Of note, a number of
reports were dedicated to discovery of network structures
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(modules, clusters, hypothetical pathways, and so on) that
could characterize pathologic conditions [10,14,15].

Here we describe, to our knowledge, the first study in
which whole-genome and transcriptome data for three
cancer genomes were analyzed in conjunction with data
on global protein levels. First, we select genes with the
potentially highest signal concentration (that is, filter them
by expression values, correlation of those to genome
alteration, sequence features, and so on), and subject them
to network enrichment analysis to prove that both the
selection criteria and NEA can bring us closer to the true
sets of driver mutations in these genomes. Second, we re-
analyze in the interaction network all detected copy num-
ber and single nucleotide alterations and present the most
likely driver mutations within each genome. We show that
passengers account for the overwhelming majority of all
detected structural variations. We believe that the results
presented herein provide a basis for understanding the
functional interactions between the genome, transcrip-
tome and proteome for both these highly influential
model cell lines and cancer genomes in general.

Materials and methods

Sequencing and mapping

We sequenced six Illumina paired-end lanes for the osteo-
sarcoma (U20S) cell line, and five for each of the other
two cell lines, glioblastoma (U251) and epidermoid carci-
noma (A431). In total, there were 16 lanes, amounting to
1.23 billion paired-end reads. The data are publicly avail-
able [ERP001947] [16]. The lanes were then mapped to the
human genome, hgl9, using BWA [17]. BWA was run
with default parameters except for: -1 25 and -k 2. With
these settings, 90%, 92.6% and 88.3% of the reads were
mapped for the U251MG, U20S and A431 cell lines,
respectively. Mapped lanes were then filtered on a mapping
quality higher than 30 to retain only the best mappings.
Reads that mapped in multiple locations, which are
reported by BWA as having quality 0, were discarded. This
conferred coverage of approximately 21 x for U20S. For
U251 and A431 the coverage was approximately 15 x. In
addition to the paired-end libraries, we also sequenced
three mate-pair lanes, one for each cell line. After clipping
adapter sequences and reverse complementing the reads,
we mapped them using BWA with the same parameters
as above.

mRNA sequencing

Total RNA was extracted using the RNeasy Mini extraction
kit from Qiagen (Hilden, Germany) and eluted in 50 pl of
RNase-free water. The quality of the RNA was analyzed
using the Experion Automated Electrophoresis Station
from Bio-Rad and the standard sensitivity RNA chip
(Hercules, California, US). The RNA quality indicator
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(RQI) was 10 for all samples. The RNA extracts were
stored at -80°C. Each RNA sample was bar-coded and pre-
pared according to Illumina mRNA-seq sample preparation
and kit with the automated platform previously described
[18]. The barcoded libraries were pooled together in pairs
at equal concentrations and clustered on a cBot cluster-
generation system using the Illumina HiSeq single-read
cluster generation kit according to the protocol from the
manufacturer. The pooled libraries were sequenced on
[llumina HiSeq 2000 following instructions for multiplex
single read sequencing and using 100 + 7 cycles. All lanes
were spiked with a control library of phiX, yielding about
1% of the sequencing reads per lane. Reads were then
mapped with TopHat with no quality trimming either
with g -5 or g -20 [19]. The data are publicly available
[ERP001948] [20].

Functional analysis of the gene interaction network
Network construction

The existing global networks of functional coupling, such
as FunCoup, PPI networks, the union of KEGG pathways,
and so on, are known to be of high quality and relevance
when applied to statistically evaluate functional relations
between larger gene sets. As the network for the enrich-
ment analysis, we predicted a human network of functional
coupling using the FunCoup computational framework at
a confidence cutoff for individual links defined as a final
Bayesian score >7 [13]. This updated version used the latest
protein-protein interactions from the IntAct database, pro-
tein expression atlas HPA [1] and sub-cellular localization
data from Gene Ontology. In addition, analysis of gli-
oblastoma multiforme (GBM) published by The Cancer
Genome Atlas [21] provided data on the methylation status
of about 2,000 genes, and the transcription of more than
17,000 genes; the GBM network was constructed by simul-
taneously profiling 147 individual tumors for genomic
changes in 500 genes. This dataset provided an opportunity
to reconstruct a cancer-specific network that considers the
three molecular mechanisms. Using partial correlation ana-
lysis [22], we obtained a compact and highly specific GBM
network of causative relations between somatic mutations,
methylation, and transcription (22,990 links between
15,197 gene symbols; (manuscript in preparation). The
FunCoup network was then merged with the GBM
network and 79,539 curated links between 5,763 genes
from the KEGG [23] and CORUM [24] databases. In total,
the union contained 889,654 unique links between 18,904
HUPO gene symbols.

