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Recently various kinds of cardiac stem/progenitor cells have
been identified and suggested to be involved in cardiac repair
and regeneration in injured myocardium. In this review, we
focus on the roles of JAK-STAT signaling in cardiac stem/
progenitor cells in cardiomyogenesis. JAK-STAT signaling plays
important roles in the differentiation of stem cells into cardiac
lineage cells. The activation of JAK-STAT signal elicits the
mobilization of mesenchymal stem cells as well, contributing
to the maintenance of cardiac function. Thus we propose that
JAK-STAT could be a target signaling pathway in cardiac
regenerative therapy.

Introduction

JAK-STAT signaling pathway plays important roles in mainten-
ance of cardiac homeostasis. To date, much attention has been
paid to the biological and/or pathophysiological roles of JAK-
STAT signal in cardiac myocytes. Accumulating evidence has
indicated that JAK-STAT signaling pathway is activated in cardiac
myocytes by various cytokines, such as interleukin (IL)-6-type
cytokines, granulocyte colony-stimulating factor (G-CSF),1

leptin,2 erythropoietin3 and so on, and that the cardiac activation
of JAK-STAT pathway promotes cardiomyocyte survival and
myocardial angiogenesis, protecting myocardium from patho-
logical stresses.4,5 Thus, the regulation of JAK-STAT activities in
cardiomyocytes could be one of promising strategies for cardio-
protection against cardiovascular diseases,6,7 though their over-
activation might be detrimental to the cardiac functions.8,9

It has been a long-standing belief that the mammalian hearts
have the limited capacity of regeneration since postnatal cardio-
myocytes substantially fail to proliferate. Therefore, the cardiac
homeostasis has been thought to depend mainly on cardioprotec-
tion, not on de novo synthesis of cardiac myocytes. In this
context, one of the most surprising findings in this decade is
the discovery of cardiac stem/progenitor cells. Cells expressing
c-kit,10 Sca-111,12 or Islet-113 have been identified as resident

cardiac stem/progenitor cells in myocardium. These cells possess
the ability to differentiate into cardiac lineage cells, including
cardiomyocytes, vascular smooth muscle cells and endothelial
cells. Importantly, the transplantation of these cells results in the
improved cardiac repair and regeneration after myocardial injury.
In addition, bone marrow- or blood-derived cells, such as
hematopoietic stem cells,14-16 mesenchymal stem cells17,18 and
endothelial progenitor cells (EPCs),19-21 have been also proposed
as the endogenous source of cardiac lineage cells. Though the
mechanisms of the differentiation of embryonic stem (ES) cells
into cardiac lineage have been precisely investigated,22,23 the
signals responsible for the differentiation of cardiac resident and
bone marrow-derived stem/progenitor cells remain to be fully
elucidated. Interestingly, recent studies have suggested that JAK-
STAT pathway could be involved in determining the cell fates
of the stem/progenitor cells. In this review, we focus on the
JAK-STAT-mediated regulation of cardiomyogenesis in ES cells,
bone marrow-derived cardiac progenitor cells, and cardiac resident
stem/progenitor cells.

JAK-STAT Signal in Cardiomyogenesis in ES Cells

Since ES cells are attractive sources of cardiomyocytes in cardiac
regenerative medicine, intensive studies have been performed to
control ES cell differentiation into cardiac lineage cells. While
JAK-STAT signal is essential for maintenance of self-renewal and
pluripotency of ES cells,24,25 several lines of studies have reported
that STAT3 is involved in cardiomyogenesis in ES cells. In
murine ES cells, Foshay et al. demonstrated that the blockade
of JAK2-STAT3 signaling by pharmacological inhibitors or the
by expression of their dominant-negative forms diminished
beating areas in embryonic bodies, whereas the transfection of
constitutively-active JAK2 increased the beating areas.26

