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A B S T R A C T

In developmental studies, inferring regulatory interactions of segmentation genetic network play a vital role
in unveiling the mechanism of pattern formation. As such, there exists an opportune demand for theoretical
developments and new mathematical models which can result in a more accurate illustration of this genetic
network. Accordingly, this paper seeks to extract the meaningful regulatory role of the maternal effect genes
using a variety of causality detection techniques and to explore whether these methods can suggest a new
analytical view to the gene regulatory networks. We evaluate the use of three different powerful and widely-
used models representing time and frequency domain Granger causality and convergent cross mapping
technique with the results being thoroughly evaluated for statistical significance. Our findings show that
the regulatory role of maternal effect genes is detectable in different time classes and thereby the method is
applicable to infer the possible regulatory interactions present among the other genes of this network.

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Segmentation in Drosophila melanogaster is a particularly well
studied process which highlights the role of gene regulatory net-
works (GRNs) in the earliest stage of development [1]. In segmen-
tation GRN, there are three fundamental types of genes which play
a crucial role in Drosophila development: maternal effect genes, gap
genes and pair rule genes [2]. Among them, the maternal effect
genes including bicoid (bcd)1 and caudal (cad) must be addressed
as the most important factors since they respectively determine
most aspects of anterior and posterior axis of an adult fruit fly
and more importantly, they commence the sequential activation of
segmentation GRN [2–4].

The segmentation GRN is perhaps the best-studied transcrip-
tional network in Drosophila development. Therefore, there are con-
siderable attempts to portrait a picture of the interactions presented
between regulators in this GRN. Quantitatively, it is common to
model GRNs using ordinary differential equations (ODEs) or stochas-
tic ODEs [5,6]. Even though, the substantial progress which has been

* Corresponding author.
1 In what follows, the italic lower-case bcd represents either the gene or mRNA and

Bcd refers to protein. This can be applied for all other genes mentioned in this paper
(for example, cad and Cad).

made in modeling transcriptional regulations using these models in
recent years is not deniable, the enormous number of regulatory
functions obtained by these models and the estimation of parameters
which are difficult to assess experimentally can still be considered as
two major drawbacks of these methods [7,8]. Recently, the availabil-
ity of more data on molecular mechanisms of regulatory interactions
has made it possible to study these interactions in more quantitative
depth. However, to the best of our knowledge, there is not a partic-
ular study which evaluates the dynamic interactions of this system
from a statistical causality point of view [9–11]. Hence, this paper
seeks to consider an alternative approach based on various causality
detection methods to evaluate the possibility of ratifying the validity
and reliability of genetic inferences derived from experimental evi-
dences by using proper analytical tools. It is of note that the detected
regulatory link can be either inductive (i.e. increasing the protein
concentration of one gene raises the protein concentration of the
other gene), or inhibitory (i.e. increasing the protein concentration of
one gene decreases the protein concentration of the other gene). Any
efforts at identifying the nature of the detected interaction would
require more extensive research and that objective is beyond the
mandate of this paper [12].

The analytical methods used in this paper consist of time and
frequency domain Granger causality detection (GC) [13] approaches
and an advanced non-parametric method - Convergent Cross Map-
ping (CCM) [14]. Time domain causality test [15] and its developed
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versions are the most common and generally accepted methods in
causal inference analysis. Frequency domain causality test is the
extension of time domain causality test on identifying causality for
each individual frequency component instead of computing a single
measure for the entire causal association. CCM is an advanced non-
parametric method that is designed for a dynamical system involving
complex interactions. The fundamental concept of CCM is that the
information of the driver variable can be recovered from the predator
variable, but not vice versa.

It is imperative to note that since providing robust genetic evi-
dence is an important step in reporting genetic causality, among all
the interactions between regulators in segmentation GRN, we have
narrowed down this study to the interactions between bcd and cad,
bcd and Kruppel (kr) and cad and kr genes which their interactions
have been previously accredited via laboratory experimental evi-
dences. Accordingly, extracting these links using mentioned causal-
ity detection techniques will give us the credit to step further and
apply these methods to find the unknown regulatory links between
other genes.

