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Abstract: As visual simultaneous localization and mapping (vSLAM) is easy disturbed by the changes
of camera viewpoint and scene appearance when building a globally consistent map, the robustness
and real-time performance of key frame image selections cannot meet the requirements. To solve
this problem, a real-time closed-loop detection method based on a dynamic Siamese networks is
proposed in this paper. First, a dynamic Siamese network-based fast conversion learning model is
constructed to handle the impact of external changes on key frame judgments, and an elementwise
convergence strategy is adopted to ensure the accurate positioning of key frames in the closed-loop
judgment process. Second, a joint training strategy is designed to ensure the model parameters can
be learned offline in parallel from tagged video sequences, which can effectively improve the speed
of closed-loop detection. Finally, the proposed method is applied experimentally to three typical
closed-loop detection scenario datasets and the experimental results demonstrate the effectiveness
and robustness of the proposed method under the interference of complex scenes.

Keywords: simultaneous localization and mapping; closed-loop detection; Siamese network; deep
learning; elementwise integration strategy

1. Introduction

SLAM (simultaneous localization and mapping) is one of the core problems in mobile
robot research [1,2], which can incrementally build a continuous map of the surrounding
environment in an unknown environment. Compared with laser sensors, vision sensors
have significant advantages such as perception capability, flexibility, and cost effectiveness.
At the same time, with the rapid development of computer vision technology and the
successful integration with vSLAM, vSLAM based on deep learning has become a research
hotspot in the field [3–5].

SLAM is not a one-way process, and the process of moving and building a map in
a region will inevitably go through locations that have been visited before. Closed-loop
detection [6,7] judges whether the mobile robot has returned to the visited position and
obtains an accurate position of the robot through the constructed map, whose core goal is
to select accurate key frame images. If the correct closed-loop is detected effectively, the
cumulative error of the system can be significantly reduced. Otherwise, the system back-

Sensors 2021, 21, 7612. https://doi.org/10.3390/s21227612 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8426-1010
https://orcid.org/0000-0002-9756-2805
https://orcid.org/0000-0002-9254-3525
https://doi.org/10.3390/s21227612
https://doi.org/10.3390/s21227612
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21227612
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21227612?type=check_update&version=1


Sensors 2021, 21, 7612 2 of 13

end optimization algorithm will converge to a completely incorrect value [8]. Therefore,
accurate and stable closed-loop detection is very important for a vSLAM system.

Since 2015, researchers have tried to apply deep learning to SLAM closed-loop de-
tection [9,10]. Luo et al. [11,12] adopted a stacked AutoEncoder for deep image feature
extraction and employed a similarity matrix to detect the closed-loop. Compared with the
traditional fab-map (fast appearance-based mapping) method on the public dataset, it has
gained better results. Shamwell et al. [13,14] describe an unsupervised deep neural network
method that fuses RGB-D images with inertial measurements for an absolute trajectory
estimation, solving the localization problem with an online error correction. Lan et al. [15]
adopted trained convolutional neural networks (CNNs) to extract the features of the image
and combined them with an adaptive similarity matrix to improve the robustness of the
loop closure detection to a certain extent. Cascianelli et al. [16,17] employed an edge
boxes segmentation algorithm to divide the image and adopted a trained deep network
to extract the features in image block to realize a semi-semantic closed-loop detection.
Wang et al. [18] proposed an unsupervised learning method for visual tracking where the
tracker was able to forward localize the target object in consecutive frames and retrace back
to its initial position in the first frame. Ma et al. [19,20] adopted a place convolutional neural
network (PlaceCNN) to extract image features for loop closure detection and achieved
good detection results in a complex illumination.

The above studies are successful applications in vSLAM loop closure detection from
different perspectives such as deep features, semantic information, target detection, and
local scenes, which have improved the accuracy and robustness of loop closure detection
to varying degrees. However, the loop closure detection results are still unsatisfactory in
the face of a complex scene (strong light and jitters) [21]. Most existing high-dimensional
feature extraction methods struggle to meet the real-time needs of loop closure detection.
To solve the above problems, a real-time closed-loop detection method of vSLAM based
on a dynamic Siamese network is proposed in this paper. The main flow of this method is
shown in Figure 1. The effectiveness and real-time performance of the method is validated
by a typical dataset of closed-loop detection scenarios.
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Figure 1. Execution flow of the real-time closed-loop detection method.

As illustrated in Figure 1, a mobile robot achieves the image information acquisition of
the experienced environment during simultaneous positioning and map construction. We
construct a fast conversion learning model based on a dynamic Siamese network, which
ensures the online learning result of the changing target and background suppression
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in the environment image captured by the visual sensor. The crop layer implements
the pre-processing work on the image information. A combined neural network is used
for the feature extraction of key frame candidates. Circular convolution (CirConv) and
regularized linear regression (RLR) network layers work on the target appearance change
and background suppression, respectively. The closed-loop judgment task is achieved
by target matching and a similarity calculation. Through the closed-loop detection of
continuous video sequence training in the motion process of the mobile robot, we ensure the
offline learning of all parameters and make full use of the rich spatiotemporal information
in the motion process.

The main contributions of this paper are as follows:

• We design a real-time closed-loop detection method of vSLAM based on a dynamic
Siamese network. Through a fast conversion learning model, the appearance change
and background suppression of continuous key frames can be learned online using the
first few frames of the images, which can effectively improve the closed-loop detection
speed whilst retaining the online adaptive ability as much as possible.

• An elementwise fusion strategy is proposed to adaptively integrate the multi-layer
depth features that truly reflects the complementary role of response mapping in the
different layers and helps to obtain a better key frame positioning ability.

• The closed-loop detection training based on the labeled video sequence optimizes the
traditional discriminant analysis method based on static image similarity so that the
closed-loop detection model can fully consider the rich space–time information in the
process of robot motion and then obtain a more accurate closed-loop detection effect.

The remainder of this paper is organized as follows. The detailed discussion of the
dynamic Siamese network fast conversion learning model is in Section 2. Section 3 provides
the core part of the closed-loop detection training mechanism considering the spatiotempo-
ral correlation. Section 4 presents the experimental comparison results and performance
analysis of the proposed method. Finally, the conclusions and future recommendations are
contained in Section 5.

2. Fast Conversion Learning Model Based on a Dynamic Siamese Network

The high level architecture of the vSLAM real-time closed-loop detection method
is given in Figure 1. It can be divided into three core components: (i) a fast conversion
learning model based on dynamic Siamese networks; (ii) the target appearance change
and background suppression conversion mechanism; (iii) the elementwise fusion strategy.
These three different functional neural network layers are centralized and synthesized into
a unified architecture, abstractly expressed as described in Section 2.4.

2.1. Fast Conversion Learning Model Idea

In this paper, vSLAM real-time closed-loop detection is defined as the joint problem
of fast template matching and online transformation learning based on continuous frame
information. Therefore, based on the classical Siamese network [22], we added two online
updatable components M and N to the two branches of a static Siamese network to update
the depth characteristics of the target template and exploration area in the closed-loop
detection process, respectively. Component M realizes the transformation of the target
appearance change during the robot movement and component N highlights the depth
features of the key point area of the target template to suppress the interference of irrelevant
background features. The optimized static Siamese network is more suitable for the needs
of dynamic closed-loop detection, which can be defined as Equation (1):

Sl
t = corr(Ml

t−1 ∗ f l(O1), Nl
t−1 ∗ f l(Zt)) (1)

where Sl
t represents the response mapping of the target at the possible position of frame

t, * represents a cyclic convolution operation that can be solved quickly in the frequency
domain without changing the input size, O1 represents the key frame target template,
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and Ml
t−1 represents the target appearance change conversion obtained from the online

learning of frame t − 1 by considering the time smooth change of the target. Ml
t−1 can

promote the similarity between f l(O1) and f l(Ot−1), Zt represents the exploration area,
and Nl

t−1 represents the background suppression conversion.
In this paper, a regularized linear regression (RLR) is used to calculate the transforma-

tion of target appearance change Ml
t−1 and background suppression conversion Nl

t−1 The
tensors X and Y are defined to solve the optimal linear transformation matrix T:

T = argmin
Θ
‖Θ ∗ X−Y‖2 + λ‖Θ‖2. (2)

As the essence of the discrete Fourier transform (DFT) is the transformation of a
periodic sequence to a frequency domain [23], we used this property to realize the fast
solution of linear transformation matrix T in the frequency domain:

T = Γ−1
(

Γ(X)� Γ(Y)
Γ(X)� Γ(X) + λ

)
(3)

where Γ represents DFT, Γ−1 represents the inverse operation of DFT, and Γ represents the
complex conjugate operation of DFT.

2.2. Online Learning of the Target Appearance Change and Background Suppression

This subsection introduces the specific implementation process of the target appear-
ance change and background suppression conversion mechanism in two main parts.

2.2.1. Solution of the Target Appearance Change Transformation

The process of SLAM was carried out in parallel with the spatial physical movement
of the mobile robot. High quality closed-loop detection requires the timely update of key
frame target templates.

When in t − 1 frame, the target template Ot−1 of the image at this time can be easily
obtained. Instead of simply using Ot−1 to replace the original target template O1, grasp
the appearance change from O1 to Ot−1 and apply this change to make f l(O1), similar to
f l(Ot−1) according to Equation (1), to reduce the probability of false positive detection
caused by complex scene changes such as illuminations or jitters (Figure 2).
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Based on Equation (2), the target appearance change transformation a is obtained. The
formula is shown in Equation (4):

Ml
t−1 = argmin

M
‖M ∗ f l(O1)− f t(Ot−1)‖

2
+ λm‖M‖2 (4)
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where λm controls the degree of regularization obtained by training the labeled video
sequences, which will be described in Section 3. Through Equation (3), Equation (5)
is obtained:

Ml
t−1 = Γ−1

(
Γ( f l(O1))� Γ( f l(Ot−1))

Γ( f l(O1))� Γ( f l(Ot−1)) + λm

)
. (5)

2.2.2. Solution of the Background Suppression Transformation

The goal of closed-loop detection is to accurately obtain the key frame image with the
highest similarity to the position visited by the mobile robot so that the whole map can be
more accurate. Therefore, reducing the interference of the background to the candidate
points in the key frame image selection helps to further improve the closed-loop detection
accuracy. Suppose at time t, according to the cumulative learning of the previous t − 1
frame, obtain the position of the key candidate points and cut the whole frame image It−1
to the area Gt−1 centered on the key candidate points. Ensure that the search area Zt−1
has the same size. Multiply Gt−1 by the Gaussian weight mapping [24] to obtain the key
candidate points highlighted to suppress the depth characteristics of the background area.
Finally, in order to avoid the loss of the original keyframe background depth features,
define the background suppression conversion Nl

t−1 to promote the depth features Gt−1

to be as similar to Gt−1 as possible. The background suppression conversion process is
shown in Figure 3.
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According to Equation (2), the specific formula for solving Nl
t−1 is as follows:

Nl
t−1 = argmin

N
‖N ∗ f l(Gt−1)− f l(Gt−1)‖

2
+ λn‖N‖2. (6)

Through Equation (3), it can be solved:

Nl
t−1 = Γ−1

 Γ
(

f l(Gt−1)
)
� Γ

(
f l(Gt−1)

)
Γ
(

f l(Gt−1)
)
� Γ

(
f l(Gt−1)

)
+ λn

. (7)

By learning the appearance environment change and background suppression of
key frames in the process of robot mapping, the dynamic Siamese network is guaranteed
to have an online adaptive ability to obtain higher closed-loop detection accuracy and
more impressive real-time performance. In addition, the model parameters λm and λn are
determined by marking the video sequence learning, which affects the depth feature of key
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frame candidate points in closed-loop detection rather than the human-designed feature in
the traditional way. For example, closed-loop detection methods such as the bag of visual
word (BoVW) based method [25] and generalized search tree (GiST) [26], whose image
features are artificially designed and are very sensitive to complex scene changes in the
environment, affect the success rate of closed-loop detection to a certain extent.

