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Hyperspectral imaging is an area of active research with many applications in remote sensing, mineral exploration, and en-
vironmental monitoring. Deep learning and, in particular, convolution-based approaches are the current state-of-the-art
classification models. However, in the presence of noisy hyperspectral datasets, these deep convolutional neural networks
underperform. In this paper, we proposed a feature augmentation approach to increase noise resistance in imbalanced
hyperspectral classification. Our method calculates context-based features, and it uses a deep convolutional neuronet (DCN). We
tested our proposed approach on the Pavia datasets and compared three models, DCN, PCA+DCN, and our context-based DCN,
using the original datasets and the datasets plus noise. Our experimental results show that DCN and PCA+DCN perform well on
the original datasets but not on the noisy datasets. Our robust context-based DCNwas able to outperform others in the presence of
noise and was able to maintain a comparable classification accuracy on clean hyperspectral images.

1. Introduction

Advances in data collection and data warehousing tech-
nologies have led to a wealth of massive repositories of data.
Together with active research in artificial intelligence, big
data science promises mountain ranges of unexplored
datasets and the smart tools to extract relevant information.
An important goal in computer-based hyperspectral im-
aging is to be able to accurately perform this information
mining without human work. Government, industry, and
academia sectors seek to automate this process. )ey find it
valuable for their future to be able to reduce the human
requirement in core processing tasks, such as segmentation,
classification, and its applications.

Ever since Vapnik’s [1, 2] work transformed the
statistical learning theory community, research has in-
dicated the considerable potential of SVM in supervised

classification, However, in many real-world classification
problems such as remote sensing, medical diagnosis,
object recognition, and business decision-making, the
costs of selecting a poor kernel for high dimensional data
is too high in terms of computational performance and a
handicap to robust, real-time hyperspectral classification
and segmentation.

More recently, deep networks have dominated clas-
sification problems, such as image segmentation. Con-
volutional-based neural networks or CNNs are driving
advances in recognition. CNNs are not only improving for
all domains of image classification [3–7] but also making
progress on object detection [8–10], key-point-based
prediction [11, 12], and local correspondence [13]. )e
natural next step in the progression from coarse to fine
inference is to make a prediction at every pixel. Prior
approaches have used Deep CNNs for image segmentation
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[14–20], in which each pixel is labeled, but with short-
comings that this work addresses.

Typically, DCN-based algorithms use the output of the
last layer of the network to assign category labels. Imposing a
softmax layer on top of a fully-connected dense layer, DCN
focuses on semantic information. However, when the task
we are interested in is more granular, such as one of clas-
sifying mixed pixels or dealing with imbalanced multiclass
classification of hyperspectral images, these last layers are
not optimal.

Image segmentation faces yet another challenging gap:
global information answers the what, while local informa-
tion provides the where. It is not immediately clear that deep
convolutional neural networks for image classification yield
a structure sound enough for accurate, pixel-wise multiclass
classification. Moreover, when working with high dimen-
sional features, there is often no go-to algorithm that is exact
and has acceptable performance. To obtain a speed im-
provement, many practical applications are forced to settle
for approximation approaches, in which they do not return
exact answers. In practice, numerical optimizations and fast
approximation saturate the spectrum of algorithms and
research. However, image segmentation can also be explored
as the reconstruction to a low-quality image from its high
quality observations. )is point of view has many important
applications, such as low-level image processing, remote
sensing, medical imaging, and surveillance.

)ere are also paramount applications that would benefit
from advances in unsupervised image segmentation, such as
medical applications and homeland security. Early detection
of tumors, kidney disease, heart disease, microbleeds, and
microdamages is critical to worldwide public health.)ere is
significant research and new investments for advancing
magnetic resonance imaging technology that can accurately
aid in early diagnosis. )e authors in [21] reviewed the
principles and applications of a gradient echo MRI, the so
called T2∗ weighted. During COVID, the pharmaceutical
industry joins forces with academia to develop algorithms
for automated assessment of large-scale datasets [22]. De-
tection of illicit drugs, warfare agents, and dangerous sub-
stances is critical to security. )e authors in [23] introduced
a new technology that can rapidly detect explosives using a
thermal imager. )is thermal spectroscopy pushes the
boundaries of traditional image and signal processing
techniques.

)e problem is that the state-of-the-art in machine
learning and data science demands for abundance of labeled
samples, which require domain expert input. )is is not
feasible to spend time and effort labeling training samples. It
is more efficient to develop a new method that scales and
requires small number of labeled training samples.

Moreover, noise is a challenging variable, specially
within imbalanced data. Hyperspectral imaging is such a
data containing highly-imbalanced classes. Multiclass clas-
sification using DCN suffers from the presence of noise.
)erefore, this study proposes a method that can address
these challenges using a deep learning-based image clus-
tering model that combines both an adaptive dimensionality
reduction approach and a robust feature augmentation

approach which can cluster different types of imaging
datasets with high positive predictive value.