Rajasingh et al. reported that leukemia inhibitory factor
(LIF) and bone morphogenetic protein (BMP)-2 synergistically
differentiated murine ES cells into cardiomyocytes. Importantly,
inhibition of STAT3 or mitogen-activated protein kinase
(MAPK) repressed synergistic effect of LIF and BMP-2 on
cardiomyocyte differentiation in murine ES cells.27 Interestingly,
the intracardiac injection of ES cells, pretreated with LIF and
BMP-2, improved postinfarct left ventricular functions in a
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murine acute myocardial infarction model and decreased area of
fibrosis. Furthermore, the intracardially injected murine ES cells
exhibited the expression of cardiomyocyte and endothelial cell
markers in vivo and increased capillary density. These results
suggested that activation of glycoprotein 130 (gp130)-JAK2-
STAT3 signaling pathway leads to the differentiation of ES cells
into cardiac lineage, though the JAK-STAT-independent differen-
tiation is also reported.28,29

The Role of JAK-STAT Signal in Bone Marrow-Derived
Cardiac Progenitor Cells

Previously, it has been proposed that bone marrow-derived cells,
such as hematopoietic stem cells, bone marrow stromal cells
and EPCs, transdifferentiate into cardiac lineage cells, including
cardiomyocytes, vascular smooth muscle cells and endothelial
cells.14,15,17,30 On the other hand, several groups demonstrated that
transplanted hematopoietic stem cells transdifferentiated into
cardiomyocytes at negligible frequency in infarct myocardium.31,32

Thus, the ability of bone marrow-derived cells to differentiate into
cardiomyocytes is controversial; however, it is widely accepted
that the transplantation of these cells improves cardiac function in
injured hearts through paracrine factors from transplanted cells,
accompanied by neovascuralization.33 Interestingly, several studies
have revealed that these paracrine circuits are mediated by JAK-
STAT signaling.

Recently, it has been demonstrated that the injection of bone
marrow mesenchymal stem cells into the hind limb muscles
significantly improved ventricular function in the cardiomyo-
pathic hamsters, although the existence of intramuscularly
injected mesenchymal stem cells were limited in the injected
muscles.34,35 Those results indicate that the mesenchymal stem
cell injection resulted in the activation of JAK-STAT3 signaling
pathway and that upregulation of growth factors not only in
skeletal muscles and but also in the diseased hearts. In addition,
the administration of JAK-STAT inhibitors abrogated mesenchy-
mal stem cell-mediated growth factor expression and functional
improvement in the diseased hearts, suggesting that the tissue
trophic paracrine network is activated by mesenchymal stem
cell-mediated JAK-STAT3 signaling. The similar findings were
also observed in EPCs. IL-10 augments EPC-mediated func-
tional improvement and neovascularization in the ischemic
myocardium possibly through enhancement of EPC mobilization
and survival.36 Since IL-10-mediated vascular endothelial growth
factor (VEGF) expression in EPCs was abrogated by a STAT3
inhibitor, it is suggested that IL-10 might enhance EPC survival
and function through activation of STAT3.

The IL-6-type cytokine is also a candidate that regulates the
dynamics of bone marrow-derived cells in cardiac repair. The
intramuscular injection of LIF cDNA after myocardial infarction
attenuated infarct size and improved cardiac function, accom-
panied by the increased myocardial neovascularization.37 Inter-
estingly, increased level of serum LIF led to the differentiation
of bone marrow cells into cardiomyocytes and endothelial cells,
possibly by enhancing the cell migration. Moreover, it is proposed
that LIF-mediated recruitment of bone marrow-derived cells is

essential for the cardiac repair as an endogenous regenerative
mechanism. The postnatal bone marrow contains a population of
nonhematopoietic Sca-1+/Lin-/CD45- mononuclear cells that
express early cardiac lineage markers such as Nkx2.5/Csx and
GATA-4 and these cells migrate in response to several cytokines
after myocardial infarction.38 Interestingly, supernatants from
infracted myocardial tissue increased the motility of the bone
marrow-derived mononuclear cells, and inhibition of LIF signal-
ing by anti-LIF receptor neutralizing antibodies suppressed the
cell motility. Since LIF utilizes JAK-STAT signaling pathway as is
the case with other IL-6-type cytokines, it is likely that JAK-
STAT pathway plays important roles in the LIF-mediated
differentiation and migration of bone marrow-derived cells after
myocardial injury.

The Role of JAK-STAT Signal in Cardiac Resident
Stem/Progenitor Cells

Recently various kinds of cardiac resident stem/progenitor cells
expressing c-kit,10 Sca-111,12 or Islet-113 have been identified in the
myocardium. These cells were reported to differentiate into
cardiac lineage cells including cardiomyocytes, vascular endo-
thelial and smooth muscle cells; however, little has been known
about signaling pathways that determine their cell fates.

Since JAK-STAT pathway plays important roles in stem cell
differentiation, as described above, we examined the biological
significances of IL-6-type cytokines in the cardiac stem/progenitor
cells.39,40 IL-6-type cytokines, such as LIF, cardiotrophin-1 and
IL-11, induced the expression of the endothelial cell marker
genes and proteins, but not cardiomyocyte or smooth muscle
cell markers, in cultured cardiac Sca-1+ cells, accompanied by
activation of STAT3 and ERK1/2 but not Akt. Similarly, cardiac
c-kit+ cells are also differentiated into endothelial cells by LIF-
mediated STAT3 activation.40 In contrast, IL-6 failed to induce
the endothelial differentiation because of the lacking of its
receptor in Sca-1+ cells; however, IL-6 exhibited the activity to
induce the endothelial differentiation and STAT3 phosphoryla-
tion in the presence of soluble IL-6 receptor, an agonistic
receptor. Previously, it was reported that IL-6 deficiency reduced
capillary density in the heart.41 Thus, IL-6 might contribute to
vascular formation by activating cardiac stem cell in the presence
of soluble IL-6 receptor. Importantly, the inhibition of STAT3
pathway by the transduction with its dominant negative form or
with siRNA abrogated the IL-6-type cytokines-induced differen-
tiation of Sca-1+ cells into endothelial cells and the inhibition
of ERK1/2 with the MEK1/2 inhibitor U0126 also prevented
the endothelial differentiation, suggesting that IL-6-type cytokines
could elicit the endothelial differentiation of cardiac Sca-1+

cells through gp130-STAT3 in coordination with gp130/ERK
pathway.

Although cardiac Sca-1+ cells were differentiated into beating
cardiomyocytes by oxytocin,12 JAK-STAT signaling did not
induced the differentiation of cardiac Sca-1+ cells into cardio-
myocytes. In contrast, JAK-STAT3 signaling pathway evokes the
differentiation of murine ES cells into beating cardiomyocytes26,27

as described above, suggesting that the signaling pathways
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responsible for the regulation of differentiation into cardiomyo-
cytes might be different between ES cells and cardiac Sca-1+ cells.

We have addressed molecular mechanisms for JAK-STAT-
mediated endothelial cell differentiation of Sca-1+ cells, focusing
on Pim-1 kinase.42 Pim-1 has been originally identified as an

oncogenic serine/threonine kinase involved in the regulation
of cell survival, proliferation and differentiation.43 In cardiac
Sca-1+ cells, Pim-1 is upregulated in response to LIF through
STAT3 signaling pathway. The blockade of STAT3 pathway
abrogated the upregulation of Pim-1 expression by LIF and the

Figure 1. The proposed mechanism of STAT3-mediated vasculogenesis by cardiac stem/progenitor cells. (A) In the vasculogenesis by bone marrow-
derived cells, endothelial progenitor cells migrate from the bone marrow, home to peripheral organs, and participate in the postnatal neovascularization.
(B) JAK-STAT pathway in cardiac resident stem/progenitor cells may contribute to neovascularlization by inducing the endothelial differentiation.
IL-6-type cytokines, secreted from myocardium, stimulate gp130-JAK-STAT-Pim-1 signaling pathway in cardiac resident stem/progenitor cells, and induce
the endothelial differentiation. The newly differentiated endothelial cells may participate in vessel formation without homing process, designated as
“in situ vasculogenesis.”
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gene transduction of constitutively-active form of STAT3 cDNA
induced expression of Pim-1, indicating that STAT3 activation is
necessary and sufficient for Pim-1 induction. Importantly, the
overexpression of dominant negative form of Pim-1 abrogated the
endothelial differentiation, indicating that Pim-1 kinase activity
is essential for STAT3-mediated endothelial cell differentiation of
cardiac Sca-1+ cells. Furthermore, the functional roles of Pim-1 in
cardiac Sca-1+ cells were evaluated in vivo. The transplantation
of Sca-1+ cells increased the capillary density in myocardium
after myocardial infarction, associated with the improvement
of cardiac function, as reported previously.11 Interestingly, these
beneficial effects were abrogated by the overexpression of
dominant-negative form of Pim-1, suggesting that JAK-STAT-
Pim-1 pathway could contribute to neovascularization, promoting
cardiac repair/regeneration in vivo.

The biological significances of Pim-1 in the regulation of stem
cell differentiation have been previously described. Similar to
the findings described above, it was reported that Pim-1 is
required for VEGF-induced endothelial cell differentiation of
Flk-1+ ES cells.44 Therefore, it is possible that cardiac Sca-1+ cells
utilize the common signaling pathway with Flk-1+ ES cells, in
the process of the endothelial differentiation. In cardiac c-kit+

stem/progenitor cells, other aspects of Pim-1 have been
reported. Transplantation of cardiac c-kit+ stem/progenitor cells
overexpressing Pim-1 into infract myocardium significantly
enhanced myocardial regeneration accompanied with reduction
of infarct size, upregulation of c-kit+ cells, and increased vascula-
ture in the damaged region.45 Furthermore, Pim-1 stimulates cell
cycling and promotes asymmetric division in cardiac c-kit+

progenitor cells, leading to a preservation of the progenitor cell
pool as well as cardiogenic daughter cells.46 Taken together, Pim-1
may exhibit the differential functions, depending on the kinetics
of its activity.

The neovascularization is classified into two categories;
angiogenesis and vasculogenesis. In angiogenic process, the
preexisting endothelium grows and contributes to the formation
of vascular network, while vasculogenesis is defined as a de novo
vessel formation from vascular endothelial precursor cells. In
postnatal neovascularization, it is certain that angiogenesis plays
important roles in vessel formation; however, recent studies have
proposed that the bone marrow-derived cells, such as EPCs,47

participate in the vascular formation, by homing to the target
organs and by differentiating into endothelial cells. Considering
that IL-6-type cytokines, which activate JAK-STAT pathway in
cardiac stem cells, are induced in injured myocardium,40 it is
suggested that cardiac resident stem cells contribute to postnatal
vasculogenesis as novel endothelial precursor cells. It should

be noted that the cardiac resident stem cells could mediate
vasculogenesis without homing process, designated as “in situ
vasculogenesis,” unlike the bone marrow-derived cells (Fig. 1).
Interestingly, recent studies have described the existence of tissue
resident EPCs in non-cardiac tissues.48 Further studies would
be required to elucidate whether the activation of JAK-STAT
pathway in these non-cardiac resident stem cells also induces
their differentiation.

Perspectives

In order to develop novel therapeutic strategies that target cardiac
stem cells, it is essential to elucidate the signaling pathways that
determine their cell fates. In this review, we discussed the roles
of JAK-STAT pathway in the differentiation of stem/progenitor
cells into cardiac lineage cells. And we have described that JAK-
STAT-Pim-1 pathway plays critical roles in the endothelial
differentiation of cardiac Sca-1+ stem/progenitor cells.39,40,42

Toward the clinical application of these findings, we have to
solve at least two problems. First, we should identify the human
cells that correspond to murine Sca-1+ cells and to make clear
whether these cells differentiate into endothelial cells in response
to activation of JAK-STAT signaling pathway. Especially in
clinical situations in cardiovascular medicine, stem cell therapies
would be performed in elderly patients whose stem/progenitor
cells, such as EPCs, are likely to be senescent.49 In this context,
it is important to maintain the ability of cardiac stem cells to
differentiate into endothelial cells. Interestingly, it has recently
been demonstrated that erythropoietin secreted by cardiomyo-
cytes restored the endothelial cell differentiation of cardiac Sca-1+

progenitor cells, and preserved the cardiac microvasculature and
cardiac function in murine heart failure model.50 Second, it is
required to develop the interventional methods that safely activate
JAK-STAT-Pim-1 and their downstream pathways. To address
this problem, further effort should be made to identify Pim-1
substrates responsible for the endothelial differentiation. In spite
of these difficulties, targeting JAK-STAT signaling in cardiac
resident stem/progenitor cells might be a promising therapeutic
strategy against cardiovascular diseases since the neovasculariza-
tion is critical to preserve myocardium in failing hearts.
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