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Abstract

The performance of nearest-neighbor feature selection and prediction methods depends

on the metric for computing neighborhoods and the distribution properties of the underly-

ing data. Recent work to improve nearest-neighbor feature selection algorithms has

focused on new neighborhood estimation methods and distance metrics. However, little

attention has been given to the distributional properties of pairwise distances as a function

of the metric or data type. Thus, we derive general analytical expressions for the mean

and variance of pairwise distances for Lq metrics for normal and uniform random data with

p attributes and m instances. The distribution moment formulas and detailed derivations

provide a resource for understanding the distance properties for metrics and data types

commonly used with nearest-neighbor methods, and the derivations provide the starting

point for the following novel results. We use extreme value theory to derive the mean and

variance for metrics that are normalized by the range of each attribute (difference of max

and min). We derive analytical formulas for a new metric for genetic variants, which are

categorical variables that occur in genome-wide association studies (GWAS). The genetic

distance distributions account for minor allele frequency and the transition/transversion

ratio. We introduce a new metric for resting-state functional MRI data (rs-fMRI) and derive

its distance distribution properties. This metric is applicable to correlation-based predictors

derived from time-series data. The analytical means and variances are in strong agree-

ment with simulation results. We also use simulations to explore the sensitivity of the

expected means and variances in the presence of correlation and interactions in the data.

These analytical results and new metrics can be used to inform the optimization of nearest

neighbor methods for a broad range of studies, including gene expression, GWAS, and

fMRI data.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0246761 February 8, 2021 1 / 67

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dawkins BA, Le TT, McKinney BA (2021)

Theoretical properties of distance distributions and

novel metrics for nearest-neighbor feature

selection. PLoS ONE 16(2): e0246761. https://doi.

org/10.1371/journal.pone.0246761

Editor: Alan D Hutson, Roswell Park Cancer

Institute, UNITED STATES

Received: July 15, 2020

Accepted: January 25, 2021

Published: February 8, 2021

Copyright: © 2021 Dawkins et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

publicly available or within the manuscript and its

Supporting Information files. Simulated data was

created using https://github.com/insilico/npdr

https://github.com/insilico/cncv.

Funding: This work was supported in part by the

National Institute of Health GM121312 and the

William K. Warren Jr. Foundation. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

https://orcid.org/0000-0003-3737-6565
https://orcid.org/0000-0002-9494-8833
https://doi.org/10.1371/journal.pone.0246761
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246761&domain=pdf&date_stamp=2021-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246761&domain=pdf&date_stamp=2021-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246761&domain=pdf&date_stamp=2021-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246761&domain=pdf&date_stamp=2021-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246761&domain=pdf&date_stamp=2021-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246761&domain=pdf&date_stamp=2021-02-08
https://doi.org/10.1371/journal.pone.0246761
https://doi.org/10.1371/journal.pone.0246761
http://creativecommons.org/licenses/by/4.0/
https://github.com/insilico/npdr
https://github.com/insilico/cncv


1 Introduction

Statistical models can deviate from expected behavior depending on whether certain properties

of the underlying data are satisfied, such as being normally distributed. The expected behavior

of nearest neighbor models is further influenced by the choice of metric, such as Euclidean or

Manhattan. For random normal data (N ð0; 1Þ), for example, the variance of the pairwise dis-

tances of a Manhattan metric is proportional to the number of attributes (p) whereas the vari-

ance is constant for a Euclidean metric. Relief methods [1–3] and nearest-neighbor projected-

distance regression (NDPR) [4] use nearest neighbors to compute attribute importance scores

for feature selection and often use adaptive neighborhoods that rely on the mean and variance

of the distance distribution. The ability of this class of methods to identify association effects,

like main effects or interaction effects, depends on parameters such as neighborhood radii or

number of neighbors k [5, 6]. Thus, knowing the expected pairwise distance values for a given

metric and data distribution may improve the performance of these feature selection methods

by informing the choice of neighborhood parameters.

For continuous data, the metrics most commonly used in nearest neighbor methods are Lq

with q = 1 (Manhattan) or q = 2 (Euclidean). For data from standard normal (N ð0; 1Þ) or stan-

dard uniform (Uð0; 1Þ) distributions, the asymptotic behavior of the Lq metrics is known. The

mathematical formalism used to derive these known asymptotic results, however, are not read-

ily available in the literature and the details are needed for the novel extreme value results to be

derived in the current study. Thus, we first provide detailed derivations of generalized expres-

sions parameterized by metric q, attributes p, and samples m. We then extend the derivations

to Lq metrics normalized by the range of the attributes using Extreme Value Theory (EVT).

These range (max-min) normalized metrics are often used in Relief-based algorithms [3], but

the current study is the first to characterize the metric’s asymptotic distributions.

In addition to the novel moment estimates using extreme value theory, we also derive novel

asymptotic results for metrics we recently developed for genome-wide association study

(GWAS) data [7]. Various metrics have been developed for feature selection and for comput-

ing similarity between individuals based on shared genetic variation in GWAS data. We build

on the mathematical formalism for continuous data to derive the asymptotic properties of vari-

ous categorical (genotypic) data metrics for GWAS. We derive asymptotic formulas for the

mean and variance for three recently introduced GWAS metrics [7]. These metrics were devel-

oped for Relief-based feature selection to account for binary genotype differences (two levels),

allelic differences (three levels), and transition/transversion differences (five levels). The mean

and variance expressions we derive for these multi-level categorical data types are parameter-

ized by the minor allele frequency and the transition/transversion ratio.

We also introduce a novel metric for correlation data computed from time series, which is

motivated by the application of resting-state functional MRI (rs-fMRI) data. We further derive

asymptotic estimates for the mean and variance of distance distributions for this new metric.

Unlike structural MRI (magnetic resonance imaging) of the brain, which produces a high reso-

lution static image, rs-fMRI produces time-series brain activity. The correlation of this activity

between pairs of brain Regions of Interest (ROIs) can be computed from the time series and

the pairs used as attributes for machine learning and feature selection [8–11]. An ROI is com-

posed of many smaller brain volumes known as voxels, which may be used as the spatial units,

but typically ROIs are used that correspond to larger collections of voxels with known function

for emotion or cognition.

For a given subject in an rs-fMRI study, a correlation matrix is computed between ROIs

from the ROI time series, resulting in an overall dataset composed of ROI-ROI pairwise corre-

lations for each of the m subjects. Nearest-neighbor based feature selection was applied to rs-
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fMRI with the private evaporative cooling method [12], where the predictors were pairwise

correlations between ROIs. The use of pairwise correlation predictors is a common practice

because of convenience for detection of differential connectivity between brain regions that

may be of biological importance [13]. However, one may be interested in the importance of

attributes at the individual ROI level. The new metric in the current study may be used in

NPDR [4] feature selection or other machine learning methods for rs-fMRI correlation matri-

ces to provide attribute importance at the level of individual ROIs. This metric is applicable to

general time-series derived correlation data.

To summarize the contributions of this study, we provide multiple resources and novel

results. We provide a summary of the asymptotic means and variances of pairwise distances

for commonly used metrics and data types. In addition, we provide the mathematical details

for deriving these quantities. We derive novel analytical results for range-normalized metrics

using extreme value theory. We derive novel analytical results for new metrics for GWAS data.

Most asymptotic analysis is for continuous data, but GWAS data is categorical, which requires

slightly different approaches. We introduce a novel metric for correlation data derived from

rs-fMRI time series, and we derive the metric’s analytical means and variances. We test the

accuracy of analytical formulas for means and variances under various simulated conditions,

including correlation.

In Section 2, we introduce preliminary notation and apply the Central Limit Theorem

(CLT) and the Delta Method to derive asymptotics for pairwise distances. In Section 3, we

present general derivations for continuously distributed data sets with m instances and p attri-

butes. Using our more general results, we then consider the special cases of standard normal

(N ð0; 1Þ) and standard uniform (Uð0; 1Þ) data distributions, for which we derive analytical

expressions parameterized by metric q, number of attributes p, and number of instances m. In

Section 4 we use Extreme Value Theory (EVT) to derive attribute range-normalized (max-

min) versions of Lq metrics. In Section 5, we extend the derivations to categorical data with a

binomial distribution for GWAS data with multiple metric types. In Section 6, we present a

new time series correlation-based distance metric, with a particular emphasis on rs-fMRI data,

and we derive the corresponding asymptotic distance distribution results. In Section 8, we

demonstrate the effect of correlation in the attribute space on distance distributional proper-

ties. In Section 9, we demonstrate the effect of using distance distribution information on near-

est-neighbor feature selection.

2 Limit distribution for Lq on null data

For continuously distributed data, nearest-neighbor feature selection algorithms most com-

monly define distance between instances (i; j 2 I ; jI j ¼ m) in a data set Xm×p of m instances

(or samples) and p attributes (or features) as the following transformation of the sum that is

indexed over all attributes (a 2 A, jAj ¼ p)

DðqÞij ¼
X

a2A

jdijðaÞj
q

 !1=q

; ð1Þ

which is typically Manhattan (q = 1) in Relief-based methods and sometimes Euclidean

(q = 2). We use the terms “feature” and “attribute” interchangeably for the remainder of this

work. The metric dij(a), referred to as “diff” in the context of Relief, can be viewed as the one-

dimensional projection of the distance DðqÞij onto a single attribute dimension a 2 A. The func-

tion dij(a) is chosen in accordance with the type of attribute (e.g., continuous or discrete). For

continuous data, the projection dij(a) with respect to instances i; j 2 I and a fixed attribute
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a 2 A is often defined as

dijðaÞ ¼ diffða; ði; jÞÞ

¼ jX̂ ia � X̂ jaj;

ð2Þ

where X̂ represents the standardized data matrix X. Our more concise dij(a) notation is conve-

nient for mathematical statistics than the diff(a, (i, j)) notation that is standard in Relief-based

algorithms. NPDR does not require the division by attribute range (max(a) − min(a)) as in

the case of Relief-based algorithms to constrain scores to the interval from −1 to 1, where

maxðaÞ ¼ maxk2IfXkag and minðaÞ ¼ mink2IfXkag. The diff metric dij(a) is just the magnitude

difference between instance i; j 2 I data values with respect to a single attribute a 2 A. This

one-dimensional projection can take on a multitude of formulations depending on the data

distribution and various experimental characteristics.

2.1 Nearest-neighbor projected-distance regression

Like other nearest-neighbor feature selection algorithms, the performance of NPDR depends

on appropriate choice of neighborhood optimization criteria. The size of neighborhoods must

be chosen appropriately for optimal detection of important statistical effects. It has been

shown using simulations that neighborhood size should be as large as possible to optimally

detect main effects, whereas smaller neighborhoods are necessary to detecting interactions [6].

NPDR allows for any neighborhood algorithm to be used, such as fixed or adaptive k, and

fixed or adaptive radius. Especially in the case of radius methods, one needs some sense of cen-

tral tendency with respect to pairwise distances between a given target instance and its neigh-

bors. Similar to the radius problem, for fixed-k neighborhoods we need to choose k so that the

average distance within neighborhoods is not too large or too small with respect to the empiri-

cal average pairwise distance between pairs of instances. In order for the appropriate choice of

neighborhood size to be made, we need to know the central tendency and scale of the distance

distribution generated on our data.

Although we do not use NPDR in the current study, it is an important motivation for deri-

vations herein, so we briefly describe how NPDR computes importance scores for classifica-

tion problems. In the case of dichotomous outcomes, NPDR estimates regression coefficients

of the following model

logitðpmissij Þ ¼ b0 þ badijðaÞ þ �ij; ð3Þ

where pmissij is the probability of instances i; j 2 I being in different classes, βa indicates the rela-

tive importance of attribute a 2 A for predicting the binary outcome, and dij(a) is the attribute

diff (Eq 2). The outcome of NPDR, modeled by pmissij , is the diff computed as a function of

instance i; j 2 I class labels, which is given by the following

dmissij ð~yÞ ¼

(
0; yi ¼ yj

1; else;
ð4Þ

where~y is the binary response (or outcome). The purpose of NPDR is ultimately testing the

one-sided hypotheses given by

H0 : ba � 0

H1 : ba > 0;
ð5Þ
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where rejecting the null hypothesis (H0) implies that there is significant evidence to conclude

that attribute a 2 A is important for classification.

All derivations in the following sections are applicable to nearest-neighbor distance-based

methods in general, which includes not only NPDR, but also Relief-based algorithms. Each of

these methods uses a distance metric (Eq 1) to compute neighbors for each instance i 2 I .

Therefore, our derivations of asymptotic distance distributions are applicable to all methods

that compute neighbors in order to weight features. The predictors used by NPDR (Eq 3),

however, are the one-dimensional projected distances between two instances i; j 2 I (Eq 2).

Hence, all asymptotic estimates we derive for diff metrics (Eq 2) are particularly relevant to

NPDR. Since the standard distance metric (Eq 1) is a function of the one-dimensional projec-

tion (Eq 2), asymptotic estimates derived for this projection (Eq 2) are implicitly relevant to

older nearest-neighbor distance-based methods like Relief-based algorithms.

We proceed in the following section by applying the Classical Central Limit Theorem and

the Delta Method to derive the limit distribution of pairwise distances on any data distribution

that is induced by the standard distance metric (Eq 1). We assume independent samples in

order to derive closed-form moment estimates and to show that distances are asymptotically

normal. In real data, it is obviously not the case that samples or attributes will be independent;

however, the normality assumption for distances is approximately satisfied in a large number

of cases. For example, it has been shown using 100 real gene expression data sets from micro-

arrays, that approximately 80% of the data sets are either approximately normal or log-normal

in distribution [14]. We generated Manhattan distances (Eq 1, q = 1) on 99 of the same 100

gene expression data sets after applying a pre-processing pipeline. We excluded GSE67376

because this data included only a single sample. Before generating distance matrices, we trans-

formed the data using quantile normalization, removed genes with high coefficient of varia-

tion, and standardized samples to have zero mean and unit variance.

We computed densities for each distance matrix, as well as quantile-quantile plots to visually

assess normality (S26-S124 Figs in S1 File). The estimated densities and quantile-quantile plots

indicate that most of the gene expression data sets yield approximately normally distributed dis-

tances between instances. Another example involves real resting-state fMRI data from a study

of mood and anxiety disorders [15], where the data was generated both from a spherical ROI

parcellation [16] and a graph theoretic parcellation [17]. The data consists of correlation matri-

ces between ROI time series with respect to each parcellation and each subject. Each subject cor-

relation matrix, excluding the diagonal entries, was vectorized and combined into a single

matrix containing all subject ROI correlations. We then applied a Fisher r-to-z transformation

and standardized samples to be zero mean and unit variance. The output of this process was

two data matrices corresponding to each parcellation, respectively. Analogous to the gene

expression microarray data, we computed Manhattan distance matrices for each of the two rest-

ing-state fMRI data sets. We generated quantile-quantile and density plots for each matrix

(S125 and S126 Figs in S1 File). Both sets of pairwise distances were approximately normal.

2.2 Asymptotic normality of pairwise distances

Suppose that Xia;Xja�
iid FXðmX; s

2

XÞ for two fixed and distinct instances i; j 2 I and a fixed attri-

bute a 2 A. FX represents any data distribution with mean μX and variance s2
X.

It is clear that |Xia − Xja|q = |dij(a)|q is another random variable, so we let Zq
a � F Zq

a
ðmzqa

; s2

zqa
Þ

be the random variable such that

Zq
a ¼ jdijðaÞj

q
¼ jXia � Xjaj

q
; a 2 A: ð6Þ
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Furthermore, the collection fZq
aja 2 Ag is a random sample of size p of mutually indepen-

dent random variables. Hence, the sum of Zq
a over all a 2 A is asymptotically normal by the

Classical Central Limit Theorem (CCLT). More explicitly, this implies that

ðDðqÞij Þ
q
¼
X

a2A

jdijðaÞj
q
¼
X

a2A

jXia � Xjaj
q
¼
X

a2A

Zq
a _�N ðmzqa

p; s2

zqa
pÞ: ð7Þ

Consider the smooth function g(z) = z1/q, which is continuously differentiable for z> 0.

Assuming that mzq
a
> 0, the Delta Method [18] can be applied to show that

gððDðqÞij Þ
q
Þ ¼ g

Xp

a2A

Zq
a

 !

¼
X

a2A

jXia � Xjaj
q

 !1=q

¼ DðqÞij _�N ðgðmzqpÞ; ½g 0ðmzqa
pÞ�2s2

zq
a
pÞ

) DðqÞij _�N ðmzqa
pÞ1=q;

s2

zqa
p

q2ðmzq
a
pÞ2 1� 1

qð Þ

0

@

1

A:

ð8Þ

Therefore, the distance between two fixed, distinct instances i and j (Eq 1) is asymptotically

normal. In particular, when q = 2, the distribution of Dð2Þij asymptotically approaches

N
ffiffiffiffiffiffiffiffi
mz2

a
p

p
;
s2

z2
a

4mz2
a

� �

. A unique characteristic inherent to the q = 2 case is the fact that we get not

only an asymptotic estimate for the average second raw moment of the Lq metric (Eq 8, q = 2),

but also the variance of the second raw moment. This leads to the following higher order esti-

mate of the sample mean in the case of q = 2

EðDð2Þij Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðDð2Þij Þ
2
� � VarðDð2Þij Þ

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mz2
a
p �

s2

z2
a

4mz2
a

s

:

ð9Þ

The distribution of pairwise distances convergences quickly to a Gaussian for Euclidean

(q = 2) and Manhattan (q = 1) metrics as the number of attributes p increases (Fig 1). We com-

pute the distance between all pairs of instances in simulated datasets of uniformly distributed

random data. We simulate data with fixed m = 100 instances, and, by varying the number of

attributes (p = 10, 100, 10000), we observe rapid convergence to Gaussian. For p as low as 10

attributes, Gaussian is a good approximation. The number of attributes in bioinformatics data

is typically quite large, at least on the order of 103. The Shapiro-Wilk statistic approaches 1

more rapidly for the Euclidean than Manhattan, which may indicate more rapid convergence

in the case of Euclidean. This may be partly due to Euclidean’s use of the square root, which is

a common transformation of data in statistics.

To show asymptotic normality of distances, we did not specify whether the data distribution

FX was discrete or continuous. This is because asymptotic normality is a general phenomenon

in high attribute dimension p for any data distribution FX satisfying the assumptions we

have made. Therefore, the simulated distances we have shown (Fig 1) have an analogous
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representation for discrete data, as well as all other continuous data distributions. In addition

to showing Gaussian convergence for Manhattan and Euclidean distances on standard uni-

form data, we show a similar result for standard normal data (S2 Fig in S1 File).

For distance based learning methods, all pairwise distances are used to determine relative

importances for attributes. The collection of all distances above the diagonal in an m × m
distance matrix does not satisfy the independence assumption used in the previous deriva-

tions. This is because of the redundancy that is inherent to the distance matrix calculation.

However, this collection is still asymptotically normal with mean and variance approxi-

mately equal to those we have previously given (Eq 8). In the next section, we assume actual

data distributions in order to define more specific general formulas for standard Lq and

max-min normalized Lq metrics. We also derive asymptotic moments for a new discrete

metric in GWAS data and a new metric for time series correlation-based data, such as, rest-

ing-state fMRI.

Fig 1. Convergence to Gaussian for Manhattan and Euclidean distances for simulated standard uniform data with

m = 100 instances and p = 10, 100, and 10000 attributes. Convergence to Gaussian occurs rapidly with increasing p,

and Gaussian is a good approximation for p as low as 10 attributes. The number of attributes in bioinformatics data is

typically much larger, at least on the order of 103. The Euclidean metric has stronger convergence to normal than

Manhattan. P values from Shapiro-Wilk test, where the null hypothesis is a Gaussian distribution.

https://doi.org/10.1371/journal.pone.0246761.g001
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3 Lq metric moments for continuous data distributions

In this section, we derive general formulas for asymptotic means and variances of the Lq dis-

tance (Eq 1) for standard normal and standard uniform data. With our general formulas for

continuous data, we compute moments associated with Manhattan (L1) and Euclidean (L2)

metrics. In the subsequent section, we combine the asymptotic analysis of this section with

extreme value theory (EVT) to derive mean and variance formulas for the more complicated

max-min normalized version of the Lq distance, where the magnitude difference (Eq 2) is

divided by the range of each attribute a.

3.1 Distribution of |dij(a)|q = |Xia − Xja|q

Suppose that Xia;Xja�
iid FXðmx; s

2

xÞ and define Zq
a ¼ jdijðaÞj

q
¼ jXia � Xjaj

q
, where a 2 A and

jAj ¼ p. In order to find the distribution of Zq
a , we will use the following theorem given in

[19].

Theorem 3.1 Let f(x) be the value of the probability density of the continuous random vari-
able X at x. If the function given by y = u(x) is differentiable and either increasing or decreasing
for all values within the range of X for which f(x)6¼0, then, for these values of x, the equation
y = u(x) can be uniquely solved for x to give x = w(y), and for the corresponding values of y the
probability density of Y = u(X) is given by

gðyÞ ¼ f ½wðyÞ� � jw0ðyÞj provided u0ðxÞ 6¼ 0

Elsewhere, g(y) = 0.

We have the following cases that result from solving for Xja in the equation given by

Zq
a ¼ jXia � Xjaj

q
:

1. Suppose that Xja ¼ Xia � ðZq
aÞ

1=q
. Based on the iid assumption for Xia and Xja, it follows

from Thm. 3.1 that the joint density function g(1) of Xia and Zq
a is given by

gð1Þðxia; zaÞ ¼ fXðxia; xjaÞ
@xja

@za

�
�
�
�

�
�
�
�

¼ fXðxiaÞfXðxjaÞ
� 1

q
ðzq

aÞ
1
q� 1

�
�
�
�

�
�
�
�

¼
1

qðzq
aÞ

1� 1
q
fXðxiaÞfXðxia � ðz

q
aÞ

1=q
Þ; za > 0:

ð10Þ

The density function f ð1ÞZq
a

of Zq
a is then defined as

f ð1ÞZq
a
ðzq

aÞ ¼

Z 1

� 1

gð1Þðxia; z
q
aÞdxia

¼
1

qðzq
aÞ

1� 1
q

Z 1

� 1

fXðxiaÞfXðxia � ðz
q
aÞ

1=q
Þdxia; za > 0:

ð11Þ
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2. Suppose that Xja ¼ Xia þ ðZq
aÞ

1=q
. Based on the iid assumption for Xia and Xja, it follows

from Thm. 3.1 that the joint density function g(2) of Xia and Za is given by

gð2Þðxia; zaÞ ¼ fXðxia; xjaÞ
@xja

@za

�
�
�
�

�
�
�
�

¼ fXðxiaÞfXðxjaÞ
1

q
ðzq

aÞ
1
q� 1

�
�
�
�

�
�
�
�

¼
1

qðzq
aÞ

1� 1
q
fXðxiaÞfXðxia � ðz

q
aÞ

1=q
Þ; za > 0:

ð12Þ

The density function f ð2ÞZq
a

of Zq
a is then defined as

f ð2ÞZq
a
ðzq

aÞ ¼

Z 1

� 1

gð2Þðxia; z
q
aÞdxia

¼
1

qðzq
aÞ

1� 1
q

Z 1

� 1

fXðxiaÞfXðxia þ ðz
q
aÞ

1=q
Þdxia; za > 0:

ð13Þ

Let FZq
a

denote the distribution function of the random variable Zq
a . Furthermore, we define

the events E(1) and E(2) as

Eð1Þ ¼ fjXia � Xjaj
q
� zq

a : Xja ¼ Xia � ðZq
aÞ

1=q
g ð14Þ

and

Eð2Þ ¼ fjXia � Xjaj
q
� zq

a : Xja ¼ Xia þ ðZq
aÞ

1=q
g: ð15Þ

Then it follows from fundamental rules of probability that

FZq
a
ðzq

aÞ ¼ P½Zq
a � zq

a�

¼ P½jXia � Xjaj
q
� zq

a�

¼ P½Eð1Þ [ Eð2Þ�

¼ P½Eð1Þ� þ P½Eð2Þ� � P½Eð1Þ \ Eð2Þ�

¼ P½Eð1Þ� þ P½Eð2Þ�

¼

Z zq
a

� 1

f ð1ÞZq
a
ðtÞdt þ

Z zqa

� 1

f ð2ÞZq
a
ðtÞdt

¼

Z zq
a

� 1

ðf ð1ÞZq
a
ðtÞ þ f ð2ÞZq

a
ðtÞÞdt

¼
1

qðzq
aÞ

1� 1
q

Z zqa

� 1

Z 1

� 1

fXðxiaÞ½fXðxia � tÞ þ fXðxia þ tÞ�dxia

� �

dt; za > 0:

ð16Þ
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It follows directly from the previous result (Eq 16) that the density function of the random

variable Zq
a is given by

fZq
a
ðzq

aÞ ¼
@

@zq
a
FZq

a
ðzq

aÞ

¼
1

qðzq
aÞ

1� 1
q

Z 1

� 1

fXðxiaÞ fXðxia � ðz
q
aÞ

1=q
Þ þ fXðxia þ ðz

q
aÞ

1=q
Þ

h i
dxia;

ð17Þ

where za> 0.

Using the previous result (Eq 17), we can compute the mean and variance of the random

variable Zq
a as

mzqa
¼

Z 1

� 1

zq
afZq

a
ðzq

aÞdz
q
a ð18Þ

and

s2

zqa
¼

Z 1

� 1

ðzq
aÞ

2fZq
a
ðzq

aÞdz
q
a � m

2

zq
a
: ð19Þ

It follows immediately from the mean (Eq 18) and variance (Eq 19) and the Classical Cen-

tral Limit Theorem (CCLT) that

ðDðqÞij Þ
q
¼
X

a2A

Zq
a ¼

X

a2A

jXia � Xjaj
q

_�N ðmzqa
p; s2

zqa
pÞ: ð20Þ

Applying the convergence result we derived previously (Eq 8), the distribution of DðqÞij is

given by

DðqÞij �
_ N ðmzqa

pÞ1=q;
s2

zqa
p

q2ðmzqa
pÞ2 1� 1

qð Þ

0

@

1

A; mzq
a
> 0; ð21Þ

where we have an improved estimate of the mean for q = 2 (Eq 9).

3.1.1 Standard normal data. If Xia;Xja�
iid N ð0; 1Þ, then the marginal density functions

with respect to X for Xia, Xia � ðZq
aÞ

1=q
, and Xia þ ðZq

aÞ
1=q

are defined as

fXðxiaÞ ¼
1
ffiffiffiffiffiffi
2p
p e� 1

2
x2
ia ; ð22Þ

fXðxia � ðzq
aÞ

1=q
Þ ¼

1
ffiffiffiffiffiffi
2p
p e� 1

2
ðxia � ðz

q
aÞ

1=qÞ2 ; za > 0; and ð23Þ

fXðxia þ ðzq
aÞ

1=q
Þ ¼

1
ffiffiffiffiffiffi
2p
p e� 1

2
ðxiaþðz

q
aÞ

1=qÞ2 ; za > 0: ð24Þ
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Substituting these marginal densities (Eqs 22–24) into the general density function for Zq
a

(Eq 17) and completing the square on xia in the exponents, we have

fZq
a
ðzq

aÞ ¼
1

2qpðzq
aÞ

1� 1
q
e� 1

4
ðzq

aÞ
2=q
Z 1

� 1

�

e�
1
2

ffiffi
2
p

xia �
ffiffi
2
p

2
ðzq

aÞ
1=q

� �2

þ e�
1
2

ffiffi
2
p

xiaþ
ffiffi
2
p

2
ðzq

aÞ
1=q

� �2
�

dxia

¼
1

2q
ffiffiffi
p
p
ðzq

aÞ
1� 1

q
e� 1

4
ðzq

aÞ
2=q
Z 1

� 1

1
ffiffiffiffiffiffi
2p
p e� 1

2
u2

þ e� 1
2
u2

� �
du

¼
1

2q
ffiffiffi
p
p
ðzq

aÞ
1� 1

q
e� 1

4
ðzq

aÞ
2=q
ð1þ 1Þ

¼
1

q
ffiffiffi
p
p ðzq

aÞ
1
q� 1e� 1

4
ðzq

aÞ
2=q

¼

2

q

ð2qÞ
1=q
G

1

q
2

q

 ! ðzq
aÞ

1
q� 1e

�
zqa
2q

� �2=q

:

ð25Þ

The density function given previously (Eq 25) is a Generalized Gamma density with param-

eters b ¼ 2

q, c = 2q, and d ¼ 1

q. This distribution has mean and variance given by

mzqa
¼

cG dþ1

b

� �

G d
b

� �

¼
2qG

qþ1

2

� �

ffiffiffi
p
p

ð26Þ

and

s2

zq
a
¼ c2

G dþ2

b

� �

G d
b

� � �
G dþ1

b

� �

G d
b

� �

 !2" #

¼ 4q G qþ 1

2

� �

ffiffiffi
p
p �

G2 1

2
qþ 1

2

� �

p

� �

:

ð27Þ

By linearity of the expected value and variance operators under the iid assumption, the

mean (Eq 26) and variance (Eq 27) of the random variable Zq
a allow the p- dimensional mean

and variance of the ðDðqÞij Þ
q

distribution to be computed directly as

m
ðDðqÞij Þ

q ¼ E ðDðqÞij Þ
q

h i
¼ E

X

a2A

Zq
a

 !

¼
X

a2A

EðZq
aÞ ¼

X

a2A

2qG
qþ1

2

� �

ffiffiffi
p
p ¼

2qG
qþ1

2

� �

ffiffiffi
p
p p ð28Þ
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and

s2

ðDðqÞij Þ
q ¼ Var½ðDðqÞij Þ

q
� ¼ Var

X

a2A

Zq
a

 !

¼
X

a2A

VarðZq
aÞ

¼
X

a2A

4q G qþ 1

2

� �

ffiffiffi
p
p �

G2 1

2
qþ 1

2

� �

p

� �

¼ 4q G qþ 1

2

� �

ffiffiffi
p
p �

G2 1

2
qþ 1

2

� �

p

� �

p:

ð29Þ

Therefore, the asymptotic distribution of DðqÞij for standard normal data is

N 2q G
qþ1

2

� �

ffiffiffi
p
p p

� �1=q

;
4qp

q2
2qG 1

2
qþ1

2ð Þffiffi
p
p p

� �2 1� 1
qð Þ

G qþ1
2ð Þffiffi
p
p �

G2 1
2
qþ1

2ð Þ
p

� �

0

B
B
@

1

C
C
A: ð30Þ

As a useful reference, we tabulate the moment estimates (Eq 30) for the Lq metric on stan-

dard normal and uniform data (Fig 2). The derivations for standard uniform data are given in

the next subsection. The table is organized by data type (normal or uniform), type of statistic

(mean or variance), and corresponding asymptotic formula.

3.1.2 Standard uniform data. If Xia;Xja�
iid Uð0; 1Þ, then the marginal density functions

with respect to X for Xia, Xia � ðZq
aÞ

1=q
, and Xia þ ðZq

aÞ
1=q

are defined as

fXðxiaÞ ¼ 1; 0 � xia � 1 ð31Þ

fXðxia � ðzq
aÞ

1=q
Þ ¼ 1; 0 � xia � ðzq

aÞ
1=q
� 1; and ð32Þ

fXðxia þ ðzq
aÞ

1=q
Þ ¼ 1; 0 � xia þ ðzq

aÞ
1=q
� 1: ð33Þ

Substituting these marginal densities (Eqs 31–33) into the more general density function

for Zq
a (Eq 17), we have

fZq
a
ðzq

aÞ ¼
1

qðzq
aÞ

1� 1
q

Z 1

� 1

fXðxiaÞ fX xia � ðz
q
aÞ

1=q
� �

þ fX xia þ ðz
q
aÞ

1=q
� �h i

dxia;

0 < za � 1

¼ 1

qðzq
aÞ

1� 1
q

Z 1

0

fXðxia � zq
a

� �
þ fX xia þ ðz

q
aÞ

1=q
� �h i

dxia; 0 < za � 1

¼ 1

qðzq
aÞ

1� 1
q

Z 1

ðzq
aÞ

1dxia þ

Z 1� ðzq
aÞ

0

1dxia; 0 < za � 1

¼ 1

qðzq
aÞ

1� 1
q

1 � zq
a

� �� �
þ 1 � zq

a

� �� �� �
; 0 < za � 1

¼ 1

q � 2ðz
q
aÞ

1
q� 1
½1 � ðzq

aÞ
1=q
�
2� 1
; 0 < za � 1:

ð34Þ
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The previous density (Eq 34) is a Kumaraswamy density with parameters b ¼ 1

q and c = 2

with moment generating function (MGF) given by

Mn ¼
cG 1þ n

b

� �
GðcÞ

G 1þ cþ n
b

� �

¼ 2

ðnqþ2Þðnqþ1Þ
:

ð35Þ

Using this MGF (Eq 35), the mean and variance of Zq
a are computed as

mzqa
¼

2

ðqþ 2Þðqþ 1Þ
ð36Þ

Fig 2. Summary of distance distribution derivations for standard normal (N ð0; 1Þ) and standard uniform

(Uð0; 1Þ) data. Asymptotic estimates are given for both standard (Eq 1) and max-min normalized (Eq 58) q-metrics.

These estimates are relevant for all q 2 N and p� 1 for which the normality assumption of distances holds.

https://doi.org/10.1371/journal.pone.0246761.g002
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and

s2

zqa
¼

1

ðqþ 1Þð2qþ 1Þ
�

2

ðqþ 2Þðqþ 1Þ

� �2

: ð37Þ

By linearity of the expected value and variance operators under the iid assumption, the

mean (Eq 36) and variance (Eq 37) of the random variable Zq
a allow the p- dimensional mean

and variance of the ðDðqÞij Þ
q

distribution to be computed directly as

m
ðDðqÞij Þ

q ¼ E½ðDðqÞij Þ
q
� ¼ E

X

a2A

Zq
a

 !

¼
X

a2A

EðZq
aÞ

¼
X

a2A

2

ðqþ 2Þðqþ 1Þ

¼
2p

ðqþ2Þðqþ1Þ

ð38Þ

and

s2

ðDðqÞij Þ
q ¼ Var½ðDðqÞij Þ

q
� ¼ Varð

X

a2A

Zq
aÞ

¼
X

a2A

VarðZq
aÞ

¼
X

a2A

1

ðqþ 1Þð2qþ 1Þ
�

2

ðqþ 2Þðqþ 1Þ

� �2
" #

¼ 1

ðqþ1Þð2qþ1Þ
� 2

ðqþ2Þðqþ1Þ

� �2
� �

p:

ð39Þ

Therefore, the asymptotic distribution of DðqÞij for standard uniform data is

N
2p

ðqþ 2Þðqþ 1Þ

� �1=q

;
p

q2 2p
ðqþ2Þðqþ1Þ

� �2 1� 1
qð Þ

1

ðqþ 1Þð2qþ 1Þ
�

2

ðqþ 2Þðqþ 1Þ

� �2
" #

0

B
B
@

1

C
C
A: ð40Þ

As previously noted, we tabulate the moment estimates (Eq 40) for the Lq metric on stan-

dard uniform data along with standard normal data (Fig 2). The summary is organized by data

type (normal or uniform), type of statistic (mean or variance), and corresponding asymptotic

formula. In the next subsections, we show the asymptotic moments of the distance distribution

for standard normal and standard uniform data for the special case of Manhattan (q = 1) and

Euclidean (q = 2) metrics. These are the most commonly applied metrics in the context of

nearest-neighbor feature selection, so they are of particular interest.

3.2 Manhattan (L1)

With our general formulas for the asymptotic mean and variance (Eqs 30 and 40) for any value

of q 2 N, we can simply substitute a particular value of q in order to determine the asymptotic
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distribution of the corresponding distance Lq metric. We demonstrate this with the example of

the Manhattan metric (L1) for standard normal and standard uniform data (Eq 1, q = 1).

3.2.1 Standard normal data. Substituting q = 1 into the asymptotic formula for the mean

Lq distance (Eq 30), we have the following for expected L1 distance between two independently

sample instances i; j 2 I in standard normal data

EðDð1Þij Þ ¼ 2
G 1þ1

2

� �

ffiffiffi
p
p p

� �1=1

¼
2p
ffiffiffi
p
p :

ð41Þ

We see in the formula for the expected Manhattan distance (Eq 41) that Dð1Þij � p in the

limit, which implies that this distance is unbounded as feature dimension p increases.

Substituting q = 1 into the formula for the asymptotic variance of Dð1Þij (Eq 30) leads to the

following

VarðDð1Þij Þ ¼
41p

12 21G 1
2
ð1Þþ1

2ð Þ
ffiffi
p
p p

� �2 1� 1
1ð Þ

G 1þ 1

2

� �

ffiffiffi
p
p �

G2 1

2
ð1Þ þ 1

2

� �

p

� �

¼
2ðp � 2Þp

p
:

ð42Þ

Similar to the mean (Eq 41), the limiting variance of Dð1Þij (Eq 42) grows on the order of

feature dimension p, which implies that points become more dispersed as the dimension

increases. The summary of moment estimates given in this section (Eqs 41 and 42) is orga-

nized by metric, data type, statistic (mean or variance), and asymptotic formula (Fig 3).

3.2.2 Standard uniform data. Substituting q = 1 into the asymptotic formula of the mean

(Eq 40), we have the following for the expected L1 distance between two independently sam-

pled instances i; j 2 I in standard uniform data

EðDð1Þij Þ ¼
2p

ð1þ 2Þð1þ 1Þ

� �1=1

¼
p
3
:

ð43Þ

Once again, we see that the mean of Dð1Þij (Eq 43) grows on the order of p just as in the case

of standard normal data.

Substituting q = 1 into the formula of the asymptotic variance of Dð1Þij (Eq 40) leads to the

following

VarðDð1Þij Þ ¼
p

12 2p
ð1þ2Þð1þ1Þ

� �2 1� 1
1ð Þ

1

ð1þ 1Þð2ð1Þ þ 1Þ
�

2

ð1þ 2Þð1þ 1Þ

� �2
" #

¼
p
18
:

ð44Þ

As in the case of the L1 metric on standard normal data, we have a variance (Eq 44) that

grows on the order of p. The distances between points in high-dimensional uniform data
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become more widely dispersed with this metric. The summary of moment estimates given in

this section (Eqs 43 and 44) is organized by metric, data type, statistic (mean or variance), and

asymptotic formula (Fig 3).

3.2.3 Distribution of one-dimensional projection of pairwise distance onto an attri-

bute. In nearest-neighbor distance-based feature selection like NPDR and Relief-based algo-

rithms, the one-dimensional projection of the pairwise distance onto an attribute (Eq 2) is

particularly fundamental to feature quality for association with an outcome. For instance, this

distance projection is the predictor used to determine beta coefficients in NPDR. In particular,

understanding distributional properties of the projected distances is necessary for defining

pseudo P values for NPDR. In this section, we summarize the exact distribution of the one-

dimensional projected distance onto an attribute a 2 A. These results apply to continuous

data, such as gene expression.

Fig 3. Asymptotic estimates of means and variances for the standard L1 and L2 (q = 1 and q = 2 in Fig 2) distance

distributions. Estimates for both standard normal (N ð0; 1Þ) and standard uniform (Uð0; 1Þ) data are given.

https://doi.org/10.1371/journal.pone.0246761.g003
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In previous sections, we derived the exact density function (Eq 17) and moments (Eqs 18

and 19) for the distribution of Zq
a ¼ jXia � Xjaj

q
. We then derived the exact density (Eq 25) and

moments (Eqs 26 and 27) for standard normal data. Analogously, we formulated the exact

density (Eq 34) and moments (Eqs 36 and 37) for standard uniform data. From these exact

densities and moments, we simply substitute q = 1 to define the distribution of the one-dimen-

sional projected distance onto an attribute a 2 A.

Assuming data is standard normal, we substitute q = 1 into the density function of Zq
a (Eq

25) to arrive at the following density function

fZ1
a
ðz1

aÞ ¼
2

1

ð21Þ
1=1
G

1
1
2
1

� � ðz1

aÞ
1=1� 1e

�
z1
a

21

� �2=1

; za > 0

¼ 1ffiffi
p
p zae�

1
4
z2
a ; za > 0:

ð45Þ

The mean corresponding to this Generalized Gamma density is computed by substituting

q = 1 into the formula for the mean of Zq
a (Eq 26). This result is given by

mZ1
a
¼

21G 1þ1

2

� �

ffiffiffi
p
p

¼
2
ffiffiffi
p
p :

ð46Þ

Substituting q = 1 into Eq 27 for the variance, we have the following

s2

Z1
a
¼ 41

G 1þ 1

2

� �

ffiffiffi
p
p �

G2 1

2
� 1þ 1

2

� �

p

� �

¼
2ðp � 2Þ

p
:

ð47Þ

These last few results (Eqs 45–47) provide us with the distribution for NPDR predictors

when the data is from the standard normal distribution. We show density curves for q = 1, 2,

. . ., 5 for the one-dimensional projection for standard normal data (S22 A Fig in S1 File).

If we have standard uniform data, we substitute q = 1 into the density function of Zq
a (Eq

34) to obtain the following density function

fZ1
a
¼

1

1
� 2ðz1

aÞ
1=1� 1
½1 � ðz1

aÞ
1=1
�
2� 1
; 0 < za � 1

¼ 2zað1 � zaÞ; 0 < za � 1:

ð48Þ

The mean corresponding to this Kumaraswamy density is computed by substituting q = 1

into the formula for the mean of Zq
a (Eq 36). After substitution, we have the following result

mZ1
a
¼

2

ð1þ 2Þð1þ 1Þ

¼
1

3
:

ð49Þ
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Substituting q = 1 into the formula for the variance of Zq
a (Eq 37), we have the following

s2

Z1
a
¼

1

ð1þ 1Þð2 � 1þ 1Þ
�

2

ð1þ 2Þð1þ 1Þ

� �2

¼
1

18
:

ð50Þ

In the event that the data distribution is standard uniform, the density function (Eq 48), the

mean (Eq 49), and the variance (Eq 50) sufficiently define the distribution for NPDR predic-

tors. As in the case of NPDR predictors for standard normal data, we show density curves for

q = 1, 2, . . ., 5 for the NPDR predictor distribution for standard uniform data (S22 B Fig in

S1 File).

The means (Eqs 46 and 49) and variances (Eqs.47 and 50) come from the exact distribution

of pairwise distances with respect to a single attribute a 2 A. This is the distribution of the so-

called “projection” of the pairwise distance onto a single attribute to which we have been refer-

ring, which is a direct implication from our more general derivations. In a similar manner,

one can substitute any value of q� 2 into the general densities of Zq
a for standard normal (Eq

25) and standard uniform (Eq 34) to derive the associated density of Zq
a ¼ jXia � Xjaj

q
for the

given data type.

3.3 Euclidean (L2)

Moment estimates for the Euclidean metric are obtained by substituting q = 2 into the asymp-

totic moment formulas for standard normal data (Eq 30) and standard uniform data (Eq 40).

As in the case of the Manhattan metric in the previous sections, we initially proceed by deriv-

ing Euclidean distance moments in standard normal data.

3.3.1 Standard normal data. Substituting q = 2 into the asymptotic formula of the mean

(Eq 30), we have the following for expected L2 distance between two independently sampled

instances i; j 2 I in standard normal data

EðDð2Þij Þ ¼ 2
G 2þ1

2ð Þffiffi
p
p p

� �1=2

¼
ffiffiffiffiffi
2p

p
:

ð51Þ

In the case of L2 on standard normal data, we see that the mean of Dð2Þij (Eq 51) grows on the

order of
ffiffiffipp . Hence, the Euclidean distance does not increase as quickly as the Manhattan dis-

tance on standard normal data.

Substituting q = 2 into the formula for the asymptotic variance of Dð2Þij (Eq 30) leads to the

following

VarðDð2Þij Þ ¼
42p

22 22G 1
2
ð2Þþ1

2ð Þ
ffiffi
p
p p

� �2 1� 1
2ð Þ

G 2þ 1

2

� �

ffiffiffi
p
p �

G2 1

2
ð2Þ þ 1

2

� �

p

� �

¼ 1:

ð52Þ

Surprisingly, the asymptotic variance (Eq 52) is just 1. Regardless of data dimensions m and

p, the variance of Euclidean distances on standard normal data tends to 1. Therefore, most

instances are contained within a ball of radius 1 about the mean in high feature dimension p.
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This means that the Euclidean distance distribution on standard normal data is simply a hori-

zontal shift to the right of the standard normal distribution.

For the case in which the number of attributes p is small, we have an improved estimate of

the mean (Eq 9). The lower dimensional estimate of the mean is given by

EðDð2Þij Þ ¼ 2
G 2þ1

2ð Þffiffi
p
p p � 1

� �1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � 1

p
:

ð53Þ

For high dimensional data sets like gene expression [20, 21], which typically contain thou-

sands of genes (or features), it is clear that the magnitude of p will be sufficient to use the stan-

dard asymptotic estimate (Eq 51) since
ffiffiffiffiffi
2p

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � 1

p
in that case. The summary of

moment estimates given in this section (Eqs 52 and 53) is organized by metric, data type, sta-

tistic (mean or variance), and asymptotic formula (Fig 3).

3.3.2 Standard uniform data. Substituting q = 2 into the asymptotic formula of the mean

(Eq 40), we have the following for expected L2 distance between two independently sampled

instances i; j 2 I in standard uniform data

EðDð2Þij Þ ¼
2p

ð2þ 2Þð2þ 1Þ

� �1=2

¼

ffiffiffi
p
6

r

:

ð54Þ

As in the case of standard normal data, the expected value of Dð2Þij (Eq 54) grows on the

order of
ffiffiffipp .

Substituting q = 2 into the formula for the asymptotic variance of Dð2Þij (Eq 40) leads to the

following

VarðDð2Þij Þ ¼
p

22 2p
ð2þ2Þð2þ1Þ

� �2 1� 1
2ð Þ

1

ð2þ 1Þð2ð2Þ þ 1Þ
�

2

ð2þ 2Þð2þ 1Þ

� �2
" #

¼
7

120
:

ð55Þ

Once again, the variance of Euclidean distance surprisingly approaches a constant.

For the case in which the number of attributes p is small, we have an improved estimate of

the mean (Eq 9). The lower dimensional estimate of the mean is given by

EðDð2Þij Þ ¼
2p

ð2þ 2Þð2þ 1Þ
�

7

120

� �1=2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
6
�

7

120

r

:

ð56Þ

We summarize the moment estimates given in this section for standard Lq metrics (Eqs 55

and 56) organized by metric, data type, statistic (mean or variance), and asymptotic formula

(Fig 3). In the next section, we extend these results for the standard Lq metric to derive asymp-

totics for the attribute range-normalized (max-min) Lq metric used frequently in Relief-based
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algorithms [1, 3] for scoring attributes. These derivations use extreme value theory to handle

the maximum and minimum attributes for standard normal and standard uniform data.

4 Moments for max-min normalized Lq metric

In this section, we derive formulas for asymptopic means and variances of a special Lq metric

that is used in Relief-based feature selection methods. In this metric, the difference between

pairs of subjects for a given attribute is normalized by the difference between the maximum

and minimum of the attribute. For Relief-based methods [1, 3], the standard numeric differ-

ence metric (diff) is given by

dnumij ðaÞ ¼ diffða; ði; jÞÞ ¼
jXia � Xjaj

maxðaÞ � minðaÞ
; ð57Þ

where maxðaÞ ¼ max
k2I
fXkag, minðaÞ ¼ min

k2I
fXkag, and I ¼ f1; 2; . . . ;mg. The pairwise dis-

tance using this max-min normalized diff metric is then computed as

Dðq�Þij ¼
X

a2A

jdijðaÞj
q

 !1=q

¼
X

a2A

jXia � Xjaj

maxðaÞ � minðaÞ

� �q
 !1=q

:

ð58Þ

This normalization leads to Relief attribute scores that are constrained to the interval [−1,

1]. The derivations in this section will invoke extreme value theory (EVT) because of the use of

attribute extrema in the metric.

4.1 Distribution of max-min normalized Lq metric

We observe empirically that Gaussian convergence applies to the max-min normalized Lq met-

ric in the case of continuous data. We show this behavior for the special cases of standard uni-

form (S1 Fig in S1 File) and standard normal (S3 Fig in S1 File). In order to determine

moments of asymptotic max-min normalized distance (Eq 57) distributions, we will first

derive the asymptotic extreme value distributions of the attribute maximum and minimum.

Although the exact distribution of the maximum or minimum requires an assumption about

the data distribution, the Fisher-Tippett-Gnedenko Theorem is an important result that allows

one to generally categorize the extreme value distribution for a collection of independent and

identically distributed random variables into one of three distributional families. This theorem

does not, however, tell us the exact distribution of the maximum that we require in order to

determine asymptotic results for the max-min normalized distance (Eq 58). We mention this

theorem simply to provide some background on convergence of extreme values. Before stating

the theorem, we first need the following definition

Definition 4.1 A distribution FX is said to be degenerate if its density function fX is the Dirac
delta δ(x − c0) centered at a constant c0 2 R, with corresponding distribution function FX defined
as

FXðxÞ ¼
1; x � c0;

0; x < c0:

(
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Theorem 4.1 (Fisher-Tippett-Gnedenko) Let X1a;X2a; . . . ;Xma�
iid FXðmx; s

2

xÞ and let
Xmax

a ¼ max
k2I
fXkag. If there exists two non-random sequences bm> 0 and cm such that

lim
m!1

P
Xmax

a � cm

bm
� x

� �

¼ GXðxÞ;

where GX is a non-degenerate distribution function, then the limiting distribution GX is in the
Gumbel, Fréchet, or Wiebull family.

The three distribution families given in Theorem 4.1 are actually special cases of the Gener-

alized Extreme Value Distribution. In the context of extreme values, Theorem 4.1 is analogous

to the Central Limit Theorem for the distribution of sample mean. Although we will not

explicitly invoke this theorem, it does tell us something very important about the asymptotic

behavior of sample extremes under certain necessary conditions. For illustration of this general

phenomenon of sample extremes, we derive the distribution of the maximum for standard

normal data to show that the limiting distribution is in the Gumbel family, which is a known

result. In the case of standard uniform data, we will derive the distribution of the maximum

and minimum directly. Regardless of data type, the distribution of the sample maximum can

be derived as follows

P½Xmax
a � x� ¼ P½max

k2I
fXkag � x�

¼ P½X1a � x;X2a � x; . . . ;Xma � x�

¼
Ym

k¼1

P½Xka � x�

¼
Y

k¼1

FXðxÞ

¼ ½FXðxÞ�
m
:

ð59Þ

Using more precise notation, the distribution function of the sample maximum in standard

normal data is

FmaxðxÞ ¼ ½FXðxÞ�
m
; ð60Þ

where m is the size of the sample from which the maximum is derived and FX is the distribu-

tion function corresponding to the data sample. This means that the distribution of the sample

maximum relies only on the distribution function of the data from which extremes are drawn

FX and the size of the sample m.

Differentiating the distribution function (Eq 60) gives us the following density function for

the distribution of the maximum

fmaxðxÞ ¼
d
dx

FmaxðxÞ

¼
d
dx
½FXðxÞ�

m

¼ m½FXðxÞ�
m� 1fXðxÞ;

ð61Þ

where m is the size of the sample from which the maximum is derived, FX is the distribution

function corresponding to the data sample, and fX is the density function corresponding to the

data sample. Similar to the distribution function for the sample maximum (Eq 60), the density
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function (Eq 61) relies only on the distribution and density function of the data from which

extremes are derived.

The distribution of the sample minimum, Xmin
a , can be derived as follows

P½Xmin
a � x� ¼ 1 � P½Xmin

a � x�

¼ 1 � P½min
k2I
fXkag � x�

¼ 1 � P½X1a � x;X2a � x; . . . ;Xma � x�

¼ 1 �
Ym

k¼1

P½Xka � x�

¼ 1 � ½P½X1a � x��m

¼ 1 � ½1 � P½X1a � x��m

¼ 1 � ½1 � FXðxÞ�
m
;

ð62Þ

where m is the size of the sample from which the maximum is derived and FX is the distribu-

tion function corresponding to the data sample. Therefore, the distribution of sample mini-

mum also relies only on the distribution function of the data from which extremes are derived.

With more precise notation, we have the following expression for the distribution function

of the minimum

FminðxÞ ¼ 1 � ½1 � FXðxÞ�
m
: ð63Þ

where m is the size of the sample from which the minimum is derived and FX is the distribu-

tion function corresponding to the data sample.

Differentiating the distribution function (Eq 63) gives us the following density function for

the distribution of sample minimum

fminðxÞ ¼
d
dx

FminðxÞ

¼
d
dx
ð1 � ½1 � FXðxÞ�

m
Þ

¼ m½1 � FXðxÞ�
m� 1fXðxÞ;

ð64Þ

where m is the size of the sample from which the minimum is derived, FX is the distribution

function corresponding to the data sample, and fX is the density function corresponding to the

data sample. As in the case of the density function for sample maximum (Eq 61), the density

function for sample minimum relies only on the distribution FX and density fX functions of

the data from which extremes are derived and the sample size m.

Given the densities of the distribution of sample maximum and minimum, we can easily

compute the raw moments and variance. The first moment about the origin of the distribution
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of sample maximum is given by the following

mð1ÞmaxðmÞ ¼ EðXmax
a Þ ¼

Z 1

� 1

xfmaxðxÞdx

¼

Z 1

� 1

xðm½FXðxÞ�
m� 1fXðxÞÞdx

¼ m
Z 1

� 1

xfXðxÞ½FXðxÞ�
m� 1dx;

ð65Þ

where m is the sample size, FX is the distribution function, and fX is the density function of the

data from which the maximum is derived.

The second raw moment of the distribution of sample maximum is derived similarly as fol-

lows

mð2ÞmaxðmÞ ¼ E½ðXmax
a Þ

2
� ¼

Z 1

� 1

x2fmaxðxÞdx

¼

Z 1

� 1

x2ðm½FXðxÞ�
m� 1fXðxÞÞdx

¼ m
Z 1

� 1

x2fXðxÞ½FXðxÞ�
m� 1dx

ð66Þ

where m is the sample size, FX is the distribution function, and fX is the density function of the

data from which the maximum is derived.

Using the first (Eq 65) and second (Eq 66) raw moments of the distribution of sample maxi-

mum, the variance is given by

s2
maxðmÞ ¼ m

ð2Þ
maxðmÞ � ½m

ð1Þ
maxðmÞ�

2
; ð67Þ

where m is the sample size of the data from which the maximum is derived and mð1ÞmaxðmÞ
and mð2Þmax are the first and second raw moments, respectively, of the distribution of sample

maximum.

Moving on to the distribution of sample minimum, the first raw moment is given by the fol-

lowing

m
ð1Þ

minðmÞ ¼ EðXmin
a Þ ¼

Z 1

� 1

xfminðxÞdx

¼

Z 1

� 1

xðm½1 � FXðxÞ�
m� 1fXðxÞÞdx

¼ m
Z 1

� 1

xfXðxÞ½1 � FXðxÞ�
m� 1dx;

ð68Þ

where m is the sample size, FX is the distribution function, and fX is the density function of the

data from which the minimum is derived.
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Similarly, the second raw moment of the distribution of sample minimum is given by the

following

m
ð2Þ

minðmÞ ¼ E½ðXmin
a Þ

2
� ¼

Z 1

� 1

x2fminðxÞdx

¼

Z 1

� 1

x2ðm½1 � FXðxÞ�
m� 1fXðxÞÞdx

¼ m
Z 1

� 1

x2fXðxÞ½1 � FXðxÞ�
m� 1dx;

ð69Þ

where m is the sample size, FX is the distribution function, and fX is the density function of the

data from which the minimum is derived.

Using the first (Eq 68) and second (Eq 69) raw moments of the distribution of sample mini-

mum, the variance is given by

s2
minðmÞ ¼ m

ð2Þ

minðmÞ � ½m
ð1Þ

minðmÞ�
2
; ð70Þ

where m is the sample size of the data from which the maximum is derived and m
ð1Þ

minðmÞ
and m

ð2Þ

min are the first and second raw moments, respectively, of the distribution of sample

maximum.

Using the expected attribute maximum (Eq 65) and minimum (Eq 68) for sample size m,

the following expected attribute range results from linearity of the expectation operator

EðXmax
a � Xmin

a Þ ¼ EðXmax
a Þ � EðXmin

a Þ

¼ mð1ÞmaxðmÞ � m
ð1Þ

minðmÞ:
ð71Þ

where mð1ÞmaxðmÞ is the expected sample maximum (Eq 65) and m
ð1Þ

minðmÞ is the expected sample

minimum.

For a data distribution whose density is an even function, the expected attribute range (Eq

71) can be simplified to the following expression

EðXmax
a � Xmin

a Þ ¼ 2mð1ÞmaxðmÞ; ð72Þ

where m is the size of the sample from which the maximum is derived. Hence, the expected

attribute range is simply twice the expected attribute maximum (Eq 65). This result naturally

applies to standard normal data, which is symmetric about its mean at 0 and without any

skewness.

For large samples (m� 1) from an exponential type distribution that has infinite support

and all moments, the covariance between the sample maximum and minimum is approxi-

mately zero [22]. In this case, the variance of the attribute range of a sample of size m is given

by the following

VarðXmax
a � Xmin

a Þ � VarðXmax
a Þ þ VarðXmin

a Þ

¼ s2
maxðmÞ þ s

2
minðmÞ:

ð73Þ

Under the assumption of zero skewness, infinite support and even density function, suffi-

ciently large sample size m, and distribution of an exponential type for all moments, the
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variance of attribute range (Eq 73) simplifies to the following

VarðXmax
a � Xmin

a Þ ¼ 2VarðXmax
a Þ

¼ 2s2
max:

ð74Þ

Let mDðqÞij
and s2

DðqÞij
(Eq 21) denote the mean and variance of the standard Lq distance metric

(Eq 1). Then the expected value of the max-min normalized distance (Eq 58) distribution is

given by the following

mDðq�Þij
¼ E

X

a2A

jXia � Xjaj

Xmax
a � Xmin

a

� �q
 !1=q
2

4

3

5

�
1

EðXmax
a � Xmin

a Þ
E ð
X

a2A

jXia � Xjaj
q
Þ

1=q

" #

¼

mDðqÞij

EðXmax
a Þ � EðXmin

a Þ

¼

mDðqÞij

m
ð1Þ
maxðmÞ � mð1ÞminðmÞ

;

ð75Þ

where m is the size of the sample from which extremes are derived, mð1ÞmaxðmÞ is the expected

value of the sample maximum (Eq 65), and m
ð1Þ

min is the expected value of the sample minimum.

The variance of the max-min normalized distance (Eq 58) distribution is given by the fol-

lowing

s2

Dðq�Þij
¼ Var

X

a2A

jXia � Xjaj

Xmax
a � Xmin

a

� �q
 !1=q
2

4

3

5

¼ E
X

a2A

jXia � Xjaj

Xmax
a � Xmin

a

� �q
 !2=q
2

4

3

5 � E
X

a2A

jXia � Xjaj

Xmax
a � Xmin

a

� �q
 !1=q
2

4

3

5

0

@

1

A

2

�

E
X

a2A

jXia � Xjaj
q

 !2=q
2

4

3

5

E½ðXmax
a � Xmin

a Þ
2
�

�

E
X

a2A

jXia � Xjaj
q

 !1=q
2

4

3

5

0

@

1

A

2

E½ðXmax
a � Xmin

a Þ
2
�

¼

s2

DðqÞij
þ m2

DðqÞij

E½ðXmax
a � Xmin

a Þ
2
�
�

m2

DðqÞij

E½ðXmax
a � Xmin

a Þ
2
�

¼

s2

DðqÞij

E½ðXmax
a � Xmin

a Þ
2
�

¼

s2

DðqÞij

E½ðXmax
a Þ

2
� � 2EðXmax

a ÞEðXmin
a Þ þ EðXmin

a Þ

¼

s2

DðqÞij

m
ð2Þ
maxðmÞ � 2m

ð1Þ
maxðmÞmð1ÞminðmÞ þ m

ð2Þ

minðmÞ
;

ð76Þ
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where m is the size of the sample from which extremes are derived, mð1ÞmaxðmÞ is the expected

value of the sample maximum (Eq 65), and m
ð1Þ

min is the expected value of the sample minimum.

With the mean (Eq 75) and variance (Eq 76) of the max-min normalized distance (Eq 58),

we have the following generalized estimate for the asymptotic distribution of the max-min

normalized distance distribution

Dðq�Þij _�N
mDðqÞij

m
ð1Þ
maxðmÞ � mð1ÞminðmÞ

;

s2

DðqÞij

m
ð2Þ
maxðmÞ � 2m

ð1Þ
maxðmÞmð1ÞminðmÞ þ m

ð2Þ

minðmÞ

0

@

1

A; ð77Þ

where m is the size of the sample from which extremes are derived, mð1ÞmaxðmÞ is the expected

value of the sample maximum (Eq 65), and m
ð1Þ

min is the expected value of the sample minimum.

For data with zero skewness, infinite support, and even density function, the expected sam-

ple maximum is the additive inverse of the expected sample minimum. This allows us to

express the expected max-min normalized pairwise distance (Eq 75) exclusively in terms of the

expected sample maximum. This result is given by the following

mDðq�Þij
�

mDðqÞij

2m
ð1Þ
maxðmÞ

; ð78Þ

where m is the size of the sample from which the maximum is derived and mð1ÞmaxðmÞ is the

expected value of the sample maximum (Eq 65).

A similar substitution gives us the following expression for the variance of the max-min

normalized distance distribution

s2

Dðq�Þij
�

s2

DðqÞij

2m
ð2Þ
maxðmÞ þ 2½m

ð1Þ
maxðmÞ�2

¼

s2

DðqÞij

2ðs2
maxðmÞ þ ½m

ð1Þ
maxðmÞ�2Þ

;

ð79Þ

where m is the size of the sample from which extremes are derived, mð1ÞmaxðmÞ is the expected

value of the sample maximum (Eq 65), and s2
maxðmÞ is the variance of the sample maximum

(Eq 67).

Therefore, the asymptotic distribution of the max-min normalized distance distribution

(Eq 77) becomes

Dðq�Þij _�N
mDðqÞij

2m
ð1Þ
maxðmÞ

;

s2

DðqÞij

2ðs2
maxðmÞ þ ½m

ð1Þ
maxðmÞ�2Þ

0

@

1

A; ð80Þ

where m is the size of the sample from which extremes are derived, mð1ÞmaxðmÞ is the expected

value of the sample maximum (Eq 65), and s2
maxðmÞ is the variance of the sample maximum

(Eq 67).

We have now derived asymptotic estimates of the moments of the max-min normalized Lq

distance metric (Eq 58) for any continuous data distribution. In the next two sections, we

examine the max-min normalized Lq distance on standard normal and standard uniform data.

As in previous sections in which we analyzed the standard Lq metric (Eq 1), we will use the

more general results for the max-min Lq metric to derive asymptotic estimates for normalized

Manhattan (q = 1) and Euclidean (q = 2).
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4.1.1 Standard normal data. The standard normal distribution has zero skewness, even

density function, infinite support, and all moments. This implies that the corresponding mean

and variance of the distribution of sample range can be expressed exclusively in terms of the

sample maximum. Given the nature of the density function of the sample maximum for sam-

ple size m, the integration required to determine the moments (Eqs 65 and 66) is not possible.

These moments can either be approximated numerically or we can use extreme value theory

to determine the form of the asymptotic distribution of the sample maximum. Using the latter

method, we will show that the asymptotic distribution of the sample maximum for standard

normal data is in the Gumbel family. Let cm ¼ � F
� 1 1

m

� �
and bm ¼

1

cm
, where F is the standard

normal cumulative distribution function. Using Taylor’s Theorem, we have the following

expansion

logFð� cm � bmxÞ ¼ logFð� cmÞ � bmx
�ð� cmÞ

Fð� cmÞ
þOðb2

mx2Þ

¼ log
1

m

� �

� x
�ð� cmÞ

cmFð� cmÞ
þOðb2

mx2Þ;

ð81Þ

where m is the size of the sample from which the maximum is derived.

In order to simplify the right-hand side of this expansion (Eq 81), we will use the Mills

Ratio Bounds [23] given by the following

1 �
�ðxÞ

xFð� xÞ
� 1þ

1

x2
; x > 0; ð82Þ

whereF and ϕ once again represent the cumulative distribution function and density function,

respectively, of the standard normal distribution.

The inequalities given above (Eq 82) show that

�ðxÞ
xFð� xÞ

! 1 as x!1:

This further implies that

�ðcmÞ

cmFð� cmÞ
! 1 as m!1

since

cm ¼ � F
� 1 1

m

� �

!1 as m!1:

This gives us the following approximation of the right-hand side of the expansion (Eq 81)

given previously

logFð� cm � bmxÞ � log
1

m

� �

� xþOðb2
mx2Þ

) Fð� cm � bmxÞ �
1

m
e� xþOðb2

mx2Þ

) Fðcm þ bmxÞ � 1 �
1

m
e� xþOðb2

mx2Þ;

ð83Þ

where m is the size of the sample from which the maximum is derived.
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Using the approximation of expansion given previously (Eq 83), we now derive the limit

distribution for the sample maximum in standard normal data as

P
Xmax

a � cm

bm
� x

� �

¼ PðXmax
a � cm þ bmxÞ

¼ Fmðcm þ bmxÞ

� 1 �
1

m
e� xþOðb2

mx2Þ

� �m

¼ 1 �
1

m
e
� xþO 1

c2m
x2

� � !m

� 1 �
1

m
e� x

� �m

) lim
m!1

P
Xmax

a � cm

bm
� x

� �

¼ lim
m!1

1 �
1

m
e� x

� �m

¼ e� e� x
;

ð84Þ

which is the cumulative distribution function of the standard Gumbel distribution. The mean

of this distribution is given by the following

EðXmax
a Þ ¼ m

ð1Þ
max ¼ � F

� 1 1

m

� �

�
g

F� 1 1

m

� � ; ð85Þ

where m is the size of the sample from which the maximum is derived and γ is the Euler-

Mascheroni constant. This constant has many equivalent definitions, one of which is given by

g ¼ lim
m!1

� logðmÞ þ
Xm

k¼1

1

k

 !

:

Perhaps a more convenient definition of the Euler-Mascheroni constant is simply

g ¼ � G0ð1Þ ¼
d
dt

Z 1

0

zt� 1e� zdz
� ��

�
�
�
t¼1

;

which is just the additive inverse of the first derivative of the gamma function evaluated at 1.

The median of the distribution of the maximum for standard normal data is given by

~mmax ¼
logðlogð2ÞÞ
F� 1 1

m

� � � F� 1 1

m

� �

; ð86Þ

where m is the size of the sample from which the maximum is derived.

Finally, the variance of the asymptotic distribution of the sample maximum is given by

VarðXmax
a Þ ¼

p2

6

1

� F� 1 1

m

� �

 !2

; ð87Þ

where m is the size of the sample from which the maximum is derived.
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For typical sample sizes m in high-dimensional spaces, the variance estimate (Eq 87)

exceeds the variance of the sample maximum significantly. Using the fact that

� F� 1 1

m

� �

_�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðmÞ

p

[24] and

1

2logðmÞ
�

1

� F� 1 1

m

� �

 !2

; m � 2;

we can get a more accurate approximation of the variance with the following

s2
maxðmÞ ¼ VarðXmax

a Þ �
p2

6

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðmÞ

p

 !2

¼
p2

12logðmÞ
:

ð88Þ

Therefore, the mean of the range of m iid standard normal random variables is given by

EðXmax
a � Xmin

a Þ ¼ 2mð1ÞmaxðmÞ ¼ 2 � F� 1 1

m

� �

�
g

F� 1 1

m

� �

" #

; ð89Þ

where γ is the Euler-Mascheroni constant.

It is well known that the sample extremes from the standard normal distribution are

approximately uncorrelated for large sample size m [22]. This implies that we can approximate

the variance of the range of m iid standard normal random variables with the following result

VarðXmax
a � Xmin

a Þ � VarðXmax
a Þ þ VarðXmin

a Þ

¼ s2
maxðmÞ þ s

2
minðmÞ

¼ 2s2
maxðmÞ

� 2
p2

12logðmÞ

� �

¼
p2

6logðmÞ
:

ð90Þ

For the purpose of approximating the mean and variance of the max-min normalized dis-

tance distribution, we observe empirically that the formula for the median of the distribution

of the attribute maximum (Eq 86) yields more accurate results. More precisely, the approxima-

tion of the expected maximum (Eq 85) overestimates the sample maximum slightly. The for-

mula for the median of the sample maximum (Eq 86) provides a more accurate estimate of this

sample extreme. Therefore, the following estimate for the mean of the attribute range will be

used instead

EðXmax
a � Xmin

a Þ ¼ 2mð1ÞmaxðmÞ � 2
logðlogð2ÞÞ
F� 1 1

m

� � � F� 1 1

m

� �" #

; ð91Þ

where m is the size of the sample from which extremes are derived.
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We have already determined the mean and variance (Eq 30) for the Lq metric (Eq 1) on

standard normal data. Using the expected value of the sample maximum (Eq 91), the variance

of the sample maximum (Eq 90), and the general formulas for the mean and variance of the

max-min normalized distance distribution (Eq 80), this leads us to the following asymptotic

estimate for the distribution of the max-min normalized distances for standard normal data

Dðq�Þij _�N
mDðqÞij

2m
ð1Þ
maxðmÞ

;

6logðmÞs2

DðqÞij

p2 þ 24½m
ð1Þ
maxðmÞ�2logðmÞ

0

@

1

A: ð92Þ

where m is the size of the sample from which the maximum is derived, mð1Þmax is the median of

the sample maximum (Eq 86), mDðqÞij
is the expected Lq pairwise distance (Eq 28), and s2

DðqÞij
is the

variance of the Lq pairwise distance (Eq 29). The summary of moments of the max-min nor-

malized Lq distance metric in standard normal data (Eq 92) is organized by metric, data type,

statistic (mean or variance), and asymptotic formula (Fig 4).

4.1.2 Standard uniform data. Standard uniform data does not have an even density func-

tion. Due to the simplicity of the density function, however, we can derive the distribution of

the maximum and minimum of a sample of size m explicitly. Using the general forms of the

distribution functions of the maximum (Eq 60) and minimum (Eq 63), we have the following

distribution functions for standard uniform data

FmaxðxÞ ¼ xm ð93Þ

and

FminðxÞ ¼ 1 � ð1 � xÞm; ð94Þ

where m is the size of the sample from which extremes are derived.

Using the general forms of the density functions of the maximum (Eq 61) and minimum

(Eq 64), we have the following density functions for standard uniform data

fmaxðxÞ ¼ mxm� 1 ð95Þ

and

fminðxÞ ¼ mð1 � xÞm� 1
; ð96Þ

where m is the size of the sample from which extremes are derived.

Then the expected maximum and minimum are computed through straightforward inte-

gration as follows

EðXmax
a Þ ¼ m

ð1Þ
maxðmÞ ¼

Z 1

0

xfmaxðxÞdx

¼

Z 1

0

x½mxm� 1�dx

¼
m

mþ 1

ð97Þ
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Fig 4. Asymptotic estimates of means and variances for the max-min normalized L1 and L2 distance distributions

commonly used in Relief-based algorithms. Estimates for both standard normal (N ð0; 1Þ) and standard uniform

(Uð0; 1Þ) data are given. The cumulative distribution function of the standard normal distribution is represented byF.

Furthermore, mð1ÞmaxðmÞ (Eq 86) is the asymptotic median of the sample maximum from m standard normal random

samples.

https://doi.org/10.1371/journal.pone.0246761.g004
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and

EðXmin
a Þ ¼ m

ð1Þ

minðmÞ ¼
Z 1

0

xfminðxÞdx

¼

Z 1

0

x½mð1 � xÞm� 1
�dx

¼
1

mþ 1
;

ð98Þ

where m is the size of the sample from which extremes are derived.

We can compute the second moment about the origin of the sample range as follows

E½ðXmax
a � Xmin

a Þ
2
� ¼ E½ðXmax

a Þ
2
� 2Xmax

a Xmin
a þ ðX

min
a Þ

2
�

¼ E½ðXmax
a Þ

2
� � 2EðXmax

a ÞEðX
min
a Þ þ E½ðXmin

a Þ
2
�

¼ mð2ÞmaxðmÞ � 2mð1ÞmaxðmÞm
ð1Þ

minðmÞ þ m
ð2Þ

minðmÞ

¼

Z 1

0

x2½mxm� 1�dx � 2
m

mþ 1

� �
1

mþ 1

� �

þ

Z 1

0

x2½mð1 � xÞm� 1
�dx

¼
m

mþ 2
�

2m
ðmþ 1Þ

2
þ

2

ðmþ 1Þðmþ 2Þ

¼
m3 � mþ 2

ðmþ 2Þðmþ 1Þ
2
;

ð99Þ

where m is the size of the sample from which extremes are derived.

Using the general asymptotic distribution of max-min normalized distances for any data

type (Eq 77) and the mean and variance (Eq 40) of the standard Lq distance metric (Eq 1), we

have the following asymptotic estimate for the max-min normalized distance distribution for

standard uniform data

Dðq�Þij _�N
ðmþ 1ÞmDðqÞij

m � 1
;

ðmþ 2Þðmþ 1Þ
2
s2

DðqÞij

m3 � mþ 2

0

@

1

A; ð100Þ

where m is the size of the sample from which extremes are derived, mDðqÞij
is the expected value

(Eq 38) of the Lq metric (Eq 1) in standard uniform data, and s2

DðqÞij
is the variance (Eq 39) of

the Lq metric (Eq 1) in standard uniform data. The summary of moments of the max-min nor-

malized Lq distance metric in standard uniform data (Eq 92) is organized by metric, data type,

statistic (mean or variance), and asymptotic formula (Fig 4).

4.2 Range-Normalized Manhattan (q = 1)

Using the general asymptotic results for mean and variance of max-min normalized distances

in standard normal and standard uniform data (Eqs 92 and 100) for any value of q 2 N, we

can substitute a particular value of q in order to determine a more specified distribution for
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the normalized distance (D(q�), Eq 58). The following results are for the max-min normalized

Manhattan (q = 1), D(1�), metric for both standard normal and standard uniform data.

4.2.1 Standard normal data. Substituting q = 1 into the asymptotic formula for the

expected max-min normalized distance (Eq 92), we derive the expected normalized Manhattan

distance in standard normal data as follows

EðDð1�Þij Þ ¼

mDð1Þij

2m
ð1Þ
maxðmÞ

¼
p

ffiffiffi
p
p

m
ð1Þ
maxðmÞ

;

ð101Þ

where mð1ÞmaxðmÞ is the expected attribute maximum (Eq 86), m is the size of the sample from

which the maximum is derived, and p is the total number of attributes.

Similarly, the variance of Dð1�Þij is given by

VarðDð1�Þij Þ ¼

6logðmÞs2

Dð1Þij

p2 þ 24½m
ð1Þ
max�

2logðmÞ

¼
12pðp � 2ÞlogðmÞ

pðp2 þ 24½m
ð1Þ
max�

2logðmÞÞ
;

ð102Þ

where mð1ÞmaxðmÞ is the expected attribute maximum (Eq 86), m is the size of the sample from

which the maximum is derived, and p is the total number of attributes. Similar to the variance

of the standard Manhattan distance, the variance of the max-min normalized Manhattan dis-

tance is on the order of p for fixed instance dimension m. For fixed p, the variance (Eq 102)

vanishes as m grows without bound. If we fix m, the same variance increases monotonically

with increasing p. The summary of moments derived in this section (Eqs 101 and 102) is orga-

nized by metric, data type, statistic (mean or variance), and asymptotic formula (Fig 4).

4.2.2 Standard uniform data. Substituting q = 1 into the asymptotic formula for the

expected max-min pairwise distance (Eq 100), we derive the expected normalized Manhattan

distance in standard uniform data as

EðDð1�Þij Þ ¼

ðmþ 1ÞmDð1Þij

m � 1

¼
ðmþ 1Þp
3ðm � 1Þ

;

ð103Þ

where m is the size of the sample from which extremes are derived and p is the total number

attributes.

Similarly, the variance of Dð1�Þij is given by

VarðDð1�Þij Þ ¼

ðmþ 2Þðmþ 1Þ
2
s2

Dð1Þij

m3 � mþ 2

¼
ðmþ 2Þðmþ 1Þ

2p
18ðm3 � mþ 2Þ

;

ð104Þ

where m is the size of the sample from which extremes are derived and p is the total number of

attributes. Interestingly, the variance of the max-min normalized Manhattan distance in
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standard uniform data approaches p/18 as m increases without bound for a fixed number of

attributes p. This is the same asymptotic value to which the variance of the standard Manhattan

distance (Eq 43) converges. Therefore, large sample sizes make the variance of the normalized

Manhattan distance approach the variance of the standard Manhattan distance in standard

uniform data. The summary of moments derived in this section (Eqs 103 and 104) is organized

by metric, data type, statistic (mean or variance), and asymptotic formula (Fig 4).

4.3 Range-Normalized Euclidean (q = 2)

Analogous to the previous section, we use the asymptotic moment estimates for the max-min

normalized metric (D(q�), Eq 58) for standard normal (Eq 92) and standard uniform (Eq 100)

data but specific to a range-normalized Euclidean metric (q = 2).

4.3.1 Standard normal data. Substituting q = 2 into the asymptotic formula for the

expected max-min normalized pairwise distance (Eq 92), we derive the expected normalized

Euclidean distance in standard normal data as

EðDð2�Þij Þ ¼
m

Dð2Þij

2m
ð1Þ
maxðmÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � 1

p

2m
ð1Þ
maxðmÞ

;

ð105Þ

where mð1ÞmaxðmÞ is the expected attribute maximum (Eq 86), m is the size of the sample from

which the maximum is derived, and p is the total number of attributes.

Similarly, the variance of Dð2�Þij is given by

VarðDð2�Þij Þ ¼

6logðmÞs2

Dð2Þij

p2 þ 24½m
ð1Þ
maxðmÞ�2logðmÞ

¼
6logðmÞ

p2 þ 24½m
ð1Þ
maxðmÞ�2logðmÞ

;

ð106Þ

where mð1ÞmaxðmÞ is the expected attribute maximum (Eq 86) and m is the size of the sample from

which the maximum is derived. It is interesting to note that the variance (Eq 106) vanishes as

the sample size m increases without bound, which means that all distances will be tightly clus-

tered about the mean (Eq 105). This is different than the variance of the standard L2 metric

(Eq 52), which is asymptotically equal to 1. This could imply that any two pairwise distances

computed with the max-min normalized Euclidean metric in a large sample space m may be

indistinguishable, which is another curse of dimensionality. The summary of moments derived

in this section (Eqs 105 and 106) is organized by metric, data type, statistic (mean or variance),

and asymptotic formula (Fig 4).

4.3.2 Standard uniform data. Substituting q = 2 into the asymptotic formula for the

expected max-min normalized pairwise distance (Eq 100), we derive the expected normalized

Euclidean distance in standard uniform data as

EðDð2�Þij Þ ¼

ðmþ 1ÞmDð2Þij

m � 1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
6
�

7

120

r
mþ 1

m � 1

� �

:

ð107Þ
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where m is the size of the sample from which extremes are derived and p is the total number of

attributes.

Similarly, the variance of Dð2�Þij is given by

VarðDð2�Þij Þ ¼

ðmþ 2Þðmþ 1Þ
2
s2

Dð2Þij

m3 � mþ 2

¼
7ðmþ 2Þðmþ 1Þ

2

120ðm3 � mþ 2Þ
:

ð108Þ

where m is the size of the sample from which extremes are derived. Similar to the variance of

max-min normalized Manhattan distances in standard uniform data (Eq 104), the variance of

normalized Euclidean distances approaches the variance of the standard Euclidean distances

in uniform data (Eq 55) as m increases without bound. That is, the variance of the max-min

normalized Euclidean distance (Eq 108) approaches 7/120 as m grows larger. The summary of

moments derived in this section (Eqs 107 and 108) is organized by metric, data type, statistic

(mean or variance), and asymptotic formula (Fig 4).

We summarize moment estimates in figures (Figs 2–4) that contain all of our asymptotic

results for both standard and max-min normalized Lq metrics in each data type we have con-

sidered. This includes our most general results for any combination of sample size m, number

of attributes p, type of metric Lq, and data type (Fig 2). From these more general derivations,

we show the results of the standard L1 and L2 metrics for any combination of sample size m,

number of attributes p, and data type (Fig 3). Our last set of summarized results show asymp-

totics for the max-min normalized L1 and L2 metrics for any combination of sample size m,

number of attributes p, and data type (Fig 4). For both standard and max-min normalized L2

metrics (Figs 3 and 4), the low-dimensional improved estimates of sample means (Eqs 53 and

56) are used because they perform well at both low and high attribute dimension p.

In the next section, we make a transition into discrete GWAS data. We will discuss some

commonly known metrics and then a relatively new metric, which will lead us into novel

asymptotic results for this data type.

5 GWAS distance distributions

Genome-wide association study (GWAS) data consists of single nucleotide polymorphisms

(SNPs), which are inherited nucleotide changes at loci along the DNA. Each SNP has two pos-

sible nucleotide alleles: the minor allele, which is the less frequent nucleotide in the population,

and the common allele. The attribute/feature corresponding to each SNP is typically repre-

sented as a three-state genotype: homozygous for the minor allele, heterozygous or homozy-

gous for the common allele. Feature selection in GWAS is typically concerned with finding

main effect or interacting SNPs that are associated with disease susceptibility [25]. The similar-

ity or distance between individuals in the SNP space is routinely calculated in GWAS for prin-

cipal component analysis but is also calculated for nearest-neighbor feature selection.

For our asymptotic analysis formalism, consider a GWAS data set with the following

encoding based on minor allele frequency

Xia ¼

0 if there are no minor alleles at locus a;

1 if there is 1 minor allele at locus a;

2 if there are 2 minor alleles at locus a:

8
>>><

>>>:

ð109Þ
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For random GWAS data sets, we can think Xia as the number of successes in two Bernoulli

trials. That is, Xia � Bð2; faÞ where fa is the probability of success. The success probability fa is

the probability of a minor allele occurring at a. Furthermore, the minor allele probabilities are

assumed to be independent and identically distributed according to Uðl; uÞ, where l and u are

the lower and upper bounds, respectively, of the sampling distribution’s support.

Two commonly known types of distance metrics for GWAS data are the Genotype Mis-

match (GM) and Allele Mismatch (AM) metrics. The GM and AM metrics are defined by

dGMij ðaÞ ¼

(
0 if Xia 6¼ Xja;

1 otherwise
ð110Þ

and

dAMij ðaÞ ¼
1

2
jXia � Xjaj: ð111Þ

More informative metrics may include differences at the nucleotide level for each allele by

considering differences in the rates of transition and transversion mutations (Fig 5). One such

discrete metric that accounts for transitions (Ti) and transversions (Tv) was introduced in [7]

Fig 5. Purines (A and G) and pyrimidines (C and T) are shown. Transitions occur when a mutation involves purine-

to-purine or pyrimidine-to-pyrimidine insertion. Transversions occur when a purine-to-pyrimidine or pyrimidine-to-

purine insertion happens, which is a more extreme case. There are visibly more possibilities for transversions to occur

than there are transitions, but there are about twice as many transitions in real data.

https://doi.org/10.1371/journal.pone.0246761.g005
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and can be written as

dTiTvij ðaÞ ¼

0 if Xia ¼ Xja and Ti=Tv;

1=4 if jXia � Xjaj ¼ 1 and Ti;

1=2 if jXia � Xjaj ¼ 1 and Tv;

3=4 if jXia � Xjaj ¼ 2 and Ti;

1 if jXia � Xjaj ¼ 2 and Tv:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð112Þ

With these GWAS distance metrics, we then compute the pairwise distance between two

instances i; j 2 I with

DGM
ij ðaÞ ¼

X

a2A

dGMij ðaÞ; ð113Þ

DAM
ij ðaÞ ¼

X

a2A

dAMij ðaÞ; or ð114Þ

DTiTv
ij ðaÞ ¼

X

a2A

dTiTvij ðaÞ: ð115Þ

Assuming that all data entries Xia are independent and identically distributed, we have

already shown that the distribution of pairwise distances is asymptotically normal regardless of

data distribution and value of q. Therefore, it follows that the distance distributions induced

by each of the GWAS metrics (Eqs 110–112) are asymptotically normal. We illustrate Gaussian

convergence in the case of GM (S4 Fig in S1 File), AM (S5 Fig in S1 File), and TiTv (S6 Fig in

S1 File). With this Gaussian limiting behavior, we will proceed by deriving the mean and vari-

ance for each distance distribution induced by these three GWAS metrics.

5.1 GM distance distribution

The simplest distance metric in nearest-neighbor feature selection in GWAS data is the geno-

type-mismatch (GM) distance metric (Eq 113). The GM attribute diff (Eq 110) indicates only

whether two genotypes are the same or not. There are many ways two genotypes could differ,

but this metric does not record this information. We will now derive the moments for the GM

distance (Eq 113), which are sufficient for defining its corresponding asymptotic distribution.

The expected value of the GM attribute diff metric (Eq 110) is given by the following

E½dGMij ðaÞ� ¼
X1

k¼0

k � P½dGMij ðaÞ ¼ k�

¼ 0 � P½dGMij ðaÞ ¼ 0� þ 1 � P½dGMij ðaÞ ¼ 1�

¼ P½dGMij ðaÞ ¼ 1�

¼ 2P½Xia ¼ 0;Xja ¼ 1� þ 2P½Xia ¼ 1;Xja ¼ 2� þ 2P½Xia ¼ 0;Xja ¼ 2�

¼ 4ð1 � faÞ
3fa þ 4ð1 � faÞf 3

a þ 2ð1 � faÞ
2f 2

a

¼ 2½2ð1 � faÞ
3fa þ 2ð1 � faÞf 3

a þ ð1 � faÞ
2f 2

a �

¼ 2FGMðaÞ;

ð116Þ
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where FGMðaÞ ¼ 2ð1 � faÞ
3fa þ 2ð1 � faÞf 3

a þ ð1 � faÞ
2f 2

a and fa is the probability of a minor

allele occurring at locus a.

Then the expected pairwise GM distance between instances i; j 2 I is given by

EðDGM
ij Þ ¼ E

X

a2A

dGMij ðaÞ

 !

¼
X

a2A

E½dGMij ðaÞ�

¼ 2
X

a2A

FGMðaÞ;

ð117Þ

where FGMðaÞ ¼ 2ð1 � faÞ
3fa þ 2ð1 � faÞf 3

a þ ð1 � faÞ
2f 2

a and fa is the probability of a minor

allele occurring at locus a. We see that the expected GM pairwise distance (Eq 117) relies only

on the minor allele probabilities fa for all a 2 A. In real data, we can easily determine these

probabilities by dividing the total number of minor alleles at locus a by the twice the number

of instances m. To be more explicit, this is just

fa ¼
1

2m

X

i2I

Xia; for all a 2 A;

where m is the number of instances (or sample size). This is because each instance has two

alleles, the minor and major alleles, at each locus. Therefore, the total number of alleles at

locus a is 2m.

The second moment about the origin for the GM distance is computed as follows

E½ðDGM
ij Þ

2
� ¼ E

X

a2A

dGMij ðaÞ

 !2" #

¼ E
X

a2A

ðdGMij ðaÞÞ
2

" #

þ 2E
X

r2A

X

s�r� 1

dGMij ðrÞ � d
GM
ij ðsÞ

" #

¼
X

a2A

X1

k¼0

k2 � P½dGMij ðaÞ ¼ k�

 !

þ2
X

a2A

X

s�r� 1

X1

k¼0

k � P½dGMij ðrÞ ¼ k�

 !

�
X1

k¼0

k � P½dGMij ðsÞ ¼ k�

 !

¼ 2
X

a2A

FGMðaÞ þ 8
X

r2A

X

s�r� 1

Y

l2fr;sg

FGMðlÞ;

ð118Þ

where FGMðaÞ ¼ 2ð1 � faÞ
3fa þ 2ð1 � faÞf 3

a þ ð1 � faÞ
2f 2

a and fa is the probability of a minor

allele occurring at locus a.
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Using the first (Eq 117) and second (Eq 118) raw moments of the GM distance, the variance

is given by

VarðDGM
ij Þ ¼ E½ðDGM

ij Þ
2
� � ½EðDGM

ij Þ�
2

¼ 2
X

a2A

FGMðaÞ þ 8
X

r2A

X

s�r� 1

Y

l2fr;sg

FGMðlÞ � 4
X

a2A

FGMðaÞ

 !2

¼ 2
X

a2A

FGMðaÞ � 4
X

a2A

½FGMðaÞ�2

¼ 2
X

a2A

FGMðaÞ½1 � 2FGMðaÞ�;

ð119Þ

where FGMðaÞ ¼ 2ð1 � faÞ
3fa þ 2ð1 � faÞf 3

a þ ð1 � faÞ
2f 2

a and fa is the probability of a minor

allele occurring at locus a. Hence, the variance of the asymptotic GM distance distribution also

just depends on the minor allele probabilities fa for all a 2 A. This implies that the limiting

GM distance distribution is fully determined by the minor allele probabilities, which are

known in real data.

With the mean and variance estimates (Eqs 117 and 119), the asymptotic GM distance dis-

tribution is given by the following

DGM
ij _�N 2

X

a2A

FGMðaÞ; 2
X

a2A

FGMðaÞ½1 � 2FGMðaÞ�

 !

; ð120Þ

where FGMðaÞ ¼ 2ð1 � faÞ
3fa þ 2ð1 � faÞf 3

a þ ð1 � faÞ
2f 2

a and fa is the probability of a minor

allele occurring at locus a. This GM distribution holds for random independent GWAS data

with minor allele probabilities fa and binomial samples Xia � Bð2; faÞ for all a 2 A. Next we

consider the distance distribution for an AM metric, which incorporates differences at the

allele level and contains more information than genotype differences.

5.2 AM distance distribution

As we have mentioned previously, the AM attribute diff metric (Eq 111) is slightly more

dynamic than the GM metric because the AM metric accounts for differences between the

alleles of two genotypes. In this section, we derive moments of the AM distance metric (Eq

114) that adequately define its corresponding asymptotic distribution.

The expected value of the AM attribute diff metric (Eq 111) is given by the following

E½dAMij ðaÞ� ¼
X

k2D

k � P½dAMij ðaÞ ¼ k�

¼ 0 � P dAMij ðaÞ ¼ 0
h i

þ
1

2
� P dAMij ðaÞ ¼

1

2

� �

þ 1 � P dAMij ðaÞ ¼ 1
h i

¼
1

2
ð2P½Xia ¼ 0;Xja ¼ 1� þ 2P½Xia ¼ 1;Xja ¼ 2�Þ

þ2P½Xia ¼ 0;Xja ¼ 2�

¼ P½Xia ¼ 0;Xja ¼ 1� þ P½Xia ¼ 1;Xja ¼ 2� þ 2P½Xia ¼ 0;Xja ¼ 2�

¼ 2ð1 � faÞ
3fa þ 2ð1 � faÞf 3

a þ 2ð1 � faÞ
2f 2

a

¼ 2½ð1 � faÞ
3fa þ ð1 � faÞf 3

a þ ð1 � faÞ
2f 2

a �

¼ 2FAMðaÞ;

ð121Þ
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where FAMðaÞ ¼ ð1 � faÞ
3fa þ ð1 � faÞf 3

a þ ð1 � faÞ
2f 2

a , D ¼ f0; 1=2; 1g, and fa is the probabil-

ity of a minor allele occurring at locus a.

Using the expected AM attribute diff (Eq 121), the expected pairwise AM distance (Eq 114)

between instances i; j 2 I is given by

EðDAM
ij Þ ¼ E

X

a2A

dAMij ðaÞ

 !

¼
X

a2A

E½dAMij ðaÞ�

¼ 2
X

a2A

FAMðaÞ:

ð122Þ

where FAMðaÞ ¼ ð1 � faÞ
3fa þ ð1 � faÞf 3

a þ ð1 � faÞ
2f 2

a and fa is the probability of a minor allele

occurring at locus a. Similar to GM distances, the expected AM distance (Eq 122) depends

only on the minor allele probabilities fa for all a 2 A. This is to be expected because, although

the AM metric is more informative, it still only accounts for simple differences between nucle-

otides of two instances i; j 2 I at some locus a.

The second moment about the origin for the AM distance is computed as follows

E½ðDAM
ij Þ

2
� ¼ E

X

a2A

dAMij ðaÞ

 !2" #

¼ E
X

a2A

ðdAMij ðaÞÞ
2

" #

þ 2E
X

r2A

X

s�r� 1

dAMij ðrÞ � d
AM
ij ðsÞ

" #

¼
X

a2A

X

k2D

k2 � P½dAMij ðaÞ ¼ k�

 !

þ2
X

a2A

X

s�r� 1

X

k2D

k � P½dAMij ðrÞ ¼ k�

 !

�
X

k2D

k � P½dAMij ðsÞ ¼ k�

 !

¼
X

a2A

GAMðaÞ þ 8
X

r2A

X

s�r� 1

Y

l2fr;sg

FAMðlÞ;

ð123Þ

where GAMðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ þ 2ð1 � faÞ
2f 2

a ,

FAMðlÞ ¼ ð1 � flÞ
3fl þ f 3

l
ð1 � flÞ þ ð1 � flÞ

2f 2
l

, and fa is the probability of a minor allele

occurring at locus a.

Using the first (Eq 122) and second (Eq 123) raw moments of the asymptotic AM distance

distribution, the variance is given by

VarðDAM
ij Þ ¼ E½ðDAM

ij Þ
2
� � ½EðDAM

ij Þ�
2

¼
X

a2A

GAMðaÞ þ 8
X

r2A

X

s�r� 1

Y

l2fr;sg

FAMðlÞ � 4
X

a2A

FAMðaÞ

 !2

¼
X

a2A

GAMðaÞ � 4
X

a2A

½FAMðaÞ�2

¼
X

a2A

ðGAMðaÞ � 4½FAMðaÞ�2Þ;

ð124Þ
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where GAMðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ þ 2ð1 � faÞ
2f 2

a ,

FAMðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ þ ð1 � faÞ
2f 2

a , and fa is the probability of a minor allele

occurring at locus a. Similar to the mean (Eq 122), the variance just depends on minor allele

probabilities fa for all a 2 A.

With the mean (Eq 122) and variance (Eq 124) estimates of AM distances, the asymptotic

AM distance distribution is given by the following

DAM
ij _�N 2

X

a2A

FAMðaÞ;
X

a2A

ðGAMðaÞ � 4½FAMðaÞ�2Þ

 !

; ð125Þ

where GAMðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ þ 2ð1 � faÞ
2f 2

a ,

FðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ þ ð1 � faÞ
2f 2

a , and fa is the probability of a minor allele occur-

ring at locus a.

This concludes our analysis of the AM metric in GWAS data when the independence

assumption holds for minor allele probabilities fa and binomial samples Bð2; faÞ for all a 2 A.

In the next section, we derive more complex asymptotic results for the TiTv distance metric

(Eq 115).

5.3 TiTv distance distribution

The TiTv metric allows for one to account for both genotype mismatch, allele mismatch, tran-

sition, and transversion. However, this added dimension of information requires knowledge

of the nucleotide makeup at a particular locus. A sufficient condition to compute the TiTv

metric between instances i; j 2 I is that we know whether the nucleotides associated with a

particular locus a are both purines (PuPu), purine and pyrimidine (PuPy), or both pyrimidines

(PyPy). We illustrate all possibilities for transitions and transversions in a diagram (Fig 5).

Purines (A and G) and pyrimidines (C and T) are shown at the top and bottom, respectively.

Transitions occur in the cases of PuPu and PyPy, while transversion occurs only with PuPy

encoding.

This additional encoding is always given in a particular GWAS data set, which leads us to

consider the probabilities of PuPu, PuPy, and PyPy. These will be necessary to determine

asymptotics for the TiTv distance metric. Let γ0, γ1, and γ2 denote the probabilities of PuPu,

PuPy, and PyPy, respectively, for the p loci of data matrix X. In real data, there are approxi-

mately twice as many transitions as there are transversions. That is, the probability of a transi-

tion P(Ti) is approximately twice the probability of transversion P(Tv). It is likely that any

particular data set will not satisfy this criterion exactly. In this general case, we have P(Ti)

being equal to some multiple η times P(Tv). In order to enforce this general constraint in sim-

ulated data, we define the following set of equalities

g0 þ g1 þ g2 ¼ 1; ð126Þ

PðTiÞ � ZPðTvÞ ¼ 0: ð127Þ

The sum-to-one constraint (Eq 126) is natural in this context because there are only three

possible genotype encodings at a particular locus, which are PuPu, PuPy, and PyPy. Solving

the Ti/Tv ratio constraint (Eq 127) for η gives

Z ¼
PðTiÞ
PðTvÞ

;

which is easily computed in a real data set by dividing the fraction of Ti out of the total p loci
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by the fraction of Tv out of the total p loci. We will use the simplified notation η = Ti/Tv to rep-

resent this factor for the remainder of this work.

Using this PuPu, PuPy, and PyPy encoding, the probability of a transversion occurring at

any fixed locus a is given by the following

PðTvÞ ¼ g1: ð128Þ

Using the sum-to-one constraint (Eqs 126) and the probability of transversion (Eq 127), the

probability of a transition occuring at locus a is computed as follows

PðTiÞ ¼ g0 þ g2: ð129Þ

Also using the sum-to-one constraint (Eq 126) and the Ti/Tv ratio constraint (Eq 127), it is

clear that we have PðTvÞ ¼ 1

Zþ1
and PðTiÞ ¼ Z

Zþ1
. Without loss of generality, we then sample

g0 � U ε;
Z

Zþ 1
� ε

� �

; ð130Þ

where ε is some small positive real number.

Then it immediately follows that we have

g2 ¼
Z

Zþ 1
� g0: ð131Þ

However, we can derive the mean and variance of the distance distribution induced by the

TiTv metric without specifying any relationship between γ0, γ1, and γ2. We proceed by com-

puting P½dTiTvij ðaÞ ¼ k� for each k 2 D ¼ 0; 1

4
; 1

2
; 3

4
; 1

� �
. Let y represent a random sample of

size p from {0, 1, 2}, where

ya ¼

0 if locus a is PuPu;

1 if locus a is PuPy;

2 if locus a is PyPy:

8
>>><

>>>:

ð132Þ

We derive P½dTiTvij ðaÞ ¼ 0� as follows

P½dTiTvij ðaÞ ¼ 0� ¼ P½ya ¼ 0;Xia ¼ Xja�

þP½ya ¼ 1;Xia ¼ Xja�

þP½ya ¼ 2;Xia ¼ Xja�

¼ g0½ð1 � faÞ
2
þ 4fað1 � faÞ þ f 2

a �

þg1½ð1 � faÞ
2
þ 4fað1 � faÞ þ f 2

a �

þg2½ð1 � faÞ
2
þ 4fað1 � faÞ þ f 2

a �

¼ ðg0 þ g1 þ g2Þ½ð1 � faÞ
2
þ 4fað1 � faÞ þ f 2

a �

¼ ð1 � faÞ
2
þ 4fað1 � faÞ þ f 2

a ;

ð133Þ

where fa is the probability of a minor allele occurring at locus a.
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We derive P dTiTvij ðaÞ ¼
1

4

h i
as follows

P dTiTvij ðaÞ ¼
1

4

� �

¼ 2P½ya ¼ 0;Xia ¼ 0;Xja ¼ 1�

þ2P½ya ¼ 0;Xia ¼ 1;Xja ¼ 2�

þ2P½ya ¼ 2;Xia ¼ 0;Xja ¼ 1�

þ2P½ya ¼ 2;Xia ¼ 1;Xja ¼ 2�

¼ 4g0ð1 � faÞ
3fa þ 4g0f 3

a ð1 � faÞ þ 4g2ð1 � faÞ
3fa

þ4g2f 3
a ð1 � faÞ

¼ 4g0½ð1 � faÞ
3fa þ f 3

a ð1 � faÞ�

þ4g2½ð1 � faÞ
3fa þ f 3

a ð1 � faÞ�

¼ 4ðg0 þ g2Þ½ð1 � faÞ
3fa þ f 3

a ð1 � faÞ�;

ð134Þ

where fa is the probability of a minor allele occurring at locus a, γ0 is the probability of PuPu

occurring at any locus a, and γ2 is the probability of PyPy occurring at any locus a.

We derive P dTiTvij ðaÞ ¼
1

2

h i
as follows

P dTiTvij ðaÞ ¼
1

2

� �

¼ 2P½ya ¼ 1;Xia ¼ 0;Xja ¼ 1�

þ2P½ya ¼ 1;Xia ¼ 1;Xja ¼ 2�

¼ 4g1ð1 � faÞ
3fa þ 4g1f 3

a ð1 � faÞ

¼ 4g1½ð1 � faÞ
3fa þ f 3

a ð1 � faÞ�;

ð135Þ

where fa is the probability of a minor allele occurring at locus a and γ1 is the probability of

PuPy occurring at any locus a.

We derive P dTiTvij ðaÞ ¼
3

4

h i
as follows

P dTiTvij ðaÞ ¼
3

4

� �

¼ 2P½ya ¼ 0;Xia ¼ 0;Xja ¼ 2�

þ2P½ya ¼ 2;Xia ¼ 0;Xja ¼ 2�

¼ 2g0ð1 � faÞ
2f 2

a þ 2g2ð1 � faÞ
2f 2

a

¼ 2ðg0 þ g2Þð1 � faÞ
2f 2

a ;

ð136Þ

where fa is the probability of a minor allele occurring at locus a, γ0 is the probability of PuPu

occurring at any locus a, and γ2 is the probability of PyPy occurring at any locus a.

We derive P½dTiTvij ðaÞ ¼ 1� as follows

P½dTiTvij ðaÞ ¼ 1� ¼ 2P½ya ¼ 1;Xia ¼ 0;Xja ¼ 2�

¼ 2g1ð1 � faÞ
2f 2

a ;

ð137Þ
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where fa is the probability of a minor allele occurring at locus a and γ1 is the probability of

PuPy occurring at any locus a.

Using the TiTv diff probabilities (Eqs 133–137), we compute the expected TiTv distance

between instances i; j 2 I as follows

EðDTiTv
ij Þ ¼

X

a2A

X

k2D

k � P½dTiTvij ðaÞ ¼ k�

 !

¼ ðg0 þ g2 þ 2g1Þ
X

a2A

½ð1 � faÞ
3fa þ f 3

a ð1 � faÞ�

þ
3

2
ðg0 þ g2Þ þ 2g1

� �
X

a2A

ð1 � faÞ
2f 2

a

¼ ðg0 þ g2 þ 2g1Þ
X

a2A

FTiTvðaÞ þ
3

2
ðg0 þ g2Þ þ 2g1

� �
X

a2A

GTiTvðaÞ;

ð138Þ

where FTiTvðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ, GTiTvðaÞ ¼ ð1 � faÞ
2f 2

a , fa is the probability of a

minor allele occurring at locus a, γ0 is the probability of PuPu occurring at any locus a, γ1 is

the probability of PuPy occurring at any locus a, and γ2 is the probability of PyPy occurring at

any locus a. In contrast to the expected GM and AM distances (Eqs 117 and 122), the expected

TiTv distance (Eq 138) depends on minor allele probabilities fa for all a 2 A and the genotype

encoding probabilities γ0, γ1, and γ2.

The second moment about the origin for the TiTv distance is computed as follows

E½ðDTiTv
ij Þ

2
� ¼ E

X

a2A

dTiTvij ðaÞ

 !2" #

¼ E
X

a2A

ðdTiTvij ðaÞÞ
2

" #

þ 2E
X

r2A

X

s�r� 1

dTiTvij ðrÞ � d
TiTv
ij ðsÞ

" #

¼
X

a2A

X

k2D

k2 � P½dTiTvij ðaÞ ¼ k�

 !

þ2
X

a2A

X

s�r� 1

X

k2D

k � P½dTiTvij ðrÞ ¼ k�

 !

�
X

k2D

k � P½dTiTvij ðsÞ ¼ k�

 !

¼
1

4
ðg0 þ g2Þ þ g1

� �
X

a2A

FTiTvðaÞ þ
9

8
ðg0 þ g2Þ þ 2g1

� �
X

a2A

GTiTvðaÞ

þ2
X

r2A

X

s�r� 1

Y

l2fr;sg

½g0 þ g2 þ 2g1�F
TiTvðlÞ þ

3

2
ðg0 þ g2Þ þ 2g1

� �

GTiTvðlÞ

� �

;

ð139Þ

where FTiTvðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ, GTiTvðaÞ ¼ ð1 � faÞ
2f 2

a , fa is the probability of a

minor allele occurring at locus a, γ0 is the probability of PuPu occurring at any locus a, γ1 is

the probability of PuPy occurring at any locus a, and γ2 is the probability of PyPy occurring at

any locus a.
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Using the first (Eq 138) and second (Eq 139) raw moments of the TiTv distance, the vari-

ance is given by

VarðDTiTv
ij Þ ¼ E½ðDTiTv

ij Þ
2
� � ½EðDTiTv

ij Þ�
2

¼
1

4
ðg0 þ g2Þ þ g1

� �
X

a2A

FTiTvðaÞ þ
9

8
ðg0 þ g2Þ þ 2g1

� �
X

a2A

GTiTvðaÞ

þ2
X

r2A

X

s�r� 1

Y

l2fr;sg

½g0 þ g2 þ 2g1�F
TiTvðlÞ þ

3

2
ðg0 þ g2Þ þ 2g1

� �

GTiTvðlÞ

� �

� ½g0 þ g2 þ 2g1�
X

a2A

FTiTvðaÞ þ
3

2
ðg0 þ g2Þ þ 2g1

� �
X

a2A

GTiTvðaÞ

 !2

¼
1

4
ðg0 þ g2Þ þ g1

� �
X

a2A

FTiTvðaÞ þ
9

8
ðg0 þ g2Þ þ 2g1

� �
X

a2A

GTiTvðaÞ

�
X

a2A

½g0 þ g2 þ 2g1�F
TiTvðaÞ þ

3

2
ðg0 þ g2Þ þ 2g1

� �

GTiTvðaÞ
� �2

;

ð140Þ

where FTiTvðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ, GTiTvðaÞ ¼ ð1 � faÞ
2f 2

a , fa is the probability of a

minor allele occurring at locus a, γ0 is the probability of PuPu occurring at any locus a, γ1 is

the probability of PuPy occurring at any locus a, and γ2 is the probability of PyPy occurring at

any locus a.

With the mean (Eq 138) and variance (Eq 140) estimates, the asymptotic TiTv distance dis-

tribution is given by the following

DTiTv
ij _�N

�

ðg0 þ g2 þ 2g1Þ
X

a2A

FTiTvðaÞ þ
3

2
ðg0 þ g2Þ þ 2g1

� �
X

a2A

GTiTvðaÞ;

1

4
ðg0 þ g2Þ þ g1

� �
X

a2A

FTiTvðaÞ þ
9

8
ðg0 þ g2Þ þ 2g1

� �
X

a2A

GTiTvðaÞ

�
X

a2A

½g0 þ g2 þ 2g1�F
TiTvðaÞ þ

3

2
ðg0 þ g2Þ þ 2g1

� �

GTiTvðaÞ
� �2�

;

ð141Þ

where FTiTvðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ, GTiTvðaÞ ¼ ð1 � faÞ
2f 2

a , fa is the probability of a

minor allele occurring at locus a, γ0 is the probability of PuPu occurring at any locus a, γ1 is

the probability of PuPy occurring at any locus a, and γ2 is the probability of PyPy occurring at

any locus a.

Given upper and lower bounds l and u, respectively, of the success probability sampling

interval, the average success probability (or average MAF) is computed as follows

�f a ¼
1

2
ðl þ uÞ: ð142Þ

The maximum TiTv distance occurs at �f a ¼ 0:5 for any fixed Ti/Tv ratio η (Eq 127), which

is the inflection point about which the minor allele changes at locus a (Fig 6). If few minor

alleles are present (�f a ! 0), the predicted TiTv distance approaches 0. The same is true after

the minor allele switches (�f a ! 1). To explore how TiTv distance changes with increased
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minor allele frequency, we fixed the Ti/Tv ratio η and generated simulated TiTv distances for

�f a ¼ 0:055; 0:150; 0:250; and 0:350 (Fig 7A). For fixed η, TiTv distance increases signifi-

cantly with increased �f a. We similarly fixed the average minor allele frequency �f a and gener-

ated simulated TiTv distances for η = Ti/Tv = 0.5, 1, 1.5, and 2 (Fig 7C). The TiTv distance

decreases slightly with increased η = Ti/Tv. As η! 0+, the data is approaching all Tv and no

Ti, which means the TiTv distance is larger by definition. On the other hand, the TiTv distance

decreases as η! 2− because the data is approaching approximately twice as many Ti as there

are Tv, which is typical for GWAS data in humans.

We also compared theoretical and sample moments as a function of η = Ti/Tv and �f a for

the TiTv distance metric (Fig 7B and 7D). We fixed �f a and computed the theoretical and simu-

lated moments as a function of η (Fig 7B). Theoretical average TiTv distance (Eq 138) and sim-

ulated TiTv average distance are approximately equal as η increases. Theoretical standard

deviation (Eq 140) and simulated TiTv standard deviation differ slightly. We also fixed η and

Fig 6. Predicted average TiTv distance as a function of average minor allele frequency �f a (see Eq 142). Success

probabilities fa are drawn from a sliding window interval from 0.01 to 0.9 in increments of about 0.009 and m =

p = 100. For η = 0.1, where η is the Ti/Tv ratio given by Eq 126, Tv is ten times more likely than Ti and results in larger

distance. Increasing to η = 1, Tv and Ti are equally likely and the distance is lower. In line with real data for η = 2, Tv is

half as likely as Ti so the distances are relatively small.

https://doi.org/10.1371/journal.pone.0246761.g006
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computed theoretical and sample moments as a function of �f a (Fig 7D). In this case, there is

approximate agreement with simulated and theoretical moments as �f a increases.

We summarize our moment estimates for GWAS distance metrics (Eqs 113–115) (Fig 8)

organized by metric, statistic (mean or variance), and asymptotic formula. Next we consider

the important case of distributions of GWAS distances projected onto a single attribute (Eqs

110–112).

5.4 Distribution of one-dimensional projection of GWAS distance onto a

SNP

We previously derived the exact distribution of the one-dimensional projected distance onto

an attribute in continuous data (Section 3.2.3), which is used as the predictor in NPDR to cal-

culate relative attribute importance in the form of standardized beta coefficients. GWAS data

and the metrics we have considered are discrete. Therefore, we derive the density function for

Fig 7. Density curves and moments of TiTv distance as a function of average MAF �f a, given by Eq 142, and Ti/Tv

ratio η, given by Eq 127. We fix m = p = 100 for all simulated TiTv distances. (A) For fixed �f a ¼ 0:055, TiTv distance

density is plotted as a function of increasing η. TiTv distance decreases as η increases. For η = Ti/Tv = 0.5, there are

twice as many transversions as there are transitions. On the other hand, η = Ti/Tv = 2 indicates that there are half as

many transversions as transitions. Since transversions encode a larger magnitude distance than transitions, this

behavior is expected. (B) Simulated and predicted mean ± SD are shown as a function of increasing Ti/Tv ratio η.

Distance decreases as Ti/Tv increases. Theoretical and simulated moments are approximately the same. (C) For fixed η
= 2, TiTv distance density is plotted as a function of increasing �f a. TiTv distance increases as �f a approaches maximum

of 0.5, which means that there is about the same frequency of minor alleles as major alleles. (D) Simulated and

predicted mean ± SD as a function of increasing average MAF �f a. Distance increases as the number of minor alleles

increases. Theoretical and simulated moments are approximately the same.

https://doi.org/10.1371/journal.pone.0246761.g007
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each diff metric (Eqs 110–112), which also serves as the probability distribution for each met-

ric, respectively.

The support of the GM metric (Eq 110) is simply {0, 1}, so we derive the probability,

P½dGMij ðaÞ ¼ k�, of this diff taking on each of these two possible values. First, the probability

that the GM diff is equal to zero is given by

fGMð0; faÞ ¼ P½dGMij ðaÞ ¼ 0� ¼ PðXia ¼ 0;Xja ¼ 0Þ þ PðXia ¼ 1;Xja ¼ 1Þ

þ PðXia ¼ 2;Xja ¼ 2Þ

¼ ð1 � faÞ
4
þ 4f 2

a ð1 � faÞ
2
þ f 4

a ;

ð143Þ

where fa is the probability of a minor allele occurring at locus a.

Fig 8. Asymptotic estimates of means and variances of genotype mismatch (GM) (Eq 113), allele mismatch (AM)

(Eq 114), and transition-transversion (TiTv) (Eq 115) distance metrics in GWAS data (p� 1). GWAS data

Xia � Bð2; faÞ, where fa for all a 2 A are the probabilities of a minor allele occurring at locus a. For the TiTv distance

metric, we have the additional encoding that uses γ0 = P(PuPu), γ1 = P(PuPy), and γ2 = P(PyPy).

https://doi.org/10.1371/journal.pone.0246761.g008
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Similarly, the probability that the GM diff is equal to 1 is derived as follows

fGMð1; faÞ ¼ P½dGMij ðaÞ ¼ 1� ¼ 2PðXia ¼ 0;Xja ¼ 1Þ þ 2PðXia ¼ 1;Xia ¼ 2Þ

þ 2PðXia ¼ 0;Xja ¼ 2Þ

¼ 4ð1 � faÞ
3fa þ 4f 3

a ð1 � faÞ þ 2f 2
a ð1 � faÞ

2
;

ð144Þ

where fa is the probability of a minor allele occurring at locus a.

This leads us to the probability distribution of the GM diff metric, which is the distribution

of the one-dimensional GM distance projected onto a single SNP. This distribution is given by

fGMðd; faÞ ¼

(
ð1 � faÞ

4
þ 4f 2

a ð1 � faÞ
2
þ f 4

a d ¼ 0;

4ð1 � faÞ
3fa þ 4f 3

a ð1 � faÞ þ 2f 2
a ð1 � faÞ

2 d ¼ 1;

ð145Þ

where fa is the probability of a minor allele occurring at locus a.

The mean and variance of this GM diff distribution can easily be derived using this newly

determined density function (Eq 145). The average GM diff is given by the following

E½dGMij ðaÞ� ¼ 2FGMðaÞ; ð146Þ

where FGM ¼ 2ð1 � faÞ
3fa þ 2f 3

a ð1 � faÞ þ f 2
a ð1 � faÞ

2
and fa is the probability of a minor allele

occurring at locus a.

The variance of the GM diff metric is given by

Var½dGMij ðaÞ� ¼ 2FGMðaÞ½1 � 2FGMðaÞ�; ð147Þ

where FGM ¼ 2ð1 � faÞ
3fa þ 2f 3

a ð1 � faÞ þ f 2
a ð1 � faÞ

2
and fa is the probability of a minor allele

occurring at locus a.

The support of the AM metric (Eq 111) is {0, 1/2, 1}. Beginning with the probability of the

AM diff being equal to 0, we have the following probability

fAMð0; faÞ ¼ P½dAMij ðaÞ ¼ 0� ¼ PðXia ¼ 0;Xja ¼ 0Þ þ PðXia ¼ 1;Xja ¼ 1Þ

þ PðXia ¼ 2;Xja ¼ 2Þ

¼ ð1 � faÞ
4
þ 4f 2

a ð1 � faÞ
2
þ f 4

a ;

ð148Þ

where fa is the probability of a minor allele occurring at locus a.

The probability of the AM diff metric being equal to 1/2 is computed similarly as follows

fAMð1=2; faÞ ¼ P½dAMij ðaÞ ¼ 1=2� ¼ 2PðXia ¼ 0;Xja ¼ 1Þ þ 2PðXia ¼ 1;Xia ¼ 2Þ

¼ 4ð1 � faÞ
3fa þ 4f 3

a ð1 � faÞ;
ð149Þ

where fa the probability of a minor allele occurring at locus a.

Finally, the probability of the AM diff metric being equal to 1 is given by the following

fAMð1; faÞ ¼ P½dAMij ðaÞ ¼ 1� ¼ 2PðXia ¼ 0;Xja ¼ 2Þ

¼ 2f 2
a ð1 � faÞ

2
;

ð150Þ

where fa is the probability of a minor allele occurring at locus a.
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As in the case of the GM diff metric, we now have the probability distribution of the AM

diff metric. This also serves as the distribution of the one-dimensional AM distance projected

onto a single SNP, and is given by the following

fAMðd; faÞ ¼

ð1 � faÞ
4
þ 4f 2

a ð1 � faÞ
2
þ f 4

a d ¼ 0;

4ð1 � faÞ
3fa þ 4f 3

a ð1 � faÞ d ¼ 1=2;

2f 2
a ð1 � faÞ

2 d ¼ 1;

8
>>>><

>>>>:

ð151Þ

where fa is the probability of a minor allele occurring at locus a.

The mean and variance of this AM diff distribution is derived using the corresponding den-

sity function (Eq 151). The average AM diff is given by

E½dAMij ðaÞ� ¼ 2FAMðaÞ; ð152Þ

where FAMðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ þ f 2
a ð1 � faÞ

2
and fa is the probability of a minor allele

occurring at locus a.

The variance of the AM diff metric is given by

Var½dAMij ðaÞ� ¼ GAMðaÞ � 4½FAMðaÞ�2; ð153Þ

where GAMðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ þ 2ð1 � faÞ
2f 2

a ,

FAMðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ þ f 2
a ð1 � faÞ, fa is the probability of a minor allele occurring

at locus a.

For the TiTv diff metric (Eq 112), the support is {0, 1/4, 1/2, 3/4, 1}. We have already

derived the probability that the TiTv diff assumes each of the values of its support (Eqs 133–

137). Therefore, we have the following distribution of the TiTv diff metric

fTiTvðd; fa; g0; g1; g2; ZÞ ¼

ð1 � faÞ
4
þ 4f 2

a ð1 � faÞ
2
þ f 4

a d ¼ 0;

4ðg0 þ g2Þ½ð1 � faÞ
3fa þ f 3

a ð1 � faÞ� d ¼ 1=4;

4g1½ð1 � faÞ
3fa þ f 3

a ð1 � faÞ� d ¼ 1=2;

2ðg0 þ g2Þð1 � faÞ
2f 2

a d ¼ 3=4;

2g1ð1 � faÞ
2f 2

a d ¼ 1;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð154Þ

where fa is the probability of a minor allele occurring at locus a, γ0 is the probability of PuPu at

locus a, γ1 is the probability of PuPy at locus a, γ2 is the probability of PyPy at locus a, and η is

the Ti/Tv ratio (Eq 127).

The mean and variance of this TiTv diff distribution is derived using the corresponding

density function (Eq 154). The average TiTv diff is given by

E½dTiTvij ðaÞ� ¼ ðg0 þ g2 þ 2g1ÞFTiTvðaÞ þ
3

2
ðg0 þ g2Þ þ 2g1

� �

GTiTvðaÞ; ð155Þ

where FTiTvðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ, GTiTvðaÞ ¼ f 2
a ð1 � faÞ

2
, fa is the probability of a

minor allele occurring at locus a, γ0 is the probability of PuPu at locus a, γ1 is the probability of

PuPy at locus a, and γ2 is the probability of PyPy at locus a.
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The variance of the TiTv diff metric is given by

Var½dTiTvij ðaÞ� ¼
1

4
ðg0 þ g2Þ þ g1

� �

FTiTvðaÞ þ
9

8
ðg0 þ g2Þ þ 2g1

� �

GTiTvðaÞ

� ðg0 þ g2 þ 2g1ÞFTiTvðaÞ þ
3

2
ðg0 þ g2Þ þ 2g1

� �

GTiTvðaÞ
� �2

;

ð156Þ

where FTiTvðaÞ ¼ ð1 � faÞ
3fa þ f 3

a ð1 � faÞ, GTiTvðaÞ ¼ f 2
a ð1 � faÞ

2
, fa is the probability of a

minor allele occurring at locus a, γ0 is the probability of PuPu at locus a, γ1 is the probability of

PuPy at locus a, and γ2 is the probability of PyPy at locus a.

These novel distribution results for the projection of pairwise GWAS distances onto a single

genetic variant, as well as results for the full space of p variants, can inform NPDR and other

nearest-neighbor distance-based feature selection algorithms. We show density curves for GM

(S23 Fig in S1 File), AM (S24 Fig in S1 File), and TiTv (S25 Fig in S1 File) for each possible

support value. Next we introduce our new diff metric and distribution results for time-series

derived correlation-based data, with a particular application to resting-state fMRI.

6 Time series correlation-based distance distribution

In this section, we introduce a new metric and projected distance for correlation data, and we

derive its asymptotic properties. For this type of data, each of the m subjects has a correlation

matrix A(p×p) between pairs of attributes from the set A (p ¼ jAj). The application we have in

mind is resting-state fMRI (rs-fMRI) data, where correlations are calculated from the time-

series activity between brain regions. However, the methods that follow are relevant to all cor-

relation-based data. The jAj attributes in rs-fMRI are known as Regions of Interest (ROIs),

which are collections of spatially proximal voxels [26]. Correlation in their time-series activity

is calculated between voxels or ROIs based on a known brain atlas [27].

In rs-fMRI feature selection applications, a common approach is to use the correlation

between ROIs as the attribute. However, our goal is to allow the individual ROIs to be the attri-

butes of interest (a) even though the data is correlation. Thus, we propose the following attri-

bute projection (diff)

dROIij ðaÞ ¼
X

k6¼a

jAðiÞka � AðjÞka j; ð157Þ

where AðiÞak and AðjÞak are the correlations between ROI a and ROI k for instances i; j 2 I , respec-

tively. With this rs-fMRI diff, we define the pairwise distance between two instances i; j 2 I as

follows

DfMRI
ij ¼

X

a2A

dROIij ðaÞ; ð158Þ

which is based on Manhattan (q = 1). This metric may be expanded to general q, but we only

consider q = 1.

In order for comparisons between different correlations to be possible, we first perform a

Fisher r-to-z transform on the correlations. This transformation makes the data approximately

normally distributed with stabilized variance across different samples. After this transforma-

tion, we then load all of the transformed correlations into a p(p − 1) ×m matrix X (Fig 9). Each

column of X represents a single instance (or subject) in rs-fMRI data. Contrary to a typical p ×
m data set, each row does not represent a single attribute. Rather, each attribute (or ROI) is

represented by p − 1 consecutive rows. The first p − 1 rows represent ROI1, the next p − 1 rows
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represent ROI2, and so on until the last p − 1 rows that represent ROIp. For a given column of

X, we exclude pairwise correlations between an ROI and itself. Therefore, the matrix does not

contain ÂðiÞaa for any i 2 I or a 2 A. Furthermore, symmetry of correlation matrices means

that each column contains exactly two of each element of the upper triangle of an instance’s

transformed correlation matrix. For example, ÂðiÞka ¼ ÂðiÞak for k 6¼ a and both will be contained

in a given column of X for each a 2 A. Based on our rs-fMRI diff (Eq 157), the organization of

X makes computation of each value of the diff very simple. In order to compute each value of

the rs-fMRI diff, we just need to know the starting and ending row indices for a given ROI.

Starting indices are given by

startk ¼ ðk � 1Þðp � 1Þ þ 1; for k ¼ 1; 2; . . . ; p

and ending indices are given by

endk ¼ kðp � 1Þ; for k ¼ 1; 2; . . . ; p:

Fig 9. Organization based on brain regions of interest (ROIs) of resting-state fMRI correlation dataset consisting

of transformed correlation matrices for m subjects. Each column corresponds to an instance (or subject) Ij and each

subset of rows corresponds to the correlations for an ROI attribute (p sets). The notation ÂðjÞak represents the r-to-z

transformed correlation between attributes (ROIs) a and k 6¼ a for instance j.

https://doi.org/10.1371/journal.pone.0246761.g009
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These indices allow us to extract just the rows necessary to compute the rs-fMRI diff for a

fixed ROI.

We further transform the data matrix X by standardizing so that each of the m columns has

zero mean and unit variance. Therefore, the data in matrix X are approximately standard nor-

mal. Since we assume independent samples, the standard rs-fMRI distance is asymptotically

normal. Gaussian limiting behavior is illustrated in the form of histograms as shown previously

(S7 Fig in S1 File). Recall that the mean (Eq 41) and variance (Eq 42) of the Manhattan (L1) dis-

tance distribution for standard normal data are
2pffiffi
p
p and

2ðp� 2Þp
p

, respectively. This allows us to eas-

ily derive the expected pairwise distance between instances i; j 2 I in rs-fMRI data as follows

EðDfMRI
ij Þ ¼ E

X

a2A

dROIij ðaÞ

 !

¼ E
X

a2A

X

k6¼a

jÂðiÞak � ÂðjÞak j

 !

¼
X

a2A

X

k6¼a

EðjÂðiÞak � ÂðjÞak jÞ

¼
X

a2A

X

k6¼a

2
ffiffiffi
p
p

¼
2pðp � 1Þ

ffiffiffi
p
p :

ð159Þ

The expected pairwise rs-fMRI distance (Eq 159) grows on the order of p(p − 1), which is

the total number of transformed pairwise correlations in each column of X (Fig 9). This is sim-

ilar to the case of a typical m × p data matrix in which the data is standard normal and Manhat-

tan distances are computed between instances.

We first derive the variance of the rs-fMRI distance by making an independence assumption

with respect to the magnitude differences jÂðiÞak � ÂðjÞak j for all k 6¼ a 2 A. We observe empirically

that this assumption gives a reasonable estimate of the actual variance of rs-fMRI distances in

simulated data, but there is a consistent discrepancy between predicted and simulated variances.

We begin our derivation of the variance of rs-fMRI distances by assuming that cross-covari-

ances between the diffs of different pairs of ROIs are negligible. This allows us to determine the

relationship between the predicted variance under the independence assumption and the simu-

lated variance. We proceed by applying the variance operator linearly as follows

VarðDfMRI
ij Þ ¼ Var

X

a2A

dROIij ðaÞ

 !

¼ Var
X

a2A

X

k6¼a

jÂðiÞak � ÂðjÞak j

 !

¼
X

a2A

X

k6¼a

VarðjÂðiÞak � ÂðjÞak jÞ

¼
X

a2A

X

k6¼a

2ðp � 2Þ

p

¼
2ðp � 2Þðp � 1Þp

p
:

ð160Þ
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Similar to the case of an m × p data matrix containing standard normal data, we have an rs-

fMRI distance variance that grows on the order of p(p − 1), which is the total number of pair-

wise associations in a column of data matrix X (Fig 9). Therefore, the expected rs-fMRI dis-

tance (Eq 159) and the variance of the rs-fMRI distance (Eq 160) increase on the same order.

The independence assumption used to derive the variance of our rs-fMRI distance metric

(Eq 160) is not satisfied because a single value of the diff (Eq 157) includes the same fixed ROI,

a, for each term in the sum for all k 6¼ a. Therefore, the linear application of the variance opera-

tor we have previously employed does not account for the additional cross-covariance that

exists. However, we have seen empirically that the theoretical variance of the distance we com-

puted for the rs-fMRI distance metric (Eq 160) still reasonably approximates the sample vari-

ance, there is a slight discrepancy between our theoretical rs-fMRI distance metric variance

(Eq 160) and the sample variance. More precisely, the formula we have given for the variance

(Eq 160) consistently underestimates the sample variance of the rs-fMRI distance. To adjust

for this discrepancy, we determine a corrected formula by assuming that there is dependence

between the terms of the rs-fMRI diff and estimate the cross-covariance between rs-fMRI diffs

of different pairs of ROIs.

We begin the derivation of our corrected formula by writing the variance as a two-part

sum, where the first term in the sum involves the variance of the magnitude difference

jÂðiÞak � ÂðjÞak j and then second term involves the cross-covariance of the rs-fMRI diff for distinct

pairwise ROI-ROI associations. This formulation is implied in our previous derivation of the

variance, but our independence assumption allowed us to assume that all terms in the second

part of the two-part sum were zero. Our formulation of the variance is given by the following

VarðDfMRI
ij Þ ¼ Var

X

a2A

X

k6¼a

jÂðiÞak � ÂðjÞak j

 !

¼
Xp� 1

a¼1

Var
Xp

k¼aþ1

2jÂðiÞak � ÂðjÞak j

 !

þ2
Xp� 1

a¼1

Xp� 1

r¼aþ1

Cov
Xp

k¼aþ1

2jÂðiÞak � ÂðjÞak j;
Xp

s¼rþ1

2jÂðiÞrs � ÂðjÞrs j

 !

¼
Xp� 1

a¼1

Xp

k¼aþ1

Varð2jÂðiÞak � ÂðjÞak jÞ

þ2
Xp� 1

a¼1

Xp� 1

r¼aþ1

Cov
Xp

k¼aþ1

2jÂðiÞak � ÂðjÞak j;
Xp

s¼rþ1

2jÂðiÞrs � ÂðjÞrs j

 !

¼
Xp� 1

a¼1

Xp� 1

k¼aþ1

4ðp � 2Þ

p

þ2
Xp� 1

a¼1

Xp� 1

r¼aþ1

Cov
Xp

k¼aþ1

2jÂðiÞak � ÂðjÞak j;
Xp

s¼rþ1

2jÂðiÞrs � ÂðjÞrs j

 !

¼
2pðp � 2Þðp � 1Þ

p

þ2
Xp� 1

a¼1

Xp� 1

r¼aþ1

Cov
Xp

k¼aþ1

2jÂðiÞak � ÂðjÞak j;
Xp

s¼rþ1

2jÂðiÞrs � ÂðjÞrs j

 !

:

ð161Þ
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In order to have a formula in terms of the number of ROIs p only, we estimate the double

sum on the right-hand side of the equation of rs-fMRI distance variance (Eq 161). Through

simulation, it can be seen that the difference between the actual sample variance S2
Dij

and the

corresponding variance under the independence assumption
2pðp� 2Þðp� 1Þ

p
has a quadratic rela-

tionship with p. More explicitly, we have the following relationship

S2

DfMRI
ij
�

2pðp � 2Þðp � 1Þ

p
¼ b1p

2 þ b0p: ð162Þ

where β0 and β1 are the coefficients we must estimate in order to approximate the cross-covari-

ance term in the right-hand side of the rs-fMRI distance variance equation (Eq 161).

The coefficient estimates found through least squares fitting are β1 = −β0� 0.08. These esti-

mates allow us to arrive at a functional form for the double sum in the right-hand side of the

rs-fMRI distance variance equation (Eq 161) that is proportional to
2pðp� 2Þðp� 1Þ

p
. That is, we have

the following formula for approximating the double sum

2
Xp� 1

a¼1

Xp� 1

r¼aþ1

Cov
Xp

k¼aþ1

2jÂðiÞak � ÂðjÞak j;
Xp

s¼rþ1

2jÂðiÞrs � ÂðjÞrs j

 !

�
pðp � 2Þðp � 1Þ

4p
: ð163Þ

Therefore, the variance of the rs-fMRI distances is approximated well by the following

VarðDfMRI
ij Þ �

9pðp � 2Þðp � 1Þ

4p
: ð164Þ

With the mean (Eq 159) and variance (Eq 164) estimates, we have the following asymptotic

distribution for rs-fMRI distances

DfMRI
ij _�N

2pðp � 1Þ
ffiffiffi
p
p ;

9pðp � 2Þðp � 1Þ

4p

� �

: ð165Þ

6.1 Max-min normalized time series correlation-based distance

distribution

Previously (Section 4) we determined the asymptotic distribution of the sample maximum of

size m from a standard normal distribution. We can naturally extend these results to our trans-

formed rs-fMRI data because X (Fig 9) is approximately standard normal. Furthermore, we

have previously mentioned that the max-min normalized Lq metric yields approximately nor-

mal distances with the iid assumption. We show a similar result for max-min normalized rs-

fMRI distances (S8 Fig in S1 File). We proceed with the definition of the max-min normalized

rs-fMRI pairwise distance.

Consider the max-min normalized rs-fMRI distance given by the following equation

DfMRI�
ij ¼

X

a2A

X

k6¼a

jAðiÞak � AðjÞak j
maxðaÞ � minðaÞ

: ð166Þ

Assuming that the data X has been r-to-z transformed and standardized, we can easily com-

pute the expected attribute range and variance of the attribute range. The expected maximum
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of a given attribute in data matrix X is estimated by the following

EðXmax
a � Xmin

a Þ ¼ 2mð1Þmaxðm; pÞ ¼ 2
logðlogð2ÞÞ

F� 1 1

mðp� 1Þ

� � � F� 1 1

mðp � 1Þ

� �
2

4

3

5: ð167Þ

The variance can be esimated with the following

VarðXmax
a � Xmin

a Þ ¼
p2

6log½mðp � 1Þ�
: ð168Þ

Let mDfMRI
ij

and s2

DfMRI
ij

denote the mean and variance of the rs-fMRI distance distribution

given by Eqs 159 and 164. Using the formulas for the mean and variance of the max-min nor-

malized distance distribution given in Eq 92, we have the following asymptotic distribution for

the max-min normalized rs-fMRI distances

DfMRI�
ij _�N

mDfMRI
ij

2m
ð1Þ
maxðm; pÞ

;

6s2

DfMRI
ij

log½mðp � 1Þ�

p2 þ 24½m
ð1Þ
maxðm; pÞ�2log½mðp � 1Þ�

 !

: ð169Þ

6.2 One-dimensional projection of rs-fMRI distance onto a single ROI

Just as in previous sections (Sections. 3.2.3 and 5.4), we now derive the distribution of our rs-

fMRI diff metric (Eq 157). Unlike what we have seen in previous sections, we do not derive the

exact distribution for this diff metric. We have determined empirically that the rs-fMRI diff is

approximately normal. Although the rs-fMRI diff is a sum of p − 1 magnitude differences, the

Classical Central Limit Theorem does not apply because of the dependencies that exist

between the terms of the sum. Examination of histograms and quantile-quantile plots of simu-

lated values of the rs-fMRI diff easily indicate that the normality assumption is safe. Therefore,

we derive the mean and variance of the approximately normal distribution of the rs-fMRI diff.

As we have seen previously, this normality assumption is reasonable even for small values of p.

The mean of the rs-fMRI diff is derived by fixing a single ROI a and considering all pairwise

associations with other ROIs k 6¼ A. This is done as follows

E½dROIij ðaÞ� ¼ E
X

k6¼a

jÂðiÞak � ÂðjÞak j

 !

¼
X

k6¼a

EðjÂðiÞak � ÂðjÞak jÞ

¼
X

k6¼a

2
ffiffiffi
p
p

¼
2ðp � 1Þ

ffiffiffi
p
p ;

ð170Þ

where a is a single fixed ROI.

Considering the variance of the rs-fMRI diff metric, we have two estimates. The first esti-

mate uses the variance operator in a linear fashion, while the second will simply be a direct

implication of the corrected formula of the variance of rs-fMRI pairwise distances (Eq 164).
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Our first estimate is derived as follows

Var½dROIij ðaÞ� ¼ Var
X

k6¼a

jÂðiÞak � ÂðjÞak j

 !

¼
X

k6¼a

VarðjÂðiÞak � ÂðjÞak jÞ

¼
X

k6¼a

2ðp � 2Þ

p

¼
2ðp � 2Þðp � 1Þ

p
;

ð171Þ

where a is a single fixed ROI.

Using the corrected rs-fMRI distance variance formula (Eq 164), our second estimate of the

rs-fMRI diff variance is given directly by the following

Var dROIij ðaÞ
h i

¼
9ðp � 2Þðp � 1Þ

4p
; ð172Þ

where a is a single fixed ROI.

Empirically, the first estimate (Eq 171) of the variance of our rs-fMRI diff is closer to

the sample variance than the second estimate (Eq 172). This is due to fact that we are consider-

ing only a fixed ROI a 2 A, so the cross-covariance between the magnitude differences

jÂðiÞak � ÂðjÞak j for different pairs of ROIs (a and k 6¼ a) is negligible here. When considering all

ROIs a 2 A, these cross-covariances are no longer negligible. Using the first variance estimate

(Eq 171) and the estimate of the mean (Eq 170), we have the following asymptotic distribution

of the rs-fMRI diff

dROIij ðaÞ _�N
2ðp � 1Þ

ffiffiffi
p
p ;

2ðp � 2Þðp � 1Þ

p

� �

; ð173Þ

where a is a single fixed ROI. We compare moment estimates for the rs-fMRI diff (Eqs 170

and 171) with sample moments from simulated data with m = 100 samples and p = 1000, 2000,

. . ., 5000 attributes (S21 Fig in S1 File). Our estimates follow the sample moments from simu-

lated data very closely.

6.3 Normalized Manhattan (q = 1) for rs-fMRI

Substituting the non-normalized mean (Eq 159) into the equation for the mean of the max-

min normalized rs-fMRI metric (Eq 169), we have the following

EðDfMRI�
ij Þ ¼

mDfMRI
ij

2m
ð1Þ
maxðm; pÞ

¼
pðp � 1Þ
ffiffiffi
p
p

m
ð1Þ
maxðm; pÞ

;

ð174Þ

where mð1Þmaxðm; pÞ (Eq 167) is the expected maximum of a single ROI in a data set with m
instances and p ROIs.
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Similarly, the variance of DfMRI�
ij is given by

VarðDfMRI�
ij Þ ¼

6s2

DfMRI
ij

log½mðp � 1Þ�

p2 þ 24½m
ð1Þ
maxðm; pÞ�2log½mðp � 1Þ�

¼
27ðp � 2Þlog½mðp � 1Þ�ðp � 1Þp

2pðp2 þ 24½m
ð1Þ
maxðm; pÞ�2log½mðp � 1Þ�Þ

;

ð175Þ

where mð1Þmaxðm; pÞ (Eq 167) is the expected maximum of a single ROI in a data set with m
instances and p ROIs.

We summarize the moment estimates for the rs-fMRI metrics for correlation-based data

derived from time series (Fig 10). We organize this summary by standard and attribute range-

normalized rs-fMRI distance metric, statistic (mean or variance), and asymptotic formula.

7 Comparison of theoretical and sample moments

We compare our analytical asymptotic estimates of sample moments for distributions of pair-

wise distances in high attribute dimension by generating random data for various dimensions

m and p (Fig 11). We fix m = 100 samples and compute Manhattan (Eq 1) distance matrices

from standard normal data for p = 1000, 2000, 3000, 4000, and 5000 attributes. For each value

of p, we generate 20 random datasets and compute the mean and standard deviation of pair-

wise distances. We then average these 20 simulated means and standard deviations. For com-

parison, we compute the theoretical moments (Eqs 41 and 42) for each value of p and fixed

m = 100 from the theoretical formulas. Scatter plots of theoretical versus simulated mean (Fig

11A) and theoretical versus simulated standard deviation (Fig 11B) indicate that our theoreti-

cal asymptotic formulas for sample moments are reliable for both large and relatively small

numbers of attributes. For other combinations of data type, distance metric, sample size m,

Fig 10. Aymptotic means and variances for the new standard (Eq 158) and max-min normalized (Eq 166) rs-fMRI

distance metrics.

https://doi.org/10.1371/journal.pone.0246761.g010

PLOS ONE Asymptotic nearest-neighbor distance distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0246761 February 8, 2021 58 / 67

https://doi.org/10.1371/journal.pone.0246761.g010
https://doi.org/10.1371/journal.pone.0246761


and number of attributes p, we find similar agreement between theoretical formulas and simu-

lated moments (S9-S21 Figs in S1 File).

8 Effects of correlation on distances

All of the derivations presented in previous sections were for the cases where there is no cor-

relation between instances or between attributes. We assumed that any pair (Xia, Xja) of data

points for instances i and j and fixed attribute a were independent and identically distrib-

uted. This was assumed in order to determine asymptotic estimates in null data. That is,

data with no main effects, interaction effects, or pairwise correlations between attributes.

Within this simplified context, our asymptotic formulas for distributional moments are reli-

able. However, in real data are numerous statistical effects that impact distance distribu-

tional properties. That being said, we have shown that for Manhattan distances generated

on real gene expression microarray data (S26-S124 Figs in S1 File) and distances generated

with our new metric (Eq 158) on real rs-fMRI data (S125-S126 Figs in S1 File) that the nor-

mality assumption is approximately satisfied in many cases. In simulated data, we find that

deviation from normality is caused primarily by large magnitude pairwise correlation

between attributes. Pairwise attribute correlation can be the result of main effects, where

attributes have different within-group means. On the other hand, there could be an underly-

ing interaction network in which there are strong associations between attributes. If attri-

butes are differentially correlated between phenotype groups, then interactions exist that

change the distance distribution. In the following few sections, we consider particular cases

of the Lq metric for continuous and discrete data under the effects of pairwise attribute

correlation.

Fig 11. Comparison of theoretical and sample moments of Manhattan (Eq 1) distances in standard normal data.

(A) Scatter plot of theoretical vs simulated mean Manhattan distance (Eq 41). Each point represents a different number

of attributes p. For each value of p we fixed m = 100 and generated 20 distance matrices from standard normal data and

computed the average simulated pairwise distance from the 20 iterations. The corresponding theoretical mean was

then computed for each value of p for comparison. The dashed line represents the identity (or y = x) line for reference.

(B) Scatter plot of theoretical vs simulated standard deviation of Manhattan (Eq 1) distance (Eq 42). These standard

deviations come from the same random distance matrices for which mean distance was computed for A. Both

theoretical mean and standard deviation approximate the simulated moments quite well.

https://doi.org/10.1371/journal.pone.0246761.g011
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8.1 Continuous data

Without loss of generality, suppose we have X(m×p) where Xia � N ð0; 1Þ for all i = 1, 2, . . ., m
and a = 1, 2, . . ., p, and let m = p = 100. We consider only the L2 (Euclidean) metric (Eq 1,

q = 2). We explore the effects of correlation on these distances by generating simulated data

sets with increasing strength of pairwise attribute correlation and then plotting the density

curve of the induced distances (Fig 12A). Deviation from normality in the distance distribu-

tion is directly related to the average absolute pairwise correlation that exists in the simulated

data. This measure is given by

�rabs ¼
2

pðp � 1Þ

Xp� 1

i¼1

X

j>i

rij ð176Þ

where rak is the correlation between attributes a; k 2 A across all instances m. Distances gener-

ated on data without correlation closely approximate a Gaussian. The mean (Eq 53) and vari-

ance (Eq 52) of the uncorrelated distance distribution are given by substituting p = 100 for the

mean. As �rabs increases, positive skewness and increased variability in distances emerges. The

predicted and sample means, however, are approximately the same between correlated and

uncorrelated distances due to linearity of the expectation operator. Because of the dependen-

cies between attributes, the predicted variance of 1 for L2 on standard normal data obviously

no longer holds.

In order to introduce a controlled level of correlation between attributes, we created corre-

lation matrices based on a random graph with specified connection probability, where attri-

butes correspond to the vertices in each graph. We assigned high correlations to connected

attributes from the random graph and low correlations to all non-connections. Using the

upper-triangular Cholesky factor U for uncorrelated data matrix X, we computed the following

product to create correlated data matrix Xcorr

Xcorr ¼ XUT: ð177Þ

Fig 12. Distance densities from uncorrelated vs correlated bioinformatics data. (A) Euclidean distance densities for

random normal data with and without correlation. Correlated data was created by multiplying random normal data by

upper-triangular Cholesky factor from randomly generated correlation matrix. We created correlated data for average

absolute pairwise correlation (Eq 176) �r abs ¼ 0:105; 0:263; 0:458; and 0:612. (B) TiTv distance densities for random

binomial data with and without correlation. Correlated data was created by first generating correlated standard normal

data using the Cholesky method from (A). Then we applied the standard normal CDF to create correlated uniformly

distributed data, which was then transformed by the inverse binomial CDF with n = 2 trials and success probabilites

fa for all a 2 A. (C) Time series correlation-based distance densities for random rs-fMRI data (Fig 9) with and

without additional pairwise feature correlation. Correlation was added to the transformed rs-fMRI data matrix (Fig 9)

using the Cholesky algorithm from (A).

https://doi.org/10.1371/journal.pone.0246761.g012
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The new data matrix Xcorr has approximately the same correlation structure as the ran-

domly generated correlation matrix created from a random graph.

8.2 GWAS data

Analogous to the previous section, we explore the effects of pairwise attribute correlation in

the context of GWAS data. Without loss of generality, we let m = p = 100 and consider only

the TiTv metric (Eq 115). To create correlated GWAS data, we first generated standard nor-

mal data with random correlation structure, just as in the previous section. We then applied

the standard normal cumulative distribution function (CDF) to this correlated data in order

transform the correlated standard normal variates into uniform data with preserved correla-

tion structure. We then subsequently applied the inverse binomial CDF to the correlated

uniform data with random success probabilities fa for all a 2 A. Each attribute a 2 A corre-

sponds to an individual SNP in the data matrix. The resulting GWAS data set is binomial

with n = 2 trials and has roughly the same correlation matrix as the original correlated stan-

dard normal data with which we started. Average absolute pairwise correlation �rabs induces

positive skewness in GWAS data at lower levels than in correlated standard normal data (Fig

12B). This could have important implications in nearest neighborhoods in NPDR and simi-

lar methods.

8.3 Time-series derived correlation-based datasets

For our correlation data-based metric (Eq 158), we consider additional effects of correlation

between features. Without loss of generality, we let m = 100 and p = 30. We show an illustra-

tion of the effects of correlated features in this context (Fig 12C). Based on the density esti-

mates, it appears that correlation between features introduces positive skewness at low values

of �rabs. We introduced correlation to the transformed data matrix (Fig 9) with the cholesky

method used previously.

9 Feature selection with distance distribution-informed nearest

neighbors

Our derivation of asymptotic moments of distance distributions has been motivated by the

need to improve performance of feature selection in nearest-neighbor algorithms. The choice

of k or a neighborhood radius can have a large impact on selected features [5]. Historically, the

general rule-of-thumb for fixed k was k = 10. However, this rule-of-thumb does not adapt to

properties of the data, such as sample size m or number of features p. As we have shown for

random data with uncorrelated attributes, mean distance or standard deviation of sample dis-

tances increases in direct proportion to some function of p. As a result, the rule-of-thumb can

be out of step with the average distance between neighbors in a real data set. Parameterizing

the neighborhood sizes by the expected moments of the distance distribution, under the

assumption of independent data and uncorrelated features, can improve upon naive neighbor-

hood approaches.

The adaptive radius method MultiSURF outperformed fixed k methods for detecting inter-

action effects in simulated data [1]. In another simulation study, it was shown that MultiSURF

performed relatively well in detecting both interaction effects and main effects [5]. The Multi-

SURF approach gives each target instance i its own tailored neighborhood radius Ri (Eq 178)

as a function of the average pairwise distance to the target instance i (�Dij6¼i) and the sample
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standard deviation of the same distances (Dij 6¼ i).

Ri ¼
�Dij6¼i � asDij6¼i

; ð178Þ

where �Dij6¼i ¼ ðm � 1Þ
� 1P

j6¼iDij, sDij6¼i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDij6¼iÞ

q
, and α = 0.5.

The study in Ref. [5] showed that fixed k = bm/6c = 16 empirically gave approximately the

same neighborhood size as MultiSURF on average, but the fixed k = bm/6c = 16 method mod-

estly improved the detection of main effects and performed approximately the same for inter-

action effects in 100 replicated simulations. Furthermore, in Ref. [4], the approximation of k =

bm/6c to the average MultiSURF radius (Eq 178) neighborhood order, although very accurate

for m = 100, was more precisely shown to be

�ka ¼
m � 1

2
1 � erf

a
ffiffiffi
2
p

� �� �� �

; ð179Þ

where α = 0.5 for MultiSURF. This formula for �ka (Eq 179) is simply the transformation b�c of

the expected value of a binomial random variable with n = m − 1 trials and success probability

qa ¼ 0:5ð1 � erfða=
ffiffiffi
2
p
ÞÞ. The value of qα is the probability of a random instance j 6¼ i being

in the neighborhood of target instance i, which is equivalent to satisfying Dij 6¼ i� Ri (Eq 178).

When we take α = 0.5, we find that �k1=2 � b0:154ðm � 1Þc ¼ 15, which differs from the

empirically determined k = 16 by only a single neighbor.

We compare the performance of Relief nearest-neighbor feature selection with data-

informed kα = 1/2 and the rule-of-thumb k = 10 (Fig 13). We use consensus features nested

cross-validation (cnCV) to perform feature and model selection while avoiding overfitting

[28]. The cnCV approach has been shown to select fewer false positive features on average

across all simulation replicates than standard nested cross-validation while simultaneously

maintaining a low false negative rate for functional features. Our application of cnCV (cncv

https://github.com/insilico/cncv) uses the Relief nearest-neighbor method for feature selection

and random forest for classification, which was parameterized by ntree = 1000 trees and mtry

= pf/3 randomly selected features at each node split. The value pf is the total features in a given

training fold.

For the comparison, we simulate data with an underlying interaction network, where inter-

acting features have no main effects [29], and then we add main effect features. Each simulated

data set has p = 1000 attributes, where 100 are functional, and m = 100 instances (50 cases and

50 controls). For statistical comparison, we create 30 replicate simulations, and each simulated

data set is split into a training and a validation set for indepedent assessment.

The distance distribution informed-kα = 1/2 shows a statistically significantly advantage over

naive k = 10 for feature selection performance (left two plots of Fig 13). The training and vali-

dation accuracy are very similar and very high for both types of k. The training accuracy is

slightly higher for naive k = 10, but there is more of a drop in its validation accuracy, which

suggests possible overfitting. The validation accuracy for informed kα = 1/2 is closer to its

training accuracy, which suggests that its training accuracy is a better estimation of the true

accuracy.

10 Discussion

Nearest-neighbor distance-based feature selection is a class of methods that are relatively sim-

ple to implement, and they perform well at detecting interaction effects in high dimensional

data. Theoretical analysis of the limiting behavior of distance distributions for various data

types and dimensions may lead to improved hyperparameter estimates of these feature
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selection methods. Furthermore, these theoretical results may help guide the choice of distance

metric for a given dataset. Most often, distance-based feature selection methods use the Lq

metric (Eq 1) with q = 1 or q = 2. However, these two realizations of the Lq metric have consid-

erably different behavior for the mean and variance of their respective limiting distributions.

For instance, the expected distance for L1 and L2 for standard normal data is proportional to p
(Eq 41 and Fig 3) and

ffiffiffipp (Eq 51 and Fig 3), respectively. In addition, L1 and L2 on standard

normal data have asymptotic variances on the order of p and 1, respectively (Eqs 42 and 52).

These results can inform the choice of L1 or L2 depending on context. For instance, dis-

tances become harder to distinguish from one another in high dimensions, which is one of the

curses of dimensionality. In the case of L2, the asymptotic distribution (N ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � 1

p
; 1Þ) indi-

cates that the limiting L2 distribution can be thought of simply as a positive translation of the

standard normal distribution (N ð0; 1Þ). The L2 distribution also indicates that most neighbors

are contained in a thin shell far from the instance in high dimension (p� 1). On the other

hand, the L1 distances become more dispersed due to the fact that the variance of the limiting

distribution is proportional to the attribute dimension p (variance is 2(π − 2)p/π and mean is

2p=
ffiffiffi
p
p

). This variance for L1 could be more desirable when determining nearest neighbors

because instances may be easier to distinguish with this metric. If using L1, then it may be best

to use a fixed-k algorithm instead of fixed-radius because fixed-radius neighborhood size

could vary quite a bit (variance proportional to attribute dimension p), which in turn could

affect the quality of selected attributes. If L2 is being used, then either fixed-k or fixed-radius

may perform equally well because most distances will be within 1 standard deviation away

from the mean.

We derived distance asymptotics for some of the most commonly used metrics in nearest-

neighbor distance-based feature selection, as well as two new metrics for GWAS (Eq 115) and

a new metric for time-series correlation-based data (Eqs 158 and 166) like resting-state fMRI.

Fig 13. Simulation comparison between rule-of-thumb naive k = 10 and distance-distribution informed kα = 1/2.

Precision and recall for the functional features are significantly improved using informed k versus naive k = 10. The

training and validation classification accuracy are similar for the two values of k with slightly less overfitting for

informed-k.

https://doi.org/10.1371/journal.pone.0246761.g013
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These are novel results that show the behavior of distances in random data. We also extended

the asymptotic results of the standard Lq metrics to derive new estimates of the mean and vari-

ance of the attribute range-normalized Lq (max-min) distance for standard normal (Eq 92)

and standard uniform (Eq 100) data using extreme value theory. Our derivations provide an

important reference for those using nearest-neighbor feature selection or classification meth-

ods in common bioinformatics data. In particular, the range-normalized asymptotic results

apply directly to Relief-based algorithms that use the range of each attribute to constrain its

score to be within [−1, 1].

We derived the asymptotic mean and variance of the recently developed transition-trans-

version (TiTv) metric (Eq 112) for nearest-neighbor feature selection in GWAS data [30]. Our

novel asymptotic estimates for the TiTv metric, as well as for the GM (Eq 110) and AM (Eq

111) metrics, provide an important reference to aid in neighborhood parameter selection for

GWAS. We also showed how the Ti/TV ratio η (Eq 127) and minor allele frequency (or success

probability) fa affect these discrete distances. For the GM and AM metrics, the distance is solely

determined by the minor allele frequencies because the genotype encoding is not taken into

account. We showed how both minor allele frequency and Ti/Tv ratio uniquely affects the

TiTv distance (Fig 7A and 7C). Because transversions are more disruptive forms of mutation

than transitions, this additional dimension of information is important to consider, which is

why we have provided asymptotic results for this metric.

We developed a new nearest-neighbor metric for time-series correlation-based data, moti-

vated in part by feature selection for resting-state fMRI studies. The new metric (Eq 157)

allows us to use regions of interest (ROIs) as attributes. Previously Relief-based methods

would only compute the importance of ROI-ROI pairs based on differential correlation, but

this new metric allows one to compute the individual contribution of each ROI. Nearest-

neighbor feature selection would be a useful tool for case-control studies to determine impor-

tant ROIs due to interactions and to help elucidate the network structure of the brain as it

relates to the phenotype of interest. With our new rs-fMRI metric (Eq 158), we can apply

NPDR or any other nearest neighbor feature selection algorithm to determine the importance

of individual ROIs in classifying important phenotypes (e.g., major depressive disorder versus

healthy controls).

In addition to asymptotic Lq distance distributions, we also provided the exact distributions

for the one-dimensional projection of the Lq distance onto individual attributes (Sections.

3.2.3, 5.4, and 6.2). These distributions are important for all nearest-neighbor distance-based

feature selection algorithms, such as Relief or NPDR, because the Lq distance is a function of

the one-dimensional attribute projection (diff). In particular, these projected distance distribu-

tions are important for improving inference for predictors in NPDR, which are one-dimen-

sional attribute projections.

Deviations from Gaussian for the distribution of the pairwise distances could be an indica-

tion of interaction or other statistical effects in the data. We explored Gaussianity of Manhat-

tan distances in real gene expression microarrays (S26-S124 Figs in S1 File) and rs-fMRI data

(S125, S126 Figs in S1 File). In most of the cases, we found distances are approximately nor-

mally distributed after standardizing samples to be zero mean and unit variance. One implica-

tion of this is that we can roughly predict how many neighbors to expect within a fixed radius

about a given target instance. In the cases where the distribution deviates from Gaussian, an

important future goal is to understand how the expected moments are modified. This will help

us identify fixed-k neighborhoods for NPDR feature selection that avoid the potentially high

variability of radius-based neighborhood sizes and increase the power to detect important sta-

tistical effects. Another future direction is to apply the asymptotic techniques to derive means

and variances for other new metrics such as set-theoretic distance measures [31, 32].
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In addition to interaction effects, correlation between attributes and instances can cause sig-

nificant deviations from the asymptotic variances derived in this work, which assumed inde-

pendence between variables. To illustrate this deviation, we showed how strong correlations

lead to positive skewness in the distance distribution of random normal, binomial, and rs-

fMRI data (Fig 12A, 12B and 12C). Pairwise correlation between attributes causes very little

change to the average distance, so our mean asymptotic results for uncorrelated data also are

good approximations when attributes are not independent. In contrast, the sample variance of

distances deviates from the uncorrelated case substantially as the average absolute pairwise

attribute correlation increases (Eq 176). For fixed or adaptive-radius neighborhood methods,

this deviation can increase the probability of including neighbors for a given instance and may

reduce the power to detect interactions. A future goal is to derive formulas for the variance of

metrics that adjust for correlation in the data. The increased variance for distances with corre-

lated data may inform the choice of metric and optimization of neighborhoods in nearest-

neighbor feature selection.
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