Functional gene groups for network analysis

To characterize altered gene sets by involvement into
known biological processes, we compiled a list of gene
membership in pathways and other gene groups of impor-
tance in the cancer context: 1) all 235 pathways presented
in the KEGG database (as of 21 April 2010), including
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9 cancer pathways; 2) 15 Gene Ontology terms that could
be related to hallmarks of cancer [9]; 3) 13 cancer-related
pathways from publications reporting on large-scale
cancer genome projects; 4) gene sets of epithelial-
mesenchymal transition (courtesy of S Souchelnytskyi)
and tumor-specific pH-shift (courtesy of A de Milito). The
list thus included 5,698 distinct HUPO gene symbols
assigned to 260 gene groups (multiple membership
allowed).
Network enrichment analysis
For two gene sets, one of which is a set of altered genes
(the altered gene set (AGS)) i and the other a functional
gene set (FGS) j, the confidence of functional connectivity,
that is, enrichment in network connections #;; between
i and j, was estimated with a z-score:

z= njj — fl,’j

Oij

where 7; is the total number of links between any genes
of i and any genes of j found in the given network. In
biological networks, the distribution of node degree (num-
ber of connections per gene node) follows the power law,
that is, is very uneven: many nodes have few links, while
few nodes have many links. Thus, the expected (mean)
number and standard deviation o;; estimates are strongly
influenced by node degree compositions in particular gene
sets. To make the analysis unbiased, we applied the net-
work randomization procedure proposed by [25]. While
systematically re-wiring network nodes, that is, randomly
swapping edges between two nodes at a time, the proce-
dure preserved node degrees and the total number of
edges in the network. The expected mean fi;j (counted in
the same way as the value of 7)) and standard deviation o;;
were learned after a sufficient number (50) of random net-
work permutations. The default statistic counted the direct
links. An alternative statistic counted links indirectly, via a
shared network neighbor, that is, if there was a third gene
linked to both genes in question. Under the true null, that
is, in the absence of any functional linkages between gene
groups, the z-scores must be normally distributed; hence,
Z could be converted to P-values by a standard procedure.
For both direct and indirect links in each analysis, we eval-
uated relevant false discovery rates by looking at the left
tail of the z-score distribution (that is, the depletion side)
where no significant findings were expected and, alterna-
tively, by permutation tests on random gene sets of match-
ing size and topological properties.

Each gene carrying a potentially damaging single
nucleotide variant (SNV) was individually tested for func-
tional relatedness to the rest of the genes with potentially
damaging SNVs from the same somatic genome. For-
mally, we tested for violation of the null hypothesis that
stated ‘the individual gene is not enriched in connections
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with somatically mutated genes from the same line’ using
two different statistics (direct and indirect links); we per-
formed 334 tests in total (2 x (57 + 51 + 54)).

Gene set enrichment analysis

GSEA was performed on fixed-size AGS against the same
FGS as described for NEA using the hypergeometric test,
also known as odds ratio test [26]. The z-scores were
converted to P-values and adjusted for multiple testing
with an R function using the Benjamini and Hochberg
method.