)e main contribution of this paper is a new pre-
processing approach to deal with noisy, highly-imbalanced
hyperspectral classification. In Section 2, we present a lit-
erature review. In Section 3, we explain our approach. In
Section 4, we explain our experiments, while in Section 5, we
compare our results. And in Section 6, we present our
conclusions and future lines of research.

2. Related Works

)is section presents previous works and relevant literature
in the areas of dimensionality reduction, feature augmen-
tation, noise reduction, and hyperspectral image
classification.

2.1.DimensionalityReduction. As big data, cloud computing
becomes the standard for data storage, and high dimensional
datasets are more and more commonplace. To process such
large oceans of data, dimensionality reduction offers two
options: feature projection and feature selection. Feature
projection techniques transform data from a highly di-
mensional space to a new space with a lower dimensionality.
Principal Component Analysis is one of the most popular
linear transformations. In [24] the authors effectively con-
ducted a dimension reduction by applying the principal
component analysis to highly overlapped photo-thermal
infrared imaging dataset. Feature selection techniques are an
alternative that aims to choose the most information-rich
features and discard irrelevant features and noise. )e au-
thors in [25, 26] present different feature selection tech-
niques to integrate spectral band selection and hyperspectral
image classification in an adaptive fashion, with the ultimate
goal of improving the analysis and interpretation of
hyperspectral imaging.

Recent literature [27] proposes a Kronecker-decom-
posable component analysis model that combines dictionary
learning and component analysis with great results on low
rank modeling. )e Kronecker product is compatible with
the most common matrix decomposition. )erefore, it can
be used to learn low-ranking dictionaries in tensor factor-
ization. It also can effectively remove noise.

Principal Component Analysis [28] or PCA is a classical
dimensionality reduction with multiple implementations.
One intuitive implementation consists of six steps: stan-
dardization, covariance, eigenvalues, eigenvectors, reduc-
tion, and projection. )is formulation is based on
maximizing variance within a low-dimensional projection.
)ere are other formulations that scale better to high di-
mensionality. One of such solver implementations consists
of breaking down PCA into two easy-to-calculate sub-
problems: alternating least square linear regressions [29]
using an iterative algorithm based on the idea that the
product of principal orthogonal components can be an
approximation to the original data.

Despite the fact that PCA is among the most established
techniques for dimensionality reduction, the story does not
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end here. )ere are many other techniques that show great
empirical applications and theoretical guarantees. )e au-
thors in [30] introduced a Forward Selection Component
Analysis and obtained comparable results to PCA and Sparse
PCA. And in [31, 32], anomaly and change detection was
carried out with great success in hyperspectral imaging. Yet,
[33] suggests PCA as yet a powerful preprocessing step to
denoise data. Similarly to numerous other noise reduction
methods including patents [34], PCA works under the as-
sumption that the signal needs to be cleaned from the same
global noise.

2.2. Image Classification. Deep learning and big data science
are the state-of-the-art in image classification. From support
vector machines to convolutional neural networks to
spectral clustering, both academia and industry keep
pushing for more innovative research. Collaborative and in
particular interdisciplinary research is needed to bring these
advances to other fields and transform innovations into
applications.)e authors in [35] and [36] bear witness to the
benefits of incorporating diversity to research teams. With
authors with top degrees in civil engineering, computer
science, and communications and graduate and under-
graduate authors, these teams show that in order to push the
science forward we need the help of everyone.

)ere are many classic image segmentation algorithms,
from simple thresholding to similarity-based clustering to
connectedness and discontinuity-based detection. )resh-
old-based image segmentation seeks to divide the scale range
into background and a set of target foregrounds based on
global or local information, for instance, minimizing their
interclass variance, maximizing entropy, and/or fuzzy sets
theory. One big advantage of using these simple methods is
the low computational cost in terms of code complexity
which is evident in fast speed operation. )is is mainly
because thresholding does not take into account spatial
information. One drawback is that in the presence of noise,
results are not optimal. Similarity-based segmentation uses
the idea of clustering based on certain aggregation in feature
space. K-means clustering is one of the most well-known
unsupervised algorithms. K-means groups together pixels
based on their distance; hence, it is considered a distance-
based partition method. Connectedness-based image seg-
mentation is a region growing approach that links together
points with similar features creating homogeneous and
smoothly-connected segments. Discontinuity-based image
segmentation seeks to detect object edges or high changes in
intensity. Its motivation comes from the idea that there is
always a discontinuity between different regions or seg-
ments. )ese discontinuities can be detected using deriva-
tives. Prewiit, Sobel, and Laplacian operators are among the
most popular differential operators for spatial domain edge
detection which can be applied using convolution for image
segmentation.

)ere are also emerging machine learning and deep
learning approaches. Support Vector Machines or SVM is a
machine learning algorithm that models classification tasks
as optimization problems subject to inequality constraints.

)e original algorithm [1] was invented by Vapnik and
Chervonenkis in 1963. SVM uses a dual Lagrangian, which
depends only on labeled samples. )e traditional SVM
philosophy consists of finding the hyperplane that maxi-
mizes the margin between points of different classes. Note
that the hyperplane is at the centre of the margin that
separates the two classes. )e kernel trick was introduced in
[2] by Cortes in 1995. )is hyperplane is denoted by the
perpendicular vector w from the origin and it is charac-
terized by (12). Introduce a new variable Y subscript i-th
such that Yi is positive (+1) for gray samples and it is
negative (–l) for yellow samples. )is optimization problem
is solved using a Lagrangian multiplier (13). After applying
the partial derivatives, it is evident that the solution only
depends on the inner product of the supporting vectors xi.
Different kernel functions SVM may be employed to solve
nonlinearly separable samples. )us, SVM performs so well
on binary classification.

Deep Convolutional Neuronets or DCN is a deep
learning algorithm that models a classification task as series
of convolutional layers, pooling layers, dropout, and an
activation layer usually consisting of a softmax function.
CNN-based learning has recently achieved expert level
performance in various applications. In [37] the authors
present a deep fully convolutional neural network for se-
mantic pixel-wise segmentation. Evaluation of the decoder
variants shows that accuracy increases for larger decoders
for a given encoder network. Experimental results on road
scenes and indoor scenes show that the proposed SegNet
outperforms other segmentation benchmarks.

Some other applications of DCN-based segmentation are
listed in [38, 39] and [40]. In [38], the authors extended the
original DeepLab with more speed, accuracy, and simplicity
by compiling a comprehensive evaluation on benchmark
and challenging datasets, such as PASCAL VOC 2012,
Cityscapes, among others. In [39] the authors present a new
unsupervised image segmentation based on the centre of a
local region. )e authors validated their work on 2D and 3D
medical images. MATLAB was used to implement the ap-
proach on X-rays, abdominal and cardiovascular MRI im-
ages. In [40] the authors present an image segmentation
approach that recasts the problem into a binary pairwise
classification of pixels.

Deep learning high speed and accuracy come with a
price: subject matter expert labor to label. DCN-based ap-
proaches are supervised learning and labeled samples are
needed in abundance which results in a high demand for
SME input. Despite the shortcomings, multiple research
initiatives are pushing the boundaries of noninvasive
medicine, remote sensing, and natural language processing.
Deep learning-based models stand at the core of these
emerging applications.

2.3. Applications in Medical Image Processing. U-NET deep
FCN structure is highly applicable for medical image seg-
mentation. Multiple U-NET variants [41–43] and domain
specific models [44] have been applied to process medical
images. For instance, [41] presents a U-Net variant for image
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segmentation on brain tumor MRI scans while [42] presents
another U-Net variant based on nested and dense skip
connections for medical image segmentation. Moreover, [43]
introduces a robust self-adapting U-Net-based framework for
medical image segmentation. And [44] adds the emerging
attentionmechanism to a nestedU-Net architecture for image
segmentation on liver CT scans. One interesting medical
application of image segmentation using a deep learning
model is presented in [45]. A new hybrid of the classic V-Net
architecture is used to help detect kidney and renal tumors on
CT imaging with successful performance of medical seg-
mentation.)is wealth of deep learning research branches out
from the U-Net model and provides expert-level solutions to
medical image segmentation.

Recently, one shot learning models have been proposed to
detect COVID-19 using medical images. Signoroni et al. [46]
introduced a learning-based solution designed to assess the
severity of COVID-19 disease by means of automated X-ray
image processing, a domain specific implementation of [42].
Furthermore, [47] compiles an early survey of medical im-
aging research toward COVID-19 detection, diagnosis, and
follow-up. One of their findings is the proliferation of AI-
empowered applications which use X-rays and/or CTscans to
provide partial information about patients with COVID-19.
)is reinforces the sense that deep learning-based solutions
are widely used in medial image processing.

Tensor-based learning has also been incorporated into
medical image processing and hyperspectral imaging. An
et al. [48] presented a tensor-based low rank decomposition
model for hyperspectral images and evaluates its classifi-
cation accuracy on hyperspectral cubes. Moreover, the au-
thors in [49] proposed another tensor-based representation
to better preserve the spatial and spectral information and
capture the local and global structures of hyperspectral
images. Yet these models do not focus on imbalanced
datasets nor try to solve the denoising problem. Recently, in
the field of optical coherence tomography (OCT) [50] has
introduced a tensor-based learning model, which tackles the
denoising problem on high resolution OCTmedical images
with great results. However, it is unclear how well tensor-
based models would represent the structure of imbalance
datasets and will remain outside the scope of our work.

2.4. Applications in Natural Language Processing. Natural
language processing (NLP) is a field with multiple-machine-
learning- (ML-) and deep-learning- (DL-) based research
initiatives. With sentiment analysis as a fundamental task of
NLP, researchers have proposed several domain specific
applications of ML- and DL-based frameworks. )e main
challenge encountered in machine-learning-based senti-
ment classification is the unmanageable amount of data. To
address this challenge, [51] presents an ensemble learning
(EL) approach for feature selection, which successfully ag-
gregates several different feature selection results, so that we
can obtain a more robust and efficient feature subset.
Moreover, [52] also explores the predictive performance of
different feature engineering schemes, four supervised ML-
based algorithms and three EL-based methods obtaining

experimental results that yield higher predictive perfor-
mance compared to the individual feature sets. Furthermore,
in [53], the author presents yet another comprehensive
analysis this time of keyword extraction approaches with
empirical results that indicate an enhanced predictive per-
formance and scalability of keyword-based representation of
text documents in conjunction with EL-based models.

Sentiment analysis is a critical task of extracting sub-
jective information from online text documents, mainly
based on feature engineering to build efficient sentiment
classifiers. To improve the feature selection process, [54]
proposes and validates the effectiveness of a hybrid ensemble
pruning scheme based on clustering and randomized search
for text sentiment classification. Sentiment analysis can be
reduced to a text classification problem. However, the text
classification problem suffers from the curse of high di-
mensional feature space and feature sparsity problems. To
mitigate and lift this curse, [55] explores several classifica-
tion algorithms and EL-based methods on different datasets.

To recognize sentiment in information-rich but un-
structured text, [56] presents a DL-based approach to
sentiment analysis on product reviews with outperforming
results. Since Twitter can serve as an essential source for
several applications, including event detection, news rec-
ommendation, and crisis management, in [57], the author
presents a DL-based scheme for sentiment analysis on
Twitter messages with consistent and encouraging results.

ML- and DL-basedmodels are at the core of NLP research.
For instance, Onan [58] indicated that DL-based methods
outperform EL-based methods and supervised ML-based
methods for the task of sentiment analysis on educational data
mining. And the list does not stop here. Onan [59] indicated
that topic-enriched word embedding schemes utilized in
conjunction with conventional feature sets can yield promising
results for sarcasm identification. Onan [60] presented first
usage of supervised clustering to obtain diverse ensemble for
text classification and compare it to ML- and DL-based
models. Onan and Toçoğlu [61] employed a three-layer stacked
bidirectional long short-term memory architecture to identify
sarcastic text documents with promising classification accuracy
results. Onan [62] presented an extensive comparative analysis
of different feature engineering schemes and five different ML-
based learners in conjunction with EL-based methods.

3. Methodology

)e main objective of our proposed approach is to optimize
the performance of DCN on hyperspectral images. We
developed a context-based feature augmentation ap-
proach to provide resistance against noise to deep learning
classification of highly imbalanced hyperspectral images.
)e classification apparatus used in this study relies on a
deep convolutional neuronet (DCN) to perform multi-
class classification based on findings in [63]. )e input to
this network is a highly imbalanced hyperspectral image
or cube. Figure 1 shows a hyperspectral cube. Figure 2
shows a 1-by-1 column along the spectral dimension.

Our proposed approach will be a preprocessing module
in this classification apparatus as shown in Figure 3. Our
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four-step approach is introduced as follows. Full details are
presented in Sections 3.1 through 3.2.

(i) Local gradients are feature vectors of differences,
defined in Section 3.1. In this step, we calculate these
feature vectors for each pixel p in the hyperspectral

cube, as differences between the pivotal pixel p and
its surrounding pixels in a 3-by-3-by-3 local
neighborhood. )is set of differences will constitute
the local gradients of p.

(ii) Reference clusters are feature vectors of high and
low thresholds, defined in Section 3.2. In this step,
we calculate these feature vectors for each pixel p in
the hyperspectral cube, as statistical thresholds of
the surrounding 9-by-9 reference neighborhood.)is
set of thresholds will constitute the reference clusters
of p.

(iii) Prototype contexts are feature vectors of similarity,
defined in Section 3.3. In this step, we calculate these
feature vectors for each pixel p in the hyperspectral
cube, as the degree of membership of the local
gradients to the reference clusters. )is set of simi-
larity degrees will constitute the prototype contexts
of p.

(iv) Concatenated features are all feature vectors, defined
in Sections 3.1 and 3.2. In this step, we concatenate
local gradients, reference clusters, and prototype
contexts into one context-based feature vector for
each pixel p in the hyperspectral cube.

3.1. Calculate LocalGradients. )e first step of our approach
is to calculate the local gradients [64]. Figure 4 shows a
pivotal pixel p(1, 1, 1) in its 3-by-3-by-3 local neighborhood.
)e local gradient χ is the set of gradient differences {d1, d2,
d3, . . ., d13}, where di is the magnitude of the differences
between p and its direct neighbors for each discrete direction
i. For instance, in direction i� 1, d1 is equal to |
p1,1,1 − p2,1,1| + |p1,1,1 − p0,1,1|, whereas, in direction i� 10, d10
is equal to |p1,1,1 − p2,2,2| + |p1,1,1 − p0,0,0|. Such local gradients
are calculated for each pixel pi,j,k within the hyperspectral
cube.

It is important to note that this moving cubic-shaped local
neighborhood only uses partial data around the borders of the
hyperspectral image.)us the indexes, i, j, k, will only run from
1 to the dimension length −1 for each dimension x, y, z.

3.2. Calculate Reference Clusters. )e second step of our
approach is to calculate the reference clusters [64]. Figure 5
shows a pivotal pixel p(5, 5, 5) in its 9-by-9 reference
neighborhood. )e reference clusters ζ is the sets of high and
low thresholds {hi1, hi2, hi3, . . ., hi13}, {lo1, lo2, lo3, . . ., lo13},
where hii is the central value of the high-valued gradients
and loi is the central value of the low-valued gradients within
p’s reference neighbors for each discrete direction i. We
calculate these central values using the meanμ and variance
σ2 equations presented in (1) and (2) to set hi� μ+2σ and
lo� μ–2σ. Such reference clusters are calculated for each pixel
pi,j,k within the hyperspectral cube.

X

Y

Z

Figure 2: A hyperspectral column, where z is the spectral
dimension.

X

Y

Z

Figure 1: A hyperspectral image, where x and y are spatial di-
mensions and z is the spectral dimension.
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1

N × M
􏽘

N−1

n�0
􏽘

M−1

m�0
xi+n,i+m,k,d, (1)

σ2 �
1

N × M
􏽘

N−1

n�0
􏽘

M−1

m�0
xi+n,i+m,k,d − μi,j,k,d􏼐 􏼑

2
. (2)

It is important to note that this moving square-shaped
reference neighborhood only uses partial data around the
borders of the hyperspectral image. )us the indexes, i, j will
only run from 5 to the dimension length −5 for each spatial
dimensions. It will use however all the spectral bands on the
z dimension.

3.3. Construct Prototype Contexts. )e third step of our
approach is to construct the prototype contexts. )e proto-
type contexts κ is the sets of similarity features {c1, c2, c3, . . .,
c13} where ci is the prototype context with the highest degree
of membership for each discrete direction i. We calculate
this degree of membershipM with the equation presented in
(3)–(6) whereD2 is the square of theMahalanobis distance, χ
is the vector of local gradients, κ is the vector of prototype
contexts,W is the inverse pooled covariance matrix, and the

K factor is equal to the square root of the product between
the highest value in χ and the highest value in κ. Such
prototype contexts are calculated for each pixel pi,j,k within
the hyperspectral cube.

M(χ) � max 0, 1 −
D
��
K

√􏼠 􏼡, (3)

D
2
(χ, κ) � (χ − κ)

T
W

− 1
(χ − κ), (4)

W(χ, κ) �
1
2
cov(χ) +

1
2
cov(κ), (5)

K(χ, κ) � max(χ) × max(κ). (6)

3.4. Concatenated Augmented Features. )e fourth step of
our approach is to concatenate all features vectors. )ese
feature vectors consist of the local gradients, reference clus-
ters, and prototypes contexts. Such context-based feature
vectors are concatenated for each pixel pi,j,k within the
hyperspectral cube.

Figure 6 shows how our context-based approach inte-
grates into a deep learning classification model. Note that to
evaluate the robustness of our approach, we added a syn-
thetic noise to the original datasets. )is noise was generated
using a Gaussian equation. And classification accuracy was
used as the main measurement to compare the performance
of the model and in particular the resistance to noise in
imbalanced hyperspectral images. Details are presented in
the following section.

X

Y

ZX

YZ XY

Z

p (1, 1, 1)

Figure 4: Pivotal pixel p inside its local neighborhood.

Imbalanced
hyperspectral image

Context-based
features

Deep convolutional
neural network

Local gradients

Reference clusters

Prototype contexts

Concatenated features

Figure 3: Overview of our deep learning hyperspectral classifi-
cation apparatus.

X

Y

ZX

YZ

XY

Z

p (5, 5, 5)

Figure 5: Pivotal pixel p inside its reference neighborhood.
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4. Experiments

In this section, we describe the datasets, dataset partition
policy, and experimental settings. Multiple settings are
designed to evaluate the performance of our approach on
noisy and clean data, as well as on imbalanced and balanced
data.

4.1. Datasets. Four datasets were used in our experiments.
)e first two are the Pavia Centre and Pavia University
datasets. )ese two datasets were acquired by the ROSIS
sensor during a flight campaign over Pavia, Italy. )e
original Pavia Centre dataset is a hyperspectral cube with a
spatial resolution of 1096× 715 and 102 spectral bands, and
the original Pavia University dataset is a hyperspectral cube
with a spatial resolution of 610× 340 spatial pixels and 103
spectral bands. )e corresponding ground truths differen-
tiate nine classes. For more details, please visit the following
link. )is link was last accessed on February 1, 2021 (http://
www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_
Sensing_Scenes#Pavia_Centre_and_University).

It is important to note that the Pavia Centre data are
considered a balanced hyperspectral cube, whereas the Pavia
University data are considered an imbalanced hyperspectral

cube. It is clear from Figure 7 that the Pavia Centre samples
are evenly distributed between classes. But, in Figure 8, the
majority of Pavia University samples belong to one single
class, namely the class Meadows. )us, this predominant
class dwarfs minority classes, such as Shadows, Bitumen, and
Painted Metal Sheets. )is disparity is what makes Pavia
University data imbalanced.

To evaluate the robustness of our approach, we added a
synthetic noise to the original “clean” datasets and produced
two additional synthetic datasets. )us, together with the
two clean datasets, two noisy datasets were used in our
experiments, corresponding to the noisy Pavia Centre and
the noisy Pavia University datasets. Identically to their clean
counterparts, the noisy Pavia Centre dataset is a hyper-
spectral cube with a spatial resolution of 1096× 715 pixels,
102 spectral bands and 9 distinct classes, and the noisy Pavia
University dataset is a hyperspectral cube with a spatial
resolution of 610× 340 pixels, 103 spectral bands and 9
distinct classes.

To produce these noisy datasets, an intermittent irreg-
ular noise was incorporated. Equations (7)–(9) were used to
generate a noise signal corresponding to a signal-to-noise
value of SNRdB � 120. In (7), G and F are random variables
and N follows a Gaussian distribution with a probability
density function presented in (8). Similarly to [65], this
weighted random noise will follow a Gaussian normal
distribution N(μ, σ), where the mean µ is zero and the
variance σ is determined from the signal-to-noise ratio
(SNRdB) formula presented in (9).

G(a, b)←F(m, n) + N(μ, σ), (7)

N x|μ, σ2􏼐 􏼑 �
1

����
2πσ2

􏽰 exp −
(x − μ)

2

2σ2
􏼢 􏼣, (8)

SNRdB � 20�log10
μsignal

σnoise

. (9)

4.2. Dataset Partition Policy. Datasets were divided into
training and testing sets; 80% of the data was used during the
training (a.k.a. model-fitting) phase while the remaining
20% of the data was used for testing (a.k.a. model-predic-
tion) phase. One-fourth of the training set was used as
validation set during the fitting phase. Figure 9 shows the
full-partition schema.

To rank our context-based DCN approach, two addi-
tional models are implemented: (i) a baseline deep learning
approach, namely, DCN, and (ii) a benchmark approach,
that is PCA+DCN. And classification metrics are used to
evaluate and compare the performance and effectiveness of
our approach.

4.3. Baseline Experiments. As a baseline, we observe the
performance of a deep learning model without any pre-
processing on the different hyperspectral datasets. Four
types of experiments are included in this section. First, we
work on clean data, running individual experiments for

Imbalanced
hyperspectral image

Context-based
features

Deep convolutional
neural network

Figure 6: Overview of our approach as a preprocessing module.
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balanced and imbalanced datasets. )en, we focus on noisy
data, and again we run individual experiments for balanced
and imbalanced datasets.

A Deep Convolutional Neuronet (DCN) was used as a
baseline to perform the classification. We used a DCNwhich

consists of three types of layers, namely, input layer, hidden
convolutional layer(s), and output layer. In Figure 10, the
input dataset is shown as a cube. Similarly to [40], the hidden
convolutional layers are shown as flat squares, the max-
pooling layers in whiter color, and the dropout layer in pale.
Straight lines are used to depict fully-connected layers or
dense layers. Finally, for multiclass classification, the acti-
vation function is based on a softmax function.

During the model-fitting phase, we run for 20 epochs. At
this point, the network achieves stability without running
into overfitting. DCN used the two original datasets and the
two noisy datasets. )e results of our fitting phase are
presented in Figures 11 to 14. )e average classification
accuracy on clean test data was 86.1± 3.9 percent, whereas in
noisy data was 66.9± 2.9 percent. )ese results suggest an
adversary effect of noise on our basic model.

4.4. Benchmark Experiments. As a benchmark comparison,
we observe the performance of a deep learning model with
noise reduction model as a preprocessing on the different
hyperspectral datasets. Similarly, to the previous section, this
section presents four types of experiments. First, we work on
clean data, running individual experiments for balanced and
imbalanced datasets.)en, we focus on noisy data, and again
we run individual experiments for balanced and imbalanced
datasets.

Principal Component Analysis (PCA) together with
DCN was used as a benchmark to perform the classification.
Ten principal components are sufficient to represent 99%
variability of the data. Figure 15 shows the Scree Curves for
both the Pavia Centre dataset in Figure 15(a) and the Pavia
University dataset in Figure 15(b).

As suggested by the Scree Curves, PCA +DCN was
implemented using only the first ten principal compo-
nents. Twenty epochs were used during the model-fitting
phase, a.k.a. training phase. In our experimental runs, the
dataset partition policy was maintained the same and
both the original datasets and the noisy datasets were
randomly selected into training, validation, and testing
sets.

)e results of our fitting phase are presented in Fig-
ures 16 to 19. )e average classification accuracy on clean
test data was 84.1± 6.1 percent, whereas on noisy data was
37.3± 4.7 percent. Compared to the results for vanilla DCN,
these results strongly suggest an adversary effect of noise on
the principal component-based model. Another important
point to analyze is that during training of PCA+DCN on

Pavia Centre

Asphalt
Bare soil
Bitumen
Meadows
Self-blocking bricks

Shadows
Tiles
Trees
Water

Figure 7: Class distribution for Pavia Centre. )is dataset is
considered balanced because for each class, there is relatively the
same number of samples.

Pavia University

Asphalt
Bare soil
Bitumen
Gravel
Meadows

Painted metal sheets
Self-blocking bricks
Shadows
Trees

Figure 8: Class distribution for Pavia University. )is dataset is
considered imbalanced because for each class, there is not the same
number of samples.

Entire dataset (100%)

Model fitting (80%)

Training (60%)

Test

TestValid

Figure 9: Partition policy: datasets are divided into 3 parts (20%,
20%, and 60%). )e training task uses 60% of the samples. )e
validation task uses 20%. )e testing task uses the remaining 20%.
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noisy data, the model suffered from overfitting after the 4
epochs as shown in Figure 18.

4.5. Enhanced Experiments. We integrate our context-based
feature augmentation module as a preprocessing step to the
deep learning model. We observe the performance of a
context-based deep learning model on the original highly
imbalanced hyperspectral dataset. )en, we observe the

performance of our enhanced model in the presence of
noise. We also run our context-based DCN for 20 epochs
using the two original datasets and the two noisy datasets.
All context-based features were used to achieve better noise
resistance.

)e results of the model-fitting phase are presented in
Figures 20 to 23.)e average classification accuracy on clean
test data was 87.5± 3.4 percent, whereas on noisy data was
85.0± 4.2 percent. Compared to previous results, these

Figure 10: Overview of our deep convolutional neural network.
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Figure 11: DCNN accuracy and loss during the model-fitting phase using the original Pavia Centre dataset.
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Figure 12: DCNN accuracy and loss during the model-fitting phase using the original Pavia University dataset.
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Figure 13: DCNN accuracy and loss during the model-fitting phase using the noisy Pavia Centre dataset.
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Figure 14: DCNN accuracy and loss during the model-fitting phase using the noisy Pavia University dataset.
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Figure 16: PCA+DCNN accuracy and loss during the model-fitting phase using the original Pavia Centre dataset.
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Figure 17: PCA+DCNN accuracy and loss during the model-fitting phase using the original Pavia University dataset.
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Figure 18: PCA+DCNN accuracy and loss during the model-fitting phase using the noisy Pavia Centre dataset.
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percentages suggest that our proposed approach exhibits a
high-level of accuracy on clean data and robustness against
noise on both the Pavia University and the Pavia Centre
datasets.

5. Results and Discussion

5.1. Performance Metrics. Receiver operating characteristic
(ROC) curves are used to provide a graphical summary of
the performance of our classification model. In this Car-
tesian plane graph, the x-axis denotes the False Positive Rate
and the y-axis denotes the True Positive Rate. )us, ROC
curves depict False Positive Rate vs. True Positive Rate,
where we have the following:

(i) True Positive Rate is equal to True Positives (TP)
divided by the addition of True Positives (TP) and
False Negatives (FN), that is, TP/(TP + FN)

(ii) False Positive Rate is equal to False Positives (FP)
divided by the addition of False Positives (FP) and
True Negatives (TN), that is, FP/(FP +TN)

Precision-Recall (PR) curves provide another graphical
tool to evaluate performance of a classification model. In this
Cartesian plane graph, the x-axis denotes the Recall and the
y-axis denotes the Precision. )us, PR curves depict Recall
vs. Precision, where we have the following:

(i) Recall is equal to True Positives (TP) divided by the
addition of True Positives (TP) and False Negatives
(FN), that is, TP/(TP+ FN)

(ii) Precision is equal to True Positives (TP) divided by
the addition of True Positives (TP) and False Posi-
tives (FP), that is, TP/(TP+ FP)

Finally, to compare the performance of each model
dataset side by side, we compile a table using the ROC Area
under Curve (AUC) Score for each model dataset. To this
end, we used the following metrics:

(i) Accuracy is equal to the quotation between the
addition of True Positives and True Negatives

divided by the Total Population, that is, (TP+TN)/
(TP+TN+FP+FN)

(ii) F1-score is equal to two times Precision (P) times
Recall (R) divided by the addition of Precision (P)
and Recall (R), that is, 2PR/(P+R)

5.2. Prediction Results. )e following detail the classification
results during the model-prediction phase. )e following
present the weighted averages for all performance metrics.
First, Tables 1 and 2 present the classification results on the
original, “clean datasets”, Pavia Centre and Pavia University,
correspondingly. )en, Tables 3 and 4 present the classifi-
cation results on the synthetic, “noisy datasets”, Pavia Centre
with noise and Pavia University with noise, correspondingly.

Our experimental results suggest that all models suffer in
the presence of noise, but the negative impact of noise can be
mitigated with our proposed context-based approach. Ta-
bles 3 and 4 present the precision, recall, F1-score, and
overall accuracy scores for DCN, PCA+DCN and our
context-based DCN. Table 3 focuses on the noisy Pavia
Centre dataset, while Table 4 focuses on the noisy Pavia
University dataset. In both tables, we can observe that our
proposed model achieves better results.

5.3. Tabular Summary and Analysis. Comprehensive sum-
mary tables are presented as follows. A total of three ap-
proaches were analyzed: a basic DCNwith no preprocessing,
a PCA+DCN, and a context-based DCN. )ey are listed on
different rows. Four datasets were used: two without noise
referenced as “clean data” and the same ones with random
noise referenced as “noisy data”. Imbalanced datasets are
listed on shaded columns of the tables.)e values in each cell
represent overall classification accuracy. Table 5 summarizes
the overall accuracy of each model during the fitting/
learning phase, whereas Table 6 summarizes the overall
accuracy of each model during the testing/prediction phase.

It is important to note that during training on labeled
samples as well as during testing on new samples, our
proposed context-based DCN outperformed both DCN and
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Figure 19: PCA+DCNN accuracy and loss during the model-fitting phase using the noisy Pavia University dataset.
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Figure 20: Context-based DCNN accuracy and loss during the model-fitting phase using the original Pavia Centre dataset.

0.86

0.85

0.84

0.83

0.82

0.81

0.80

0.79

Ac
cu

ra
cy

Model accuracy

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

Lo
ss

Model loss

Train
Validation

Train
Validation

Figure 21: Context-based DCNN accuracy and loss during the model-fitting phase using the original Pavia University dataset.
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Figure 22: Context-based DCNN accuracy and loss during the model-fitting phase using the noisy Pavia Centre dataset.
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Figure 23: Context-based DCNN accuracy and loss during the model-fitting phase using the noisy Pavia University dataset.

Table 1: Model comparison based on prediction results using the original Pavia Centre dataset.

Models Precision (%) Recall (%) F1-score (%) Accuracy (%)
DCN 86.70 89.15 85.11 88.92
PCA+DCN 79.71 88.72 83.82 88.52
Context-based DCN 88.35 89.95 88.05 89.88

Table 2: Model comparison based on prediction results using the original Pavia University dataset.

Models Precision (%) Recall (%) F1-score (%) Accuracy (%)
DCN 83.99 83.16 83.08 84.28
PCA+DCN 80.68 79.89 78.37 81.29
Context-based DCN 86.37 85.00 85.50 85.78

Table 3: Model comparison based on prediction results using the noisy Pavia Centre dataset.

Models Precision (%) Recall (%) F1-score (%) Accuracy (%)
DCN 85.97 65.14 69.00 68.98
PCA+DCN 84.70 34.10 37.26 40.62
Context-based DCN 86.37 82.14 83.40 88.01

Table 4: Model comparison based on prediction results using the noisy Pavia University dataset.

Models Precision (%) Recall (%) F1-score (%) Accuracy (%)
DCN 89.72 67.81 73.22 64.79
PCA+DCN 89.45 40.86 46.02 33.93
Context-based DCN 89.48 88.59 88.50 81.99

Table 5: Highest validation accuracy during the training phase (model-fitting).

Models
Clean datasets Noisy datasets

Pavia Centre (%) Pavia University (%) Pavia Centre w/noise (%) Pavia University w/noise (%)
DCN 88.93 84.28 96.44 96.00
PCA+DCN 88.69 81.29 88.66 86.24
Context-based DCN 89.92 85.78 98.22 97.83
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PCA+DCN, especially in the presence of random noise.
PCA+DCN did not perform well for noisy cases because it
was not able to remove our synthetic noise signal, which was
not just random but also intermittent and irregular.

6. Conclusions

Hyperspectral imaging is an area of active research. Deep
learning-based approaches to classification are the current
state-of-the-art. However, our experimental results showed
that in the presence of noisy hyperspectral datasets, these
expert-level models underperform. To address this short-
coming, this paper presented a context-based feature
augmentation approach to increase noise resistance in
highly-imbalanced hyperspectral classification.

On noisy datasets, our robust approach outperformed a
basic deep learning model and outclassed a combination of
PCA and DCN approach. In addition, on highly-imbalanced
noisy data, our context-based DCN approach suffered sig-
nificant loss in terms of classification accuracy (less than 10%),
whereas DCN and PCA+DCN suffered from an alarming
25% and 50% cuts in classification accuracy respectively.

Future lines of research should focus on applying our
context-based approach to other noisy datasets in areas such
as MRI and other highly imbalanced 3D medical images.
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