2.3. Adaptive Fusion of the Multi-Layer Depth Features

In the process of closed-loop detection, when the key frame candidate points are
close to the center of the search area, the deeper features help to eliminate the background
interference and the shallower features help to locate the candidate points accurately. When
key frame candidate points are located at the periphery of the search area, only deeper
features can effectively determine the location of the candidate points. Therefore, in order
to obtain a more effective key frame candidate location ability, the proposed dynamic
Siamese network adopts an elementwise fusion strategy to realize the complementarity of
response mapping at different layers [27]. The response mapping of multi-level features of
the deep feature network

{
Sl

t

∣∣∣l ∈ L
}

is generated by Equation (1) where L represents the
number of layers of the entire deep feature network. Set the elementwise weight mapping
for the output Sl

t ∈ PiS×jS of each layer and let ∑
l∈L

Φl = 1iS×jS . The offline learning of Φl is

described in Section 3. Therefore, the final response mapping can be expressed as follows:

St = ∑
l∈L

Φl � Sl
t (8)

where � represents the elementwise multiplication, which multiplies the output Sl
t of each

layer one by one with the elements in the corresponding weight map Φl . The adoption of
this strategy can bring two advantages:

• The spatial variable integration of deep features realizes the effective integration of
the element level.

• Weight mapping Φl can be learned offline, replacing the traditional subjective manual
setting.

2.4. Architecture of the Dynamic Siamese Network

Combined with Equations (1), (5), and (7), the dynamic Siamese network was obtained
by using the single-layer depth feature. The specific network architecture is shown in
Figure 4. The dynamic Siamese network based on the single-layer depth feature was
further extended to the multi-layer version of the dynamic Siamese network through the
elementwise fusion strategy of Equation (8).

In Figure 4, f l(·) represents the L-th layer depth characteristics of the appropriate CNN
model such as AlexNet and VGGNet. On this basis, two new network layers were intro-
duced: CirConv and RLR. The fast conversion and learning ability of Equations (5) and (7),
Ml

t−1 and Nl
t−1, were integrated into the unified network system where Ml

t−1 implemented
the depth feature update of O1 and Nl

t−1 aimed to highlight the depth features of the target
neighborhood and reduce the interference of irrelevant background features. A detailed
description is given in Section 2.1. To make the closed-loop detection model constructed
based on the dynamic Siamese network in this paper to be trained directly on the marked
video sequence not just on the image pair, a crop layer was added to the network system
to obtain Zt, Ot−1, Gt−1, and Gt−1 according to the response map Sl

t−1, which made the
training loss effectively back-propagate from the last frame to the first frame. The specific
discussion is in Section 3. In addition, an elewise layer was used to perform the element-
wise multiplication between Gt−1 and the Gaussian weight mapping to generate Gt−1. It
reflected the complementary role of the different levels of response and helped to obtain
better targeting capabilities.
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Through this architecture, not only were the parameters of depth feature network f l

trained but also the elementwise weight mapping and the regularization parameters λm
and λn of RLR were learned. In short, the goal of the dynamic Siamese network architecture
proposed in this paper was to realize online updatable closed-loop detection model training,
not just fitting a detection function.

3. Closed-Loop Detection Training Considering the Spatiotemporal Correlation

In order to obtain rich spatiotemporal information of the mobile robot, the ability
of the Siamese network to train learning on labeled video sequences was used [28]. All
parameters involved in the real-time closed-loop detection model based on the dynamic
Siamese network were learned offline. Therefore, during the operation of the robot, video
sequence {Si|i = 1, . . . , I} was obtained containing I-frame images to determine the target
template at the closed-loop initial position through the model architecture as defined in
Figure 4 and then obtain the response diagram {Si|i = 1, . . . , I} of each frame in the video
sequence. At the same time, for the I-frame sequence image, there were ground live images
{Ji|i = 1, . . . , I} with the same size and one-to-one corresponding with Si where label 1
was used to represent the key frame candidate and label −1 was used to represent the
background of the current frame. In order to solve the loss of each frame, the logistic loss
function was defined as follows:

Lossi =
1
|Si|

log(1 + exp(−Si � Ji)) (9)

Lossall =
I

∑
i=1

Li (10)

where |St| represents the absolute value of St and Lossall is the total loss of the whole video
sequence. Through the back-propagation mechanism, the loss propagated to all parameters
of the dynamic Siamese network including the elementwise weight mapping, two RLR
layers, and relevant regularization parameters λm and λn.

Compared with other closed-loop detection methods based on target detection, the
proposed dynamic Siamese network integrated two new network layers, namely, RLR
and CirConv. In order to make the closed-loop detection network model have a back-
propagation mechanism and trainability of the random gradient descent, it was necessary
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to obtain the gradient of Li according to these two new network layers. As shown in
Figure 4, given ∇ÕLossi, ∇FLossi, ∇F1 Lossi, and ∇F1 Lossi were calculated through the
CirConv and RLR network layers on the right to ensure that the loss was effectively
propagated to f l . Therefore, Equation (3) was defined to give priority to ensuring that
∇ÕLossi was propagated to ∇MLossi:

∇MLossi = Γ−1(F̂1 � ∇̂ÕLossi) (11)

whereˆrepresents the Fourier transformation. ∇FLossi and∇λv Lossi were calculated based
on Equation (4).

∇FLossi = Γ−1(V � F̂1 � ∇̂V Lossi) (12)

∇λm Lossi = Γ−1(−V2 � F̂1 � F̂)
T
∇MLossi (13)

where V = (F̂1 � F̂1 + λm)
−1

, ∇F1 Lossi was calculated through ∇MLossi and ∇ÕLossi.

∇F1 Lossi = Γ−1(M� ∇̂ÕLossi) +<(−2V2 � (F̂1)
2
� F̂)

T
<H∇MLossi (14)

where < is the discrete Fourier transform matrix. The above solution process could also
be used to calculate ∇FZ Lossi, ∇FG Lossi, ∇FG

Lossi, and ∇λn Lossi. For the elementwise
multi-layer fusion in Equation (8), Φl can be calculated by the following formula:

∇Φl Lossi = Sl
i �∇Si Lossi. (15)

4. Experimental Results and Analysis

In order to verify the performance of the vSLAM real-time closed-loop detection
method based on the dynamic Siamese network, three datasets of Gardens Point, Nordland,
and Mapillary were used for the experimental analysis. The accuracy of this method
was compared with the closed-loop detection method based on BoVW, PlaceCNN, GiST,
SS_PlaceCNN(Sliding window-based PlaceCNN) and AutoEncoder. The accuracy indi-
cators included an accuracy recall rate and an average quasi removal rate. The computer
software and the hardware environment of the experiment are shown in Table 1.

Table 1. Introduction to the experimental environment.

Number Type Detailed Configuration

1
Hardware resource configuration

CPU Intel(R)Xeon(R)Gold5118 CPU @ 2.30 GHz
2 GPU NVIDIA Quadro P5000
3 Memory Physical memory 128 G, dedicated GPU memory 16 g
4

Main software running environment
and dependent environment

sys. platform win32
5 Python 3.7.6 (MSC v.1916 64 bit (AMD64))
6 NumPy 1.18.1
7 detectron2 0.1.1
8 CUDA 10.1
9 PyTorch 1.4.0

10 GPU 0 Quadro P5000
11 Pillow 7.0.0
12 torchvision 0.5.0
13 cv2 4.2.0

The closed-loop detection results were divided into four categories according to the
algorithm prediction and facts, as shown in Table 2.
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Table 2. Classification of the closed-loop test results.

Facts/Forecasts Closed-Loop Non-Closed-Loop

Closed-loop True positive False negative
Non-closed-loop False positive True negative

In order to intuitively measure the accuracy of the different closed-loop detection
algorithms, the occurrence times of true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) were counted on a dataset, and the corresponding accuracy
rate (P) and recall rate (R) were calculated. The specific calculation formula is as follows.

P = TP/(TP + FP) (16)

R = TP/(TP + FN). (17)

In Equation (16), P represents the proportion of the correct closed-loops among all
closed-loops detected by the closed-loop detection algorithm. In Equation (17), R represents
the probability that all actual closed-loops can be accurately detected by the closed-loop
detection algorithm.

4.1. Dataset Analysis

For the analysis of the Gardens Point, Nordland and Mapillary datasets, see Table 3.
These are classic test datasets of a closed-loop detection algorithm including three complex
scenes: only illumination change, simultaneous illumination and viewing angle change,
and simultaneous illumination and season change. They all retain spatiotemporal data
information completely, which is very conducive to the offline parameter learning of the
method proposed in this paper. Most traditional detection algorithms often ignore this rich
information.

Table 3. Dataset analysis.

Dataset Introduction to the Dataset Dataset Characteristics

Gardens Point
The dataset was collected on the campus of the
University of Queensland (QUT), including three
subdatasets in two days and one night.

The dataset has two characteristics: viewing angle change
and illumination change. Each subdataset has 200 images.

Mapillary

It has 25 K street view images (18 K train, 2 K Val,
5 K test) with a wide resolution. The dataset is
densely annotated (covering 98% of pixels) and
contains 28 stuff and 37 thing categories.

(1) Changes in weather conditions (sun, rain, snow, fog,
haze) and photographing time (dawn, day, dusk, night);
(2) A wide range of camera sensors, different focal lengths,
image aspect ratios, and different types of camera noise;
(3) Different camera angles (road, sidewalk, and off road).

Nordland
A documentary about the Nordland railway
produced by NRK, a railway line connecting
Trondheim and Bode city.

By erecting cameras at the front of the train, 729 km-long
railway lines are photographed in different seasons of
spring, summer, autumn, and winter. The length of each
video is about 10 h.

4.2. Design of the Experiment

Experiment 1: The robustness of the proposed method and the closed-loop detection
algorithm based on BoVW, PlaceCNN, GiST, SS_PlaceCNN and AutoEncoder were com-
pared for three complex scenes: only illumination change, simultaneous illumination and
viewing angle change, and simultaneous illumination and season change.

Experiment 2: The average accuracy of various closed-loop detection algorithms was
compared in the Gardens Point, Nordland, and Mapillary datasets.

Experiment 3: The time performance of the closed-loop detection algorithm was
compared to explore the effectiveness of real-time closed-loop detection based on a joint
training strategy. The Nordland dataset was selected as the experimental dataset.
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4.3. Experimental Results and Analysis

The following subheadings provide a detailed analysis of the results of the three
experiments designed in Section 4.2. The superiority and feasibility of the proposed
method were demonstrated from the different perspectives, respectively.

4.3.1. Robustness Analysis and a Comparison of the Closed-Loop Detection Algorithms

Experiment 1: Figure 5a–c shows the robustness comparison between various closed-
loop detection algorithms and the proposed method under different datasets containing
complex scene changes. The overall analysis showed that the accuracy of the closed-loop
detection algorithms decreased rapidly due to the influence of complex environment
changes. The comparison results of the GiST and BoVW closed-loop detection algorithms
under different datasets are at the bottom, which shows that the traditional closed-loop
detection algorithm was easily affected by the change of illumination and shooting angle
and the robustness was relatively poor. As can be seen from Figure 5b, when there was
only an illumination change, the robustness of the closed-loop detection algorithm based
on SS_PlaceCNN was close to that of the method in this paper and the performance was
significantly higher than that of the detection algorithm using AutoEncoder. It shows that
the method proposed in this paper could learn and convert the target appearance change
and background suppression during the movement of mobile robot. The selection of the
closed-loop key frames in different lighting scenes could be considered in time so that the
detection algorithm was less affected by appearance changes.
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Figure 5. Comparison of the robustness of different closed-loop detection algorithms: (a) Gardens Point; (b) Mapillary;
(c) Nordland.

Through comparative experiments on the three typical closed-loop detection datasets,
the overall performance of the vSLAM real-time closed-loop detection method based on
the dynamic Siamese network proposed in this paper was better than the other classical
closed-loop detection algorithms. For scenes where only the illumination changed, the
illumination and viewing angle changed at the same time, and the illumination and season
changed at the same time, it ensured a high accuracy and good recall rate. It ensured a
high accuracy when the recall rate was 75%.

4.3.2. Analysis and Comparison of the Average Accuracy of the Closed-Loop
Detection Algorithms

Experiment 2: The average accuracy of each closed-loop detection algorithm under
the three datasets of Gardens Point, Nordland, and Mapillary is shown in Figure 6. The
environment of the Gardens Point dataset contained significant illumination changes
and a certain degree of viewing angle changes. As the Nordland dataset was a long-
distance video shot in different seasons and contained spatiotemporal data, the subsets
in the different seasons showed the greatest change compared with the appearance. The
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Mapillary dataset environment contained appearance changes caused by moderate light
changes (weather conditions and shooting time).
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By analyzing Figure 6, it can be seen that the average accuracy of the vSLAM real-
time closed-loop detection method based on the dynamic Siamese network proposed in
this paper was higher than that of the other algorithms under the three scene datasets
with different complex angles and reached the best in the Nordland dataset. The main
reason was that the target appearance change and background suppression conversion
mechanism proposed in this paper could effectively deal with the influence of exterior
changes on key frame judgments during mobile robot movements. By integrating the
multi-layer depth features, the proposed elementwise fusion strategy effectively ensured
the accurate positioning of the key frames in the process of the closed-loop judgment
and solved the problem of insufficient robustness of the key frame image selection in the
closed-loop detection.

4.3.3. Analysis and Comparison of the Time Performance of the Closed-Loop
Detection Algorithms

Experiment 3: In order to verify the time performance of the real-time closed-loop
detection algorithm proposed in this paper, the key frame accurate positioning time based
on the dynamic Siamese network was compared with the other closed-loop detection
algorithms. The key frame accurate positioning time was calculated by comparing the
similarity in 1200 database images after the algorithm extracted the complete image features.
The experimental results are shown in Table 4.

Table 4. Time performance analysis of the closed-loop detection.

Algorithm BoVW PlaceCNN GiST SS_PlaceCNN AutoEncoder Method Proposed

Dimension 600 1000 1500 8614 256 512
Time/s 17.65 19.47 20.16 61.58 23.26 12.28

It can be concluded from Table 4 that the closed-loop detection speed of the method
in this paper was the best, which effectively reduced the image feature extraction time in
the closed-loop detection link. The joint training strategy designed in this paper could
adapt to the offline parameter training considering the time–space correlation during the
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simultaneous positioning and map construction of the mobile robot, which could provide
accurate optimization for the parameters of the closed-loop detection model, effectively
solving the problem of insufficient real-time positioning of the key frame image in the
closed-loop detection.

5. Conclusions

In this paper, a real-time closed-loop vSLAM detection method based on a dynamic
Siamese network was proposed. Through a fast conversion learning model, it effectively
captured the changes of target appearance and background suppression in the process
of online learning robot mapping. An adaptive fusion strategy based on an elementwise
strategy was proposed to further improve the positioning accuracy of key frames in the
process of the closed-loop judgment. At the same time, the designed joint training strategy
ensured that the constructed dynamic Siamese network could directly carry out offline
training on the marked video sequence and make full use of the space–time information
of the moving robot. The experimental results showed that this method had a higher
robustness than the existing methods and could better achieve the balance of key frame
positioning accuracy and real-time in complex scenes with changing illumination and
viewing angles.

At present, it is still novel to use deep learning methods to solve the loop detection
problem of vSLAM from different angles. In the future, with the rapid development of
5G networks and intelligent edge computing technology, the efficiency of this method
in large-scale complex scenes can be further improved and a more ideal perception and
application ability can be realized.
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