Results and discussions

Genes affected by structural variations and their
functional implications

Numerous structural variations were identified [27,28] and
their breakdown is given in Table S1 in Additional file 1.
In summary, we detected 1,405, 1,340 and 1,497 deletions
(=300 bases) in A431, U251MG and U20S, respectively
(Additional file 1). The depth of coverage was used to call
for gained or lost regions in these genomes (Table S2 in
Additional file 1) [29]. In A431, 27% of the genome was
amplified but only 2% of the genome was lost (Figure 1).
Similarly, the U251MG cell line gained 25% of its genome
and lost around 2% (Figure 1). In contrast, an equal por-
tion of the genome (19%) was gained and lost for the
U20S cell line (Figure 1). The U20S cell line has lost one
copy of TP53 (its expression is halved compared to other
cell lines), which could influence the extent of genomic
deletions [30]. U20S also lost one copy of chromosome
13 and chromosome X, which constitute 40% of its losses
(Figure S1). It also has a mis-functioning copy of ATRX
due to a large deletion that removes 16 exons. Reduced
levels of ATRX, which performs regulatory functions at
interphase, can induce segregation defects resulting in lag-
ging chromosomes, which could explain whole chromo-
some losses in U20S [31].

We also profiled mRNA expression in each cell line using
sequencing. To investigate the extent to which changes in
genomic copy number of a gene affect its level of tran-
scription, we classified all genes according to their copy
numbers. Genomic copy number changes showed pro-
nounced effects on transcript levels: genes with high copy
numbers were expressed at significantly higher levels
than those with lower copy numbers (Figure 2a; P-value
= le-06). The relationship between genomic copy num-
ber and protein expression was also investigated by con-
sidering protein abundance data obtained by SILAC-
based mass spectrometry analysis [32] for the proteins
encoded by the 4,554 most strongly expressed genes for
each cell line. In keeping with previous findings [33],
we observed a modest correlation between gene expres-
sion and protein abundance (Spearman’s r = 0.55-0.61;
Figure 2b). We then looked at the direct relationship
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between copy number and protein abundance. There was
a positive relationship between copy number of genes
and their protein abundance. The impact of gene copy
number on protein levels was lower than that of mRNA
expression. This is expected since pre-translational steps
also modulate available transcript amounts for translation
(Figure 2c; P-value = 5e-04).

A431 overexpresses EGFR and is often used as a positive
control for EGFR expression. We found a complex pattern
of EGFR amplification in the A431 cells using long-insert
libraries (Additional file 1): a 247 kb region carrying most
of the 5" end of EGFR was amplified by a factor of 154 and
an adjacent 392 kb region carrying the 3’ end of EGFR and
two other genes was amplified by a factor of approximately
77. The chromosome section encompassing both of these
regions was tandemly duplicated with its orientation
reversed several times. However, the 392 kb region had
been deleted in approximately half of the copies, which is
why it was only amplified half as much as the 247 kb
region. In cases where the 392 kb region had been deleted,
it was replaced with a 1.3 Mb region from chromosome 4,
which was also amplified by a factor of 77 as a result. In
addition, several regions from chromosomes 1, 21 and 3
were inserted and amplified together (Figure 3a). We per-
formed fluorescence in situ hybridization (FISH) experi-
ments using probes against EGFR and PPARGCIA loci to
locate their excess copies (Figure 3b,c; Additional file 1).
In addition to its native position, numerous copies of
EGEFR were found in two artificial chromosomes that
appear to only carry the rearranged copies of EGFR and
PPARGCI1A (Figure 3c). The region on chromosome 4
contains one gene, PPARGCIA, which is a transcriptional
coactivator involved in relaying environmental signals to
control the metabolic activity of cells [34]. Its normalized
expression levels (reads per kilobase per million mapped
reads (RPKM)/gene copy number) are similar in all cell
lines (approximately 0.8). In A431, however, its amplifica-
tion appears to have increased its RPKM to 56.8.

Analysis of potential downstream effects of point
mutations in all cell lines

SNVs were detected within coding genes [27] (Additional
file 1). We first investigated effects of splice site SNVs on
transcriptomes of the three cell lines. An in-house software
package was used to evaluate the effects of splicing site
SNVs on transcript structures (Additional file 1). Approxi-
mately 2,500 SNVs were found that may potentially affect
splicing in each cell line; after applying several filters,
around a dozen were identified as being potentially dama-
ging and only two of these were validated by reference to
mRNA data (Table S3 in Additional file 1). APIP was
found to undergo alternative splicing in U251, probably
due to a homozygous splice site SNV (chrl1: 34905054 _
G/C) at the upstream splice site of exon 6 (Figure S2a in
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Figure 1 Whole genome read coverage plots of A431 (blue), U251MG (green) and U20S (red) cell lines in Circos format. The coverage
profile was computed for windows of 250 kb. For each cell line, the middle line corresponds to no copy number change, and data points
above represent amplifications and those below represent losses. The outermost circle represents the chromosomes with cytogenetic bands.
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Additional file 1). This mutation causes the sixth exon to
be skipped without shifting the reading frame. An aberrant
transcription of the proto-oncogene FES was detected
(Figure S2b in Additional file 1) in U20S cells, which is
missing the first 15 exons (which contain the regulatory
region of its protein activity), leaving only 4 expressed
exons. FES without its regulatory part has also been
observed in lymphoma and lymphoid leukemia cell lines
[35], and appears to be produced from the same transcript
as we found in the U20S osteosarcoma line in this work.
FES expression has been found to correlate with tumor
growth and metastasis [36] and it is likely that the short
transcript variant observed in U20S was involved in
carcinogenesis.

We also assessed allelic imbalances in the expressed
genes by comparing individual SNV frequencies at the
DNA and RNA levels (Additional file 1). Genes carrying
SNVs that were heterozygous at the DNA level but homo-
zygous in RNA transcripts were considered allelically
imbalanced. We detected 17, 6 and 10 such genes in A431,
U251MG and U20S, respectively (Table S4 in Additional
file 1), and only one of them (NDN) is imprinted [37]. In
A431, several transcription factor genes as well as HDACS,
SMARCAI and BCLAFI were expressed from only one
allele. MAP2K3 was allelically imbalanced in both the
U20S and U251MG cell lines.

We then looked at the non-synonymous SNVs in
these genomes. In order to enrich those involved in
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Figure 3 Complex amplification of EGFR and PPARGCT1A loci. (a) The region within the curly bracket is the tandemly duplicated unit in reverse
orientation. It contains a 639 kb region (chr7: 54,973,500-55,632,000, red arrow, carrying the £GFR gene) and its inverted partial duplicate that contains
the 1.3 Mb region on chr4 (chr4: 22,864,000-24-249,500, white box, carrying the PPARGCIA gene) and shorter regions from chromosomes 1, 21 and 3
(green, blue and purple boxes). (b) A431 cells in the metaphase, pink probes target amplified EGFR (340 kb), green probes target the centromere of
chromosome 7. EGFR is located in chromosome 7 as well as in two minute chromosomes. (c) The probes targeting the PPARGCIA locus (chr4p15) and
EGFR are visualized together, confirming the co-localization of these two heavily amplified loci in the minute chromosomes.
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tumor maintenance, we applied filters based on their het-
erogeneity and common polymorphisms (Additional file
1). We then predicted their protein-level effects using
PolyPhen to filter out those with no obvious potential to
cause a functional change on the protein [38]. This left
us with 57, 54 and 51 genes carrying SNVs that were
likely to be damaging to protein function in A431,
U251MG and U20S, respectively (Table S5 in Additional
file 1).

Cancer state is likely to be the result of a set of func-
tional mutations in key genes that perturb relevant gene
networks at multiple points [9,39]. To identify such coop-
erative actions of mutations, we used NEA aiming to find
the most likely key genes for each cell line, that is, the
impaired genes that contributed to the onset and/or
maintenance of the rapid proliferation state. To this end,
we evaluated network connections between the genes
impaired via SNVs within each cell line. In the A431 cell
line, 8 of 57 potentially impaired genes were strongly

connected to other genes within the same set; the corre-
sponding numbers for the U251MG and U20S lines
were 12 and 7, respectively (false discovery rate (FDR)
<0.10; Table S6 in Additional file 1). One example is
PKMYTI, a gene that carries a heterozygous SNV that is
predicted to be damaging (NP_004194_E179G, PolyPhen
FDR = 0) in U20S cells. This mutation is at a conserved
residue within the catalytic domain of the protein [40].
NEA indicated that this mutation was only directly linked
to one other damaging somatic mutation in U20S - a
mutation in carbamoyl phosphate synthetase II (CAD).
However, analysis of indirect links (that is, those via
shared neighbors) revealed significant relationships
between PKMYTI and the rest of the U20S somatic
mutation set (790 links compared to 406.4 expected by
chance, NEA z-score = 19.21). Again, the majority of
such links (Figure S3 in Additional file 1) led to CAD
through BMP2K and CDK2 (502 links), nuclear protein
NUP93 (72 links), the WD repeat and HMG-box DNA
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binding protein WDHD1 (54 links), and the DNA pri-
mase PRIM2 (53 links). Collective actions of these heavily
connected impaired genes could produce alterations in
associated pathways such as cell cycle regulation [41,42].

Context-dependent meta-analysis of impaired genes in
the three cell lines

Somatic mutations in key genes are central to the initiation
of cancer state and concurrent copy number alterations
can contribute to further progression and maintenance of
the rapid proliferation state. Specifically, the affected genes
can facilitate subclonal expansion - for instance, by confer-
ring a growth advantage or enabling cell death evasion
[43]. The resulting cancer circuitry thus involves the con-
certed action of multiple genes that have undergone copy
number or point mutations; that is, the formation of the
circuitry is independent of the mechanism by which the
damage to each gene was sustained. Importantly, whether
a novel mutation/structural variation will be advantageous
for the rapid proliferation is defined by its interactions with
the rest of the (pre-existing) mutations and the transcrip-
tional landscape. To this end, we investigated functional
relations between genes affected by SNVs, allelic imbalance
or copy number alterations. There were more than 3,000
copy number-altered (CNA) genes per cell line. Obviously,
most of these did not contribute to the rapid proliferation
state. To identify genes with a significant impact, we
assumed that the transcript levels of such genes would mir-
ror the changes in their copy number, as would the levels
of the corresponding proteins. We therefore looked at the
correlations between expression/protein abundance and
the copy number of every gene across the three cell lines
to filter out CNA genes that do not affect transcript or pro-
tein levels and are thus less likely to be involved in achiev-
ing rapid proliferation. To control for the potentially high
FDR in this correlation analysis (due to the small number
of cell lines considered), we performed permutation tests
on the full CNA gene lists and recorded the log of the ratio
of the observed correlations to those obtained from the
permuted list (Figure S4 in Additional file 1). This high-
lighted genes with true correlations between their copy
number, mRNA expression, and protein abundance values
(the latter set of correlations was weaker than the former,
as expected). Genes with structural variation in more than
one cell line and with higher RPKM values yielded lower
FDRs (Figure S5 in Additional file 1). However, even after
the application of this filter, the FDR is likely to be high,
leaving hundreds of false positives in the pool for consid-
eration. Network analysis was therefore performed to
exclude genes that had undergone copy number changes
but are irrelevant within the context. We considered the
functional interactions between a single gene from the
CNA gene set and the much more strongly delineated
(around 50 genes per line, as described above) set of
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impaired genes due to SNVs, so that the latter could serve
as a reference set. NEA z-score thresholds of increasing
stringency (the z-values ranged from 1.64 to 6.00, corre-
sponding to P-values of 0.1 to 0.000001 and FDR values of
0.2 to 0.01 in the network analysis) were applied in con-
junction with the expression and correlation criteria
described above. The fractions of CNA genes affecting
expression levels with and without functional couplings
(that is, with low or high NEA z-scores) were compared to
those for CNA genes that did not affect expression, or not
significantly expressed at all (low RPKM). Remarkably, the
latter group manifested much lower fraction of NEA-posi-
tive genes at any significance threshold (two- to four-fold;
Figure S6 in Additional file 1). Although neither method
and criteria set had perfect sensitivity, the final analysis was
performed using CNA gene lists for which the mean corre-
lation coefficient between copy number and expression/
protein abundance was above 0.8 and which yielded NEA
z-scores above 1.96, which corresponded to a FDR of less
than 0.1 (Figure S6 in Additional file 1). Using these cri-
teria, we identified 21 CNA genes from A431 that are likely
to be functionally related to damaging SNVs; the corre-
sponding numbers for U251MG and U20S were 46 and
51, respectively (Figure 4; Table S7 in Additional file 1).
Figure 4 displays network relations between two or three
most connected CNA genes and respective SNVs of the
same cell line. Remarkably, the network links connecting
CNA genes and their interactors were mostly based on
mRNA expression analysis (blue lines in Figure 4). In the-
ory, copy number alterations should act through transcrip-
tion, and respective genes should produce functional
relations via transcription, which can then be seen in the
general context network we employed. Hence, in this case
we likely observed a true case of copy number alterations
interacting with SNV-impaired genes. Moreover, we
detected a common subnetwork (Figure S7 in Additional
file 1) when we combined impaired genes from the three
cell lines, although only parts of it were active in each
cell line.

We then looked at the overlap with and interactions
between our affected gene sets and a comprehensive list of
cancer-related genes generated by Ding et al. (referred to
as the Ding-set) [44]. SNV-impaired genes in U20S and
U251MG were significantly enriched in terms of NEA
with the Ding-set but those from A431 were not. All lists
manifested some enrichment against KEGG cancer path-
ways, but only the U251 cell line was strongly associated
with these pathways. The other two only had significant z-
scores against small and non-small cell lung cancers as
well as prostate and bladder cancer, whereas U251 was
enriched with respect to all of these and ten other cancer
pathways. However, as a final test of CNA being a driver
mutation, we present a context-specific analysis: a NEA of
individual CNAs versus the filtered SNV gene sets of the
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A)
ALG8 ccDc99
A431 NEA (-)| NEA (+)
CN/TRX (-) | 4227 81
CN/TRX (1) 639 21
z-value 2.17
p-value 0.030
B) SUV420H1
U251MG NEA (-) | NEA (+) RAD17
CN/TRX (-) 4624 99 fanct  EIF2AK1
CN/TRX (+) 569 46 - ‘ KoM
z-value 6.78
p-value 1.2e-11
C)
UBE3A
U208 NEA (-) | NEA (+) o MTHFD1 ENO3
S
CN/TRX (-) 6722 131
CN/TRX (1) 888 51
z-value 6.40
p-value 1.55e-10

Figure 4 Contingency tables for genes identified using two different filtering schemes. (a) A431, (b) U25TMG and (c) U20S cell lines. CN/
TRX (+) denotes genes for which the average Spearman coefficient over all three cell lines for the relationship between copy number and
transcription is >0.8. NEA (+) denotes genes exhibiting enriched connectivity to genes carrying damaging mutations in the same cell line (NEA z-score
>1.96). These criteria were selected to optimize the ‘sensitivity/specificity’ trade-off after having considered several alternatives (Figure S4 in Additional
file 1). In the network diagrams in the same cell line order, red triangles denote CNA genes coupled with more than five links to genes carrying
damaging SNVs in the same line, denoted as green diamonds. The color scheme for the connections is: red lines for physical protein interaction, blue
lines for MRNA co-expression, green lines for protein co-expression, purple lines for sub-cellular co-localization, khaki lines for coherence of

Gene Ontology annotation, deep bluish green lines for links in a KEGG pathway, and deep blue lines for known members of the same complex.
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VEGF

TGF-BE NALING

HEDGEH
ALING
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Figure 5 Mapping of genomic alterations in three cell lines to most basic signaling pathways from the KEGG database, KEGG cancer
super-pathway 05200, and the group of 623 genes associated with cancer by Ding et al. [42]. Yellow boxes, U25TMG; blue boxes, A431;
purple boxes, U20S. A single line summarizes the network connections between each pair of gene sets, with the line’s width reflecting the
number of links in the global network connecting individual genes from the two functional gene sets (3..189). Only relations significant by NEA
are shown (P-value <0.05, FDR <0.10). Edge opacity and edge width reflect the number of individual gene-gene links behind the relation (also
printed in brown at each edge). Mapping between experimentally determined gene sets of cell lines is highlighted in red. Al, allelic imbalance;

MTOR, mammalian target of rapamycin; TGF, transforming growth factor; VEGF, vascular endothelial growth factor.

same cell line (Table S7 in Additional file 1). This analysis
is analogous to the ‘SNV gene versus SNV gene set’ analysis
described above (Table S6 in Additional file 1). Figure S8 in
Additional file 1 shows the case for a specific SNV-
impaired gene, MCM3, in U251 and interacts with several
genes in cancer pathways as well as with other SNV-
impaired genes in the same cell line.

We also investigated the connectivity of each individual
CNA gene to cancer-related pathways, including apopto-
sis, the cell cycle, and the p53 pathway. Thirty-six CNA
genes displayed enriched connectivity to these pathways
(at least 5 links, z-value >2) in the A431 line; the corre-
sponding numbers of genes in the U251MG and U20S
lines were 9 and 47, respectively. Twenty-seven CNA
genes were affected in more than one cell line and this
overlap was stronger than that between the unfiltered
CNA gene sets (P-value = 0.031). Fifteen cancer pathways
defined in the KEGG database were significantly enriched
in terms of connections to individual CNA genes from
each cell line (ranging from 3 to 40 genes per pathway and
cell line). Finally, we merged the three major classes of

genomic alterations (copy-number changes, SNVs, and
allelic imbalances) from each cell line and used network
analysis to demonstrate that all of these gene classes coop-
erate in cancer-related activities (Figure 5), that is, there
was significant network enrichment with regard to cancer-
specific gene sets, apoptosis, TP53, major signaling cas-
cades, cell-cycle and DNA-repair pathways and interac-
tions with one another. Importantly, alterations of the
three variation classes also had functional relations to each
other within the cell lines (indicated by red lines between
SNV and CNA and self-loops of allelic imbalance (AI) in
Figure 5).

Conclusions

In this study, we performed whole-genome, mRNA sequen-
cing and analyses for three tumor cell lines. The expression
and proteome profiles of these cell lines have already been
investigated and fair correlations were shown between
RNA expression and protein levels [32]. We here incorpo-
rated whole genome data such as gene copy number and
DNA variation profiles of these cell lines to perform an
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integrative analysis and discover impaired genes and path-
ways. Genes with elevated copy numbers were identified in
all three of the cell lines considered, giving more than 3,000
genes with copy number changes. The expression levels of
each such gene and the abundance of their corresponding
proteins were then used to identify genes that were likely to
contribute to the maintenance of the cancer state. This ana-
lysis narrowed the list of affected genes from thousands to a
few hundred per cell line, demonstrating the utility of using
DNA variation together with expression data. The cell lines
used in this work have different origins so our cross-corre-
lation analysis based on the assessment of copy number-
dependent expression could potentially generate false nega-
tives or positives due to some genes being differently regu-
lated in the different cell lines. However, we assume that
while these cell lines may retain some aspects of their origi-
nal identities, the extent of cell-specific changes in the
expression of genes in common pathways such as cell cycle
regulation, DNA replication or apoptosis have much less
impact than those induced by copy number changes.

While the reduction in the number of candidate genes
achieved by applying the first filter was substantial, it
was not sufficient by itself because the list still contained
many passengers. To address this issue, we assumed that
1) cancer is more likely to be maintained by a set of
interrelated mutations that alter cellular processes at
multiple points than by the effects of a single mutation,
and 2) proliferative benefit conferred from an alteration
can depend on already existing mutations or structural
variations. We therefore focused on CNA genes that
exhibited functional links to genes impaired by SNVs in
the same cell line. In conjunction with the first filtering
step based on the expression correlations with copy
number changes, this second filter afforded significant
improvements, reducing the number of putative genes
contributing to rapid proliferative state to around a few
dozen genes per cell line, all of which exhibited enriched
connectivity to major signaling, cell division and cancer-
specific gene sets. Despite the low overlap between the
altered gene sets for each cell line, the network analysis
demonstrated that their cancer-related functionality was
cooperative, which we detected at both the pathway and
global-network level.

Traditionally, novel experimentally determined AGSs are
characterized by significance of overlap (amount of shared
genes) with known functional gene sets. This method is
generally called gene set enrichment analysis. To illustrate
superiority of our NEA, we directly compare analyses from
GSEA and NEA in Figure S9 in Additional file 1. Only
four of all 420 analyzed AGS-FGS pairs showed a signifi-
cant GSEA overlap (each case was based on two shared
genes) when NEA did not detect enrichment. The number
for the opposite case (NEA+, GSEA-) was 75, and 18 pairs
were detected by both methods. In addition, grounding

Page 11 of 13

a GSEA result on two or three genes would not be robust,
whereas NEA results are usually based on tens or hun-
dreds of network links. Of note, these comparisons were
only possible on AGS as sets of multiple genes, while sin-
gle gene analysis against FGS is a unique feature of NEA.

Cancer cells modulate their metabolism to switch from
mitochondrial to glycolic metabolism despite the presence
of sufficient oxygen levels to support the former; this is
known as the Warburg effect [45]. In A431 cells, lactase
dehydrogenase (LDHA) levels are elevated (RPKM of 751,
no gain or loss) which suggests heavy use of glycolic meta-
bolism. The gene PPARGCI1A, expressed strongly in nor-
mal tissues with high-energy demands, including cardiac
tissue, brown fat, and the central nervous system [46-48],
is heavily amplified in these cells. It is a master co-activa-
tor for mitochondrial biogenesis, which might suggest uti-
lization of oxidative phosphorylation by A431 cells. The
functional implications of this amplification are currently
being assessed.

We also detected several allelically imbalanced genes and
most of these genes did not have any copy number
changes and/or damaging SNVs. One special case was nec-
din (NDN), a gene that is typically maternally imprinted
and is only expressed in the brain and placenta [49]. NDN
is highly expressed in the U20S cell line but not in U251
or A431. Previous comparisons of H3K36me3 gene
expression patterns between osteoblasts and U20S sug-
gested that it is not expressed in osteoblasts [50]. Mahes-
waran et al. [51] showed that overexpression of TP53
causes rapid apoptotic cell death in U20S cells. However,
transfection of U20S cells with necdin together with TP53
inhibited TP53-induced apoptosis [52]. A single functional
copy of TP53 is present in U20S cells. This suggests that
U20S cells may evade apoptosis iz vivo due to their con-
stitutive expression of NDN together with reduced expres-
sion of TP53.

We also looked at splice-site SNVs and detected numer-
ous splice-site SN'Vs that could cause improper splicing.
Only a few were supported by RNA sequencing data,
which suggests that the splicing mechanism is fairly
robust, in keeping with previous findings [53].

This study demonstrates that the combined analysis of
genomic and transcriptomic data can provide a better
functional understanding of the mutational landscape of
cancer genomes than can be obtained by considering
either one of these sources in isolation. The combined
analysis of genomic variation and expression datasets
enabled us to distinguish between variants contributing to
rapid proliferation and those that are passengers. The
mutational landscapes of cancers are highly variable; few
shared mutations but numerous private mutations even
among similar ones [54,55]. Our method could be particu-
larly beneficial in these scenarios since it evaluates each
mutated gene within its biological context to reveal



Akan et al. Genome Medicine 2012, 4:86
http://genomemedicine.com/content/4/11/86

impaired functional couplings to cancer-related genes that
have themselves not been altered. Moreover, the analyses
over global gene and protein networks enabled us to
uncover relations between alterations that drive/are driven
by expression and those constitutively present in the cell
but mis-paired via damaging mutations. As an example, a
very recent study profiled 947 independent cancer cell lines
and provided information on the copy numbers and RNA
expression profiles of their genes [56]. Applying the com-
bined analysis reported herein to these cell lines could pro-
vide valuable insights into their impaired pathways and
related anticancer drug sensitivity.

Additional material

Additional file 1: Supplementary methods, Supplementary Figures
S1 to S9, and Supplementary Tables S1 to S7.
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