The regulatory role of bcd has been unveiled by several stud-
ies [3,16]. According to Baird-Titus et al. [17] Bcd is one of few
proteins which binds both RNA and DNA targets and can be
involved in both transcriptional and post transcriptional regulation.
Bcd enhances the transcription of anterior gap genes such as kr
and represses the translation of cad in the anterior region of the
embryo [16]. In 2002, through an experimental approach, Niessing
et al. showed that the translational repression of cad mRNA by Bcd
depends on a functional eIF4E-binding motif [18]. The cad and kr
genes are also required for a normal segmentation of the embryo. As
noted in [19], the interaction of cad and kr gene is an important input
of the segmentation genetic network.

In applying causality detection techniques, it should also be noted
that as it has been previously shown by several studies, these meth-
ods are sensitive to noise [20–22] and gene expression profiles are
exceedingly noisy [23]. As it has been shown in Fig. 1, the profile
achieved by fluorescence antibodies technique is highly volatile and
in such cases, establishing a cause-and-effect relationship is more
challenging and demands applying a noise filtering step prior to cau-
sation studies. In order to overcome these issues, among several
noise filtering techniques, we have applied Singular Spectrum Anal-
ysis (SSA) which is a powerful method and has recently transformed
itself into a valuable tool for gene expression signal extraction (see,
for example, [24–27]).

The remainder of this paper is organised such that Section 2
describes the analytical methods used in this study which is followed
by description of the data in Section 3. Section 4 summarises the
empirical results and the paper concludes with a concise summary
in Section 5.

2. Causality detection and noise filtering techniques

2.1. Time domain Granger causality

Granger causality test [15] is the most generally accepted and sig-
nificant method for causality analyses in various disciplines. Various
applications and developments of this technique, also more specifi-
cally in the biomedical area, can be found in [28–36]. The regression
formulation of Granger causality states that vector Xi is the cause of
vector Yi if the past values of Xi are helpful in predicting the future
value of Yi, two regressions are considered as follows:

Yi =
T∑

t=1

atYi−t + e1i, (1)
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Fig. 1. A typical example of noisy Bcd, Cad and Kr for embryo ms26 at time class 14(1).
Black, blue and green colours depict Bcd, Cad and Kr profiles respectively. The x-axis
shows the position of the nuclei along the Anterior-Posterior (A-P) axis of the embryo
and Y-axis shows the fluorescence intensity levels.

Yi =
T∑

t=1

atYi−t +
T∑

t=1

btXi−t + e2i, (2)

where i = 1, 2, · · · , N (N is the number of observations), T is the max-
imal time lag, a and b are vectors of coefficients, and e is the error
term. The first regression is the model that predicts Yi by using the
history of Yi only, while the second regression represents the model
of Yi and is predicted by the past information of both Xi and Yi. There-
fore, the conclusion of existing causality is conducted if the second
model is a significantly better model than the first one.

2.2. Frequency domain causality

The frequency domain causality test is the extension of time
domain GC test that identifies the causality between different vari-
ables for each frequency. In order to briefly introduce the testing
methodology, we mainly follow [13,37]. More details can be found
in [38].

It is assumed that two dimensional vector containing Xi and Yi

(where i = 1, 2, · · · , N and N is the number of observations) with
a finite-order Vector Auto-regression Model (VAR) representative of
order p,

H(R)
(

Yi

Xi

)
=

(
H11(R) H12(R)
H21(R) H22(R)

)(
Yi

Xi

)
+ Ei, (3)

where H(R) = I − H1R − . . . − HpRp is a 2 × 2 lag polynomial and
H1, . . . ,Hp are 2 × 2 autoregressive parameter matrices, with RkXi =
Xi−k and RkYi = Yi−k. The error vector E is white noise with zero
mean, and E

(
EiE ′

i

)
= Z, where Z is positive definite matrix. The

moving average (MA) representative of the system is

(
Yi

Xi

)
= X(R)gi =

(
X11(R) X12(R)
X21(R) X22(R)

)(
g1i

g2i

)
, (4)
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with X(R) = H(R)−1G−1 and G is the lower triangular matrix of the
Cholesky decomposition G′G = Z−1, such that E (gtg

′
t) = I and gi =

GEi. The causality test developed in [13] can be written as

CX⇒Y (c) = log

[
1 +

∣∣X12(e−ic)
∣∣2

∣∣X11(e−ic)
∣∣2

]
. (5)

However, according to this framework, no Granger causality from Xi

to Yi at frequency c corresponds to the condition
∣∣X12(e−ic)

∣∣ = 0,
this condition leads to

∣∣H12(e−ic)
∣∣ =

∣∣∣Sp
k=1Hk,12 cos(kc) − iSp

k=1Hk,12 sin(kc)
∣∣∣ = 0, (6)

where Hk,1,2 is the (1,2)th element of Hk, such that a sufficient set of
conditions for no causality is given by [38]

S
p
k=1Hk,1,2 cos(kc) = 0

S
p
k=1Hk,1,2 sin(kc) = 0, (7)

Hence, the null hypothesis of no Granger causality at frequency c

can be tested by using a standard F-test for the linear restrictions (7),
which follows an F(2, B − 2p) distribution, for every c between 0 and
p, with B begin the number of observations in the series.

2.3. Convergent Cross Mapping (CCM)

Convergent Cross Mapping (CCM) is firstly introduced in [14] that
aimed at detecting the causation among time series and provides a
better understanding of the dynamical systems that have not been
covered by other well established methods like Granger causality.
CCM has proven to be an advance non-parametric technique for dis-
tinguishing causations in a dynamic system that contains complex
interactions in biological studies and ecosystems, more details can
be found in [14,39-41]. CCM is briefly introduced below by mainly
following [14].

Assume there are two variables Xi and Yi, for which Xi has a causal
effect on Yi. CCM test will test the causation by evaluating whether
the historical record of Yi can be used to get reliable estimates of Xi.
Given a library set of n points (not necessarily to be the total num-
ber of observations N of two variables) and here set i = 1, 2, · · · , n,
the lagged coordinates are adopted to generate an E-dimensional
embedding state space [42,43], in which the points are the library
vector Xi and prediction vector Yi

Xi :
{
xi, xi−1, xi−2, · · · , xi−(E−1)

}
, (8)

Yi :
{
yi, yi−1, yi−2, · · · , yi−(E−1)

}
, (9)

The E + 1 neighbors of Yi from the library set Xi will be selected,
which actually form the smallest simplex that contains Yi as an inte-
rior point. Accordingly, the forecast is then conducted by this process,
which is the nearest-neighbor forecasting algorithm of simplex pro-
jection [43]. The optimal E will be evaluated and selected based on
the forward performances of these nearby points in an embedding
state space.

Therefore, by adopting the essential concept of Empirical
Dynamic Modeling (EDM) and generalized Takens’ Theorem [42],
two manifolds are conducted based on the lagged coordinates of the
two variables under evaluation, which are the attractor manifold MY

constructed by Yi and respectively, the manifold MX by Xi. The cau-
sation will then be identified accordingly if the nearby points on MY

can be employed for reconstructing observed Xi. Note that the cor-
relation coefficient q is used for the estimates of cross map skill due

to its widely acceptance and understanding, additionally, leave-one-
out cross-validation is considered a more conservative method and
adopted for all evaluations in CCM.

2.4. Singular Spectrum Analysis

SSA is a powerful non-parametric method and has been pre-
viously applied for signal extraction of gene expression pro-
files [24–27]. The basic SSA method consists of two complementary
stages: decomposition and reconstruction [44]. Throughout the first
stage, the gene expression profile is decomposed allowing to dif-
ferentiate between signal and noise. Throughout the second stage,
the less noisy series is reconstructed [45]. A short description of the
SSA technique is given below, for more detailed information, see for
example, [44,46].

Step 1: Embedding. Here, the one-dimensional time series YN =
(y1, . . . , yN) is transferred into the multi-dimensional
series X1, . . . , XK with vectors Xi = (yi, . . . , yi+L−1)T ∈ RL,
where L(2 ≤ L ≤ N − 1) is the window length and K =
N − L + 1. The result of this step is the trajectory matrix
X = [X1, . . . , XK ] = (xij)

L,K
i,j=1.

Step 2: SVD. Here, we perform the SVD of X. Denoted by
k1, . . . ,kL the eigenvalues of XXT arranged in the decreas-
ing order (k1 ≥ . . . ≥ kL ≥ 0) and by U1 . . . UL the
corresponding eigenvectors. The SVD of X can be written
as X = X1 + . . . + XL, where Xi =

√
kiUiVT

i .
Step 3: Grouping. The grouping consists in splitting the ele-

mentary matrices into several groups and summing the
matrices within each group.

Step 4: Diagonal averaging. The purpose of diagonal averaging
is to transform a matrix to the form of a Hankel matrix,
which can be subsequently converted to a time series.

3. Data

The quantitative bcd, cad and kr gene expression profiles rep-
resenting the protein concentrations of these genes in wild-type
Drosophila embryos are achieved using the confocal scanning
microscopy of fixed embryos immunostained for segmentation pro-
teins and is available via FlyEx database (http://urchin.spbcas.ru/
flyex/). The applied antibody allows the visualisation of the proteins
under study. Such quantification relies on the assumption that the
actual protein concentrations detected by the antibodies and the
fluorescence intensities are linearly related to the embryo’s natural
protein concentration [47,48].

To this aim, a 1024×1024 pixel confocal image with 8 bits of fluo-
rescence data was obtained for each embryo which then transformed
into an ASCII table. The ASCII table contains the fluorescence inten-
sity levels attributed to each nucleus in the 10% of longitudinal strips
(i.e. only the nuclei correspondents to the central 10% strip consists

Fig. 2. Confocal image of an embryo at time class 14(1). White horizontal lines depict
the 10% strip utilised to collect data.
Source: Figure adapted from [49].

http://urchin.spbcas.ru/flyex/
http://urchin.spbcas.ru/flyex/
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Table 1
Different time classes and the embryos studied per each time class.

Time class N Length SD

10 5 127 18.83
11 12 276 25.83
12 15 489 97.18
13 47 1224 78.56
14(1) 28 2318 143.87
14(2) 15 2315 86.83
14(3) 20 2367 141.05
14(4) 17 2309 119.16
14(5) 14 2301 126.96
14(6) 18 2347 103.74
14(7) 13 2007 229.61
14(8) 12 1600 311.21

Note: N=Number of embryos studied per each time class, Length=The average length
of data of expression profiles, SD=Standard deviation of length of data.

of the 45–55 % of the dorsoventral (D–V) axis are selected) along the
A-P axis and is unprocessed for any noise reduction methods. Fig. 2
shows an example of a confocal image with the 10% longitudinal
strip.

Since the segment determination starts from cleavage cycle 10
and lasts until the end of cleavage cycle 14 A (when proteins syn-
thesised from maternal transcripts begin to appear up to the onset
of gastrulation) the data has been categorised to five main cycles
of 10 to 14 A. Additionally, as the cleavage cycle 14 A is consider-
ably longer in time, to facilitate the analysis, temporal classes 1 to 8
have been considered as the subgroups of this cleavage cycle [47,48].
It should also be noted that each class of data contains a different
number of embryos.

Table 1 presents the number of embryos studied per each time
class. It is of note that the expression profile of each embryo has a
different length of data where the third column in this table reports
the average.

Although confocal scanning microscopy is a generally employed
technique for measuring the gene expression profiles, its use in sys-
tems biology studies presents a number of challenges such as the
considerable amount of noise entering data after quantifying the
fluorescence intensity. Possible errors in instrument functionality,
sample preparation and mathematical treatment of data have been
considered as the most common sources of noise [50]. In order
to improve the mathematical treatment of data cleaning stage and
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Fig. 3. A typical example of noisy Bcd, Cad and Kr along with the extracted signals
in red for embryo ms26 at time class 14(1). Black, blue and green colours depict Bcd,
Cad and Kr profiles respectively. The x-axis shows the position of the nuclei along
the Anterior-Posterior (A-P) axis of the embryo and Y-axis shows the fluorescence
intensity level.

extracting the signal from the original noisy data, we have applied
SSA. Fig. 3 illustrates the output from this effort. It is evident that the
SSA method provides a relatively smooth signal line with correlation
below 0.10 which credits the satisfactory level of separation between
noise and signal using SSA [27].

4. Empirical results

This section provides a summary of the results following applying
the three causality detection approaches before and after filtering the
expression profiles using SSA. For all evaluations, we have ensured
that all the test requirements are satisfied by choosing the optimal
indices. Table 2 illustrates the findings of the causality detection
analysis on Bcd and Cad profiles, where “YES” stands for the detected
regulatory relationship by the adopted test. The p-values reported for
time domain GC test are the average p-values attained for each time

Table 2
A summary of the causality tests results for Bcd on Cad profiles.

Time class Time domain GC Frequency domain GC CCM

Noisy series Filtered series Noisy series Filtered series Noisy series Filtered series

YES/NO p-Value YES/NO p-Value YES/NO YES/NO YES/NO YES/NO

10 NO 0.68 NO 0.45 NO YES YES YES
11 NO 0.71 NO 0.33 NO YES YES YES
12 NO 0.89 NO 0.32 NO YES YES YES
13 NO 0.89 NO 0.24 NO YES YES YES
14(1) NO 0.95 YES 0.05 NO YES YES YES
14(2) NO 0.98 YES 0.04 NO YES YES YES
14(3) NO 0.98 YES 0.01 NO YES YES YES
14(4) NO 0.94 YES 0.01 NO YES YES YES
14(5) NO 0.95 YES 0.00 NO YES YES YES
14(6) NO 0.96 YES 0.00 NO YES YES YES
14(7) NO 0.81 YES 0.00 NO YES YES YES
14(8) NO 0.79 YES 0.04 NO YES YES YES

Note: Differentiations are taken accordingly for stationarity prior to the tests; Optimal lag lengths are chosen based on the AIC, HQ, SIC and FPE criterions. “YES” stands for the
detected regulatory link and “NO” means the regulatory link could not be detected by the adopted test.
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Fig. 4. Box plots of time domain GC test p-values for noisy series. (Circle refers to the corresponding outlier that is more/less than 1.5 times of upper/lower quartile; the central
rectangle spans the upper quartile to the lower quartile; the segment inside the rectangle indicates the median; whiskers above and below the box refer to the maximum and
minimum.)

class. For time domain GC test, the co-integration test is conducted
only for those variables having one unit root. Since none of the tested
groups showed significant results in indicating co-integration, the
co-integration test result is not reported here. The optimal lag for
each VAR model is selected by comparing the information criteria
matrix, which includes results based on the AIC [51], HQ [52], SIC [53]
and FPE [54] criteria.

According to Table 2, it is evident that there is a significant differ-
ence in results before and after reducing the noise from the profiles.
The regulatory link between Bcd and Cad can be detected by neither
time domain nor frequency domain tests in the presence of noise.
Accordingly, it is clear that the filtering capability displayed by SSA
is indeed advantageous for causality detection analysis.

Nevertheless, as can be seen, the feasibility of capturing the reg-
ulatory link for CCM method has not been affected by noise and
the results achieved by this test confirm the regulatory relationship
between Bcd and Cad in expression profiles with and without noise.
However, regardless of the time class, the index representing the
ability of cross mapping is relatively smaller on average for noisy
series than filtered series.

It is of note that the length of the data under study varies between
different time classes. Time classes 10 to 13 and 14(7–8) have shorter
lengths comparing to the time classes 14(1–6), which may be the
reason of getting slightly smaller p-values for time classes 11 to 13
and 14(8) comparing to the rest of the sub classes of time class 14.
Yet, the frequency domain test shows less sensitivity to the data
length possibly because this method identifies the possible regula-
tive link for each individual frequency component rather than the
entire series.

Furthermore, the p-values obtained for both noisy and filtered
data of all the embryos in different time classes are summarised in
Figs. 4 and 5 as box and whisker diagram respectively. They follow
the standard format of box plot on displaying the distribution of the
p-values based on maximum, upper quartile, median, lower quar-
tile, and minimum. A close look at Figs. 4 and 5 suggests that the
time domain GC test cannot detect any regulatory link in the pres-
ence of noise, while the results for filtered series are significant and
more consistent especially for those time classes after 14(1). Com-
paring the p-values illustrated in Figs. 4 and 5, it is evident that
the length of the series and level of intensities have more effect on
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Table 3
A summary of the causality tests results for Bcd on Kr profiles.

Time class Time domain GC Frequency domain GC CCM

Noisy series Filtered series Noisy series Filtered series Noisy series Filtered series

YES/NO p-Value YES/NO p-Value YES/NO YES/NO YES/NO YES/NO

12 NO 0.71 NO 0.15 NO YES YES YES
13 NO 0.66 YES 0.04 NO YES YES YES
14(1) NO 0.89 YES 0.03 NO YES YES YES
14(2) NO 0.93 YES 0.01 NO YES YES YES
14(3) NO 0.97 YES 0.01 NO YES YES YES
14(4) NO 0.94 YES 0.00 NO YES YES YES
14(5) NO 0.95 YES 0.00 NO YES YES YES
14(6) NO 0.92 YES 0.00 NO YES YES YES
14(7) NO 0.81 YES 0.00 NO YES YES YES

Note: Differentiations are taken accordingly for stationarity prior to the tests; Optimal lag lengths are chosen based on the AIC, HQ, SIC and FPE criterions. “YES” stands for the
detected regulatory link and “NO” means the regulatory link could not be detected by the adopted test.

Table 4
A summary of the causality tests results for Cad on Kr profiles.

Time class Time domain GC Frequency domain GC CCM

Noisy series Filtered series Noisy series Filtered series Noisy series Filtered series

YES/NO p-Value YES/NO p-Value YES/NO YES/NO YES/NO YES/NO

12 NO 0.39 NO 0.25 NO YES YES YES
13 NO 0.78 NO 0.11 NO YES YES YES
14(1) NO 0.84 YES 0.05 NO YES YES YES
14(2) NO 0.89 YES 0.03 NO YES YES YES
14(3) NO 0.94 YES 0.01 NO YES YES YES
14(4) NO 0.91 YES 0.01 NO YES YES YES
14(5) NO 0.87 YES 0.00 NO YES YES YES
14(6) NO 0.82 YES 0.00 NO YES YES YES
14(7) NO 0.75 YES 0.00 NO YES YES YES

Note: Differentiations are taken accordingly for stationarity prior to the tests; Optimal lag lengths are chosen based on the AIC, HQ, SIC and FPE criterions. “YES” stands for the
detected regulatory link and “NO” means the regulatory link could not be detected by the adopted test.

the result of the noisy data than the filtered one as the p-values
in Fig. 4 are getting more insignificant for the final subclasses of
time class 14, where there is a decreasing pattern for these two
parameters in the expression profiles. Likewise, for the frequency
domain GC test, the links have been detected for all the filtered series,
while there is no regulatory relationship detected for non-filtered
ones.

Tables 3 and 4 present the results of the conducted analysis to
detect the regulatory link between Bcd and Kr profiles and Cad and
kr profiles respectively. As can be seen, reducing the noise level is an
essential step in detecting the regulatory link using the time domain
and frequency domain tests. Similar to the results reported in Table 2,
CCM method can again efficiently identify the regulatory relationship
even in the presence of noise.

Figs. 6, 7 and 8 depict an example of the results obtained by fre-
quency domain GC test for Bcd–Cad, Bcd–Kr and Cad–Kr profile pairs
respectively.2 In these figures, the blue line represents the statistic
test of each specific frequency, and the red line represents the 5%
critical value for all the frequencies. The horizontal axis gives the

2 The frequency domain GC test results for all considered pairs of genes related to
all different time classes can be found in Appendix A.

parameter w to calculate the corresponding frequency f by f = 2p/w.
Therefore, when the test statistics is above or very close to the
5% critical value, the causality is detected for that corresponding
frequency. As the component of each frequency is considered sep-
arately for identifying possible causal link, the impacts of relatively
less information are significantly reduced. However, there are some
results of filtered series showing very minor differences between the
test statistics and the 5% critical value.

For CCM test, the optimal embedding dimension E has been
selected for each pair of gene expression profiles based on the
nearest neighbor forecasting performance by simplex projection.
Figs. 9, 10 and 11 represent the examples of the CCM test result for
Bcd–Cad, Bcd–Kr and Cad–Kr before and after filtering the profiles,3

where for example regarding Fig. 9, the red line indicates the recon-
struction ability of Bcd cross mapping Cad, while the blue line
represents the performance of using historical information of Cad
on cross mapping Bcd. In general, the higher ability of factor X on
reconstructing the attractor reflects more significant causal effects
of the attractor on X. The results of CCM reflect close relationships

3 The CCM test results for all considered pairs of genes related to all different time
classes can be found in Appendix B.
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Fig. 6. Frequency domain causality test results for Bcd and Cad before and after filtering (time class 11). The blue line represents the statistic test of each specific frequency, and
the red line represents the 5% critical value for all the frequencies.

between Bcd and Cad with and without filtering, while Bcd shows
more significant relationship with Kr comparing to Cad for both orig-
inal and filtered data. The crossmap abilities of Bcd and Cad on Kr
are fairly similar, however, Kr clearly indicates higher reconstruc-
tion ability on Bcd comparing to Cad. In more details regarding the
relationship between Bcd and Cad, considering the average recon-
struction ability represented by q, it is suggested that CCM is not
affected by the smaller length of the series related to the initial
time. However, the increasing pattern of the average level of cross-
mapping ability up to time class 14(3), which follows by a decreasing
trend for the rest of the subclasses, indicates less accuracy of the

results for higher time classes. The approximate average value of
q over 0.5 for noisy series indicates significant cross-mapping (or
reconstruction) ability to identify the causal links. Correspondingly,
an average is found to be approximately over 0.8, which reflects
stronger causal links detected between Bcd and Cad after filtering.
Regarding the relationships between Bcd and Kr, both original and
filtered series indicate stronger cross-mapping ability from Kr to Bcd,
which means that Bcd shows a more powerful regulatory effect on Kr
than the other way around. However, this link is slightly more signif-
icant in the filtered profiles. In the case of Cad and Kr, the regulatory
relationship identified is less significant comparing to the other pairs
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Fig. 7. Frequency domain causality test results for Bcd and Kr before and after filtering (time class 12). The blue line represents the statistic test of each specific frequency, and
the red line represents the 5% critical value for all the frequencies.
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Fig. 8. Frequency domain causality test results for Cad and Kr before and after filtering (time class 12). The blue line represents the statistic test of each specific frequency,
and the red line represents the 5% critical value for all the frequencies.

of genes considered in this study and the average of 0.4 for filtered
profiles compared to the average of 0.2 for original series highlights
the role of the SSA in improving the achieved results.

It is of note that the overall findings of this research are consistent
with the previous efforts in mathematical modeling the segmenta-
tion network [55–57]. For example, Surkova et al. [55] present a
successful canalization study of four gap genes hunchback (hb), giant
(gt) knirps (kni) kr using the gene circuit method which uses the
concentration of bcd, cad tailless (tll) and genes as outside inputs.

5. Conclusion

Even though the regulatory role of bcd on cad, bcd on kr and cad
on kr genes has been previously reported through several genetics

experiments, in practice they have not been validated using any
causality detection methods. Hence, extracting the regulatory links
between these expression profiles was central to this study. We
therefore tested various models using the real data to ensure the
validity of the findings. We have applied the three causality detec-
tion approaches before and after filtering the expression profiles.
According to the obtained results the accuracy of data is of criti-
cal importance for the success of causality detection studies. Using
time domain and frequency domain GC tests, the regulatory link
can be detected only after removing the noise from the expression
profiles which indicates having an even small amount of error in
mean intensities may lead us to obtain a false negative result.

It is also imperative to note that for all pairs of genes considered
in this study, the time domain GC fails to detect the regulatory link in
time classes 10–13. The poor performance of this model here can be
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Fig. 9. CCM test results for Bcd and Cad before and after filtering (time class 14(8)). The red line indicates the reconstruction ability of Bcd crossmap Cad, while the
blue line represents the performance of Cad on crossmapping Bcd.
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Fig. 10. CCM test results for Bcd and Kr before and after filtering (time class 14(7)). The red line indicates the reconstruction ability of Bcd crossmap Kr, while the blue
line represents the performance of Kr on crossmapping Bcd.
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Fig. 11. CCM test results for Cad and Kr before and after filtering (time class 14(5)). The red line indicates the reconstruction ability of Cad crossmap Kr, while the blue
line represents the performance of Kr on crossmapping Cad.

attributed to either the length of the data or low expression level for
those time classes. The protein molecules synthesised from maternal
transcripts just begin to appear from time class 10 and the number of
these morphogens, in the areas where they were concentrated, is at
a lower amount for time classes 10–13 comparing to the higher time
classes.

According to the achieved results, confirming that there is a reg-
ulatory link between bcd and cad, bcd and kr and also cad and kr, it
is worth mentioning that the combined application of our filtering
method and the causality methods developed in this work provide
means to correct errors and hereby makes it possible to obtain more
accurate information from expression profiles. This can be easily
adapted to the other pairs of genes and is also applicable to a wider

range of GRNs to infer the regulatory interactions presented among
the genes of that network.
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Appendix A. Frequency domain GC test results

Note that some results of filtered series show a minor difference
between the test statistics and the 5% critical value, which is hard to
depict in the outcome test plots when considering the same legend
for comparison.
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Fig. 12. Frequency domain causality test results for Bcd and Cad (noisy series).
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Fig. 13. Frequency domain causality test results for Bcd and Cad (filtered series).
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Fig. 14. Frequency domain causality test results for Bcd and Kr (noisy series).
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Fig. 15. Frequency domain causality test results for Bcd and Kr (filtered series).
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Fig. 16. Frequency domain causality test results for Cad and Kr (noisy series).
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Fig. 17. Frequency domain causality test results for Cad and Kr (filtered series).
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Appendix B. CCM test results
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Fig. 18. CCM test results for Bcd and Cad (noisy series).
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Fig. 19. CCM test results for Bcd and Cad (filtered series).
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Fig. 20. CCM test results for Bcd and Kr (noisy series).
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Fig. 21. CCM test results for Bcd and Kr (filtered series).
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Fig. 22. CCM test results for Cad and Kr (noisy series).
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Fig. 23. CCM test results for Cad and Kr (filtered series).
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