
1

Briefings in Bioinformatics, 00(0), 2021, 1–11

https://doi.org/10.1093/bib/bbab349
Review

Serverless computing in omics data analysis and
integration

Piotr Grzesik, Dariusz R. Augustyn, Łukasz Wyciślik and Dariusz Mrozek
Corresponding author: Dariusz Mrozek, Department of Applied Informatics, Silesian University of Technology, Gliwice 44-100, Poland.
E-mail: Dariusz.Mrozek@polsl.pl

Abstract

A comprehensive analysis of omics data can require vast computational resources and access to varied data sources that
must be integrated into complex, multi-step analysis pipelines. Execution of many such analyses can be accelerated by
applying the cloud computing paradigm, which provides scalable resources for storing data of different types and
parallelizing data analysis computations. Moreover, these resources can be reused for different multi-omics analysis
scenarios. Traditionally, developers are required to manage a cloud platform’s underlying infrastructure, configuration,
maintenance and capacity planning. The serverless computing paradigm simplifies these operations by automatically
allocating and maintaining both servers and virtual machines, as required for analysis tasks. This paradigm offers highly
parallel execution and high scalability without manual management of the underlying infrastructure, freeing developers to
focus on operational logic. This paper reviews serverless solutions in bioinformatics and evaluates their usage in omics data
analysis and integration. We start by reviewing the application of the cloud computing model to a multi-omics data analysis
and exposing some shortcomings of the early approaches. We then introduce the serverless computing paradigm and show
its applicability for performing an integrative analysis of multiple omics data sources in the context of the COVID-19
pandemic.

Key words: cloud computing; serverless computing; omics data processing; omics data integration; function-as-a-service;
container-as-a-service; bioinformatics

Introduction
In recent years, data produced by genomic, transcriptomic,
proteomic and metabolomic experiments have been fed into an
increasing variety of data sources and multi-omics data sets.
These data sets provide an important source of knowledge

Piotr Grzesik, M.Sc., Eng., is a PhD student at the Department of Applied Informatics at the Silesian University of Technology in Gliwice. His main research
areas include cloud computing, serverless computing, the Internet of things, edge computing, databases and bioinformatics.
Dariusz R. Augustyn, Ph.D., Eng., works in the Department of Applied Informatics at the Silesian University of Technology in Gliwice. His main
research areas include distributed and parallel processing, cloud computing, database theory, mathematical modeling of dynamical systems and software
engineering.
Łukasz Wyciślik, Ph.D., Eng., has been affiliated with the Department of Applied Informatics at the Silesian University of Technology for over 20 years.
His scientific interests focus on data processing, databases, systems modeling, software engineering and artificial intelligence. As an employee of the
Department of Applied Informatics, he places great emphasis on the possibility of practical applications of his research results.
Dariusz Mrozek, Ph.D., D.Sc., Eng., is currently an associate professor, Head of Department of Applied Informatics and Deputy Dean for Cooperation and
Development at the Faculty of Automatic Control, Electronics and Computer Science at the Silesian University of Technology in Gliwice, Poland. His research
interests cover the Internet of things, information systems, artificial intelligence, parallel and cloud computing, databases and big data and bioinformatics.
He is currently focused on applying AI-supported IoT technologies in various areas, from manufacturing to life sciences.
Submitted: 27 July 2021; Received (in revised form): 28 June 2021

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

for studying serious diseases such as Alzheimer’s disease,
Parkinson’s disease, cancer or coronavirus disease (COVID-
19). The complex, multi-step analysis pipelines that are used
to find potential drugs to cure these diseases usually require
appropriate data integration that is driven by time-consuming

https://academic.oup.com/
https://doi.org/10.1093/bib/bbab349

2 Grzesik et al.

computations. For example, in response to the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic,
the scientific community has sought to create a shortlist
of drugs that can fight the infection rapidly, by repurposing
existing drugs. Such approaches rely on identifying differentially
expressed genes via transcriptomic analyses and metabolites
via proteomic and metabolomic experiments. In addition,
differentially abundant proteins must be identified, along with
protein–protein interactions between the studied pathogen and
the host organism [50]. This is usually followed by a genome-
wide association study, further transcriptomic analysis and
investigation of pathogen–host interaction networks. The resul-
tant ranked drug lists are then re-ranked based on integrated
gene interaction networks that have undergone functional
analysis and scoring, structural clustering or proteome profiling
[36]. The majority of the data analysis underlying this process
requires computational power, resources and storage for various
types of omics data. The source of the computational power
depends on the analysis in question. These sources can be
classified as follows:

1. Local workstations
2. Local data centers
3. Cloud computing

Local workstations (for example, desktop computers) are the
simplest approach and the most common platform for the cal-
culations required for an omics data analysis. Analysts typically
have convenient access to a workstation and have a high degree
of control over configuration and process management. The
desktop versions of tools, such as Taverna [22, 42] or Galaxy
server [28], allow for the construction of complex analysis work-
flows and integration of different software components and
data sources. However, executing the workflows on local work-
stations has limitations. Even as central processing unit (CPU)
performance and core number increases, standard workstations
used for desktop computations still have very limited computing
capabilities. Moreover, although the cost of storage space per
gigabyte is decreasing, and the capacities of hard disk drives
and solid state drives are increasing, desktop computers are still
limited in terms of storage. This renders desktop computing
insufficient to deal with the large quantity of biological data
that is produced, for example, by next-generation sequencing
experiments or 3rd-generation sequencing techniques, such as
Oxford MinION Nanopore.

Large laboratories, hospitals, universities and other insti-
tutions that perform a biomedical data analysis usually pos-
sess local, on-premise data centers with computational clusters
capable of storing and processing an ample quantity of such
data [46]. In contrast to the local workstations used for desktop
computations, they provide an additional layer of data security,
durability, reliability and even high availability. As data can be
partitioned among multiple cluster nodes, many data analysis
tasks can be parallelized and thus significantly accelerated.
Furthermore, many such on-premise data centers are equipped
with general-purpose graphics processing units (GPUs). These
devices are used for the development and execution of inno-
vative and fast algorithms to solve problems associated with
genomics data analysis, such as the alignment of next gener-
ation sequencing reads [11, 19, 53], phylogenetics [6] and phy-
logenomics [7] and peptide or protein identification [24, 34, 37].
The primary advantage of using local data centers is convenient
access to equipment that is more sophisticated than a local
workstation. Data analysts typically become proficient with this
equipment after some adaptation. Additionally, analysts can

be certain that the computer clusters they use are always in
place. This not only ensures high availability and reduces latency
during data transfer but also improves data privacy and security.
Moreover, this ensures that any laws requiring local data man-
agement are followed. Local data centers do have disadvantages,
primarily the large capital expense that must be budgeted to
acquire, maintain and upgrade the physical assets. This includes
not only the equipment but also the buildings and properties.
The required specifications for an on-premise data center must
be estimated prior to development, meaning that an inaccurate
estimation will result in either idle or limited resources.

Cloud computing responds to these disadvantages by
providing computer resources (servers, storage and networking)
on-demand with theoretically unlimited scaling capabilities [40].
Within this computing model, resources are available in a similar
manner to residential electricity; once connected to the cloud,
computational or IT resources are readily available as required.
This technology is widely used in the scientific community,
including in the bioinformatics domain, as demonstrated by
many applications [3, 21, 23, 31, 39]. Having access to global
resources is particularly relevant during the COVID-19 pan-
demic, with cloud computing being used to gather and process
COVID-19 related data [16]. Cloud solutions have evolved over
time, with traditional cloud design solutions being advanced
upon by more sophisticated serverless computing models. The
purpose of this paper is to review serverless computing solutions
and investigate the role they can play in omics data analysis. In
order to lay the foundations of this research, the next section
presents an overview of cloud computing.

Cloud computing
The term ‘cloud computing’ was originally coined in 1996 by
Compaq (https://www.technologyreview.com/2011/10/31/257406/
who-coined-cloud-computing/). It gained popularity 10 years
later when Amazon [1] started offering Elastic Compute Cloud
(EC2) services. Cloud computing is becoming increasingly spe-
cialized with regards to providing remote computing resources
with the possibility of rapid provisioning [40]. This emulates,
in terms of importance and contribution to the development of
humanity, the introduction of the 1st power plants. Cloud service
providers remove the need for users to spend time and resources
on configuring and maintaining hardware and infrastructure
(e.g. electricity, computer networking, cooling systems). This is a
comparable step to that of electricity consumers gaining access
to a national grid, and no longer being required to purchase fuel
or maintain power generators.

Early cloud computing had modest functionality compared
to modern implementations. Initial development saw the intro-
duction of virtual machines (VMs), also known as virtual pri-
vate servers, along with supporting features such as access key
management, block storage devices and VM snapshots.

These services, together know as infrastructure as a service
(IaaS), form the most basic and generic layer of the full cloud
computing stack. Above this, the more abstract layers are built,
such as platform as a service (PaaS), software as a service (SaaS)
and more [30].

Modern cloud systems feature a wide range of services and
products, including databases, business applications, business
intelligence, e-commerce, quantum computing and block-chain
systems. In the case of databases, both those using structured
query language and those that do not (e.g. graph, document or
columnar) are featured.

https://www.technologyreview.com/2011/10/31/257406/who-coined-cloud-computing/
https://www.technologyreview.com/2011/10/31/257406/who-coined-cloud-computing/

Serverless computing in omics data analysis 3

Figure 1. The increasing popularity of serverless (in blue) over IaaS (in red) computing, from Google Trends.

Cloud computing data centers have large reserves of
computing power, meaning their advantages lie not only in
the wide range of services provided but also in the potential
scaling. Scaling in this context means response times remaining
constant as the numbers of concurrent users or tasks grow.
Scaling is required for mission-critical applications but is
also crucial for supporting computationally complex scientific
calculations [4, 38].

These scaling options can be enabled by cloud service
providers across the full cloud stack. However, the ratio between
implementation requirements and resultant benefits depends
on the chosen layer of computing abstraction:

• Scaling IaaS requires the configuration of an external load
balancer and the skills to deploy the application to be scaled
on a generic operating system; nodes can be added semi-
automatically, but the use of an external orchestrating tool
is preferred.

• Scaling PaaS (e.g. Kubernetes, OpenShift) requires the skills
to package an application into a container(s) and the use
of declarative language (https://kubernetes.io/docs/tasks/
manage-kubernetes-objects/declarative-config/) to define
the configuration of the cluster and cluster services (i.e.
applications).

• Scaling SaaS usually requires limited skills or knowledge
to produce seamless results but is unable to deploy and
conduct any custom computation.

Recently, the concept of serverless computing (FaaS) is
becoming increasingly popular (see Figure 1). According to the
Google Trends Service, global interest in this topic exceeded
that of traditional IaaS in July 2018. Serverless computing hides
the execution environment, allowing the user to focus on per-
forming the relevant calculations, rather than implementation,
configuration and scaling. Serverless computing features are
currently available on the most popular computing clouds as
services native to individual cloud service providers but also as
generic platforms extending open cluster orchestration systems.
Such features are highly promising as they may enable very
large computing capacities for developers and scientists who do
not need to be fluent with industry standards of deploying an
application to the cluster.

Although most of the current applications of cloud technolo-
gies for genomics computing [5] use SaaS [8, 10, 13, 18, 26, 28,
44, 47, 52] and IaaS [3, 9, 18, 31, 32], there is growing interest in
serverless implementations.

Serverless computing platforms
Traditional serverless versus containerized serverless

The FaaS concept is based on the paradigm of running a function
code without dealing with problems of underlying infrastructure
such as servers or VMs. Functions are designed to act in accor-
dance with both the stateless model and the fire-and-forget

model. No cloud resources are involved while no functions are
activated. Functions are not designed for handling long-running
processes, but they can be run as a large set of isolated instances
that can be created quickly. FaaS solutions come with limitations
on, for example, memory usage or execution-time of individual
functions, which causes correspondingly high granularity of the
division of a whole task.

The basic concept of FaaS is derived from serverless comput-
ing. A similar concept, container as a service (CaaS), supports
containerization and holds several advantages resulting from
serverless idea. Within CaaS, containers can be instantiated
with an autoscaling option without worrying about a runtime
infrastructure [5]. In the following sections, we will examine
these services, with a particular focus on cloud platforms and
their capabilities and limitations.

Serverless by Google

Google Cloud Platform (GCP) provides two main functionalities
in terms of serverless computing: Google Cloud Functions and
Google Cloud Run.

Google Cloud Functions

Google Cloud Functions (GCF) is a FaaS platform provided by
Google. The functions available through GCF are primarily HTTP
(synchronous mode) or event-driven (asynchronous mode). They
can be triggered (https://cloud.google.com/functions/docs/conce
pts/events-triggers) by an HTTP protocol request, by a message
available from a custom topic via the Publisher/Subscriber (asyn-
chronous communication design pattern, https://cloud.google.
com/pubsub/docs/overview) mechanism or by a message cre-
ated due to changes in bucket state via a cloud storage mech-
anism. Several languages can be used to develop and run GCF
code, including Node.js, Python, Go, C#, Java, Ruby and PHP. Direct
deployment of GCF is possible via pushing source code through
the GCP console or by using a zipped deployment package (e.g.
using omics data analysis tools) which can be either delivered
externally to GCP or be available internally via Google Cloud
Storage.

The autoscaling mechanism for GCF is enabled by default.
A maximum limit on the number of concurrently running GCF
instances can be set. Further constraints such as the size of
allocated memory (default of 256 MiB, maximum of 8 GiB) or
execution timeout value (default of 1 min, maximum of 9 min)
have to be set.

Google Cloud Run

Google Cloud Run (https://cloud.google.com/run) is a CaaS plat-
form provided by Google. A container is a basic component
delivering functionality that is commonly available through the
HTTP representational state transfer protocol. In simple on-
premise solutions (e.g. local data centers), containers are pro-
cesses instantiated from a Docker image and run in traditional

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://cloud.google.com/functions/docs/concepts/events-triggers
https://cloud.google.com/functions/docs/concepts/events-triggers
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/run

4 Grzesik et al.

one-node Docker runtime environments. In multi-node Kuber-
netes (K8s) environments, resources such as pods and services
are used. A pod is the smallest processing unit managed by K8s
which contains at least one container (most commonly only one
container). The information system run on a K8s cluster of nodes
is a scalable collection of running pods that are connected or
exposed (also outside the K8s cluster) using services. Such a set
of containers can be static, manually configurable by an admin-
istrator or modified automatically by a dedicated mechanism
such as the horizontal pod autoscaler.

Google has introduced KNative (https://knative.dev/docs)
to K8s—a more adaptive solution to meet requirements that
include significant, unpredictable change in application load
(which often happens in the analysis of biomedical data). It is
dedicated to scaling the number of container instances from
zero or downgrading them to zero. KNative is a CaaS solution
that can be used within K8s-based systems (even those run
locally). With KNative as an integrated part of K8s, cooperation
between containers run by the K8s orchestrator and those
spawned by KNative can be achieved. All containers may share
resources available through the common K8s environment.

Since K8s is enabled as a managed service—Google Kuber-
netes Engine (GKE), KNative functionality is also available. As
the GCP implementation of CaaS, Cloud Run can be provided
through GKE (including components such as Anthos, Istio and
KNative). However, Cloud Run can also be run independently of
the GKE service, as a pure, fully managed CaaS, for which no
handling of the K8s infrastructure is required. Both approaches
provided by Cloud Run are compatible (https://cloud.google.co
m/anthos/run/docs/choosing-a-platform).

Required configuration parameters are a URL-based address
of a container image, the size of memory to allocate, the number
virtual CPUs (vCPUs) to allocate (maximum of 4) and a request
timeout (default of 300 s, maximum of 1 h). The maximum
value of the last parameter shows that this solution may also be
useful for long-running processes, such as those performed in
omics analyses. It is still however only suitable for lightweight
applications, although can support heavier applications than
those dedicated for FaaS. In a similar manner to GCF, Cloud Run
uses autoscaling and can scale down to zero, requiring the use
of containers which can be rather promptly initiated.

The following parameters control autoscaling behavior:

• a minimum number of containers (default of 0), which, for
non-zero values, defines the smallest collection of running
containers and prevents the number of running containers
from being downgraded to zero i.e. stopping the system;

• a maximum number of containers (default of 100), which
prevents uncontrolled, unrestricted and expensive increase
in the size of the container set; and

• a maximum number of concurrent requests per second
(default of 80), which sets the condition for detecting peri-
ods of intensive load (detecting moments of a scaling-out
event).

Serverless by AWS

The Amazon Web Services (AWS) platform provides several solu-
tions for serverless computing, including AWS Lambda and AWS
Fargate. Both are used in several tools associated with omics data
analysis.

AWS Lambda

In 2014, AWS introduced its FaaS platform, AWS Lambda. The
functions (https://docs.aws.amazon.com/lambda/latest/dg/la

mbda-services.html) of AWS Lambda can be exposed by various
means, including by triggers from other AWS services that can
invoke lambdas synchronously (e.g. API Gateway, Application
Load Balancer) or asynchronously (e.g. Message Queuing, Simple
Queue Service, Simple Storage Service, Simple Notification
Service, Internet of Things (IoT)).

Various languages can be used to develop AWS Lambda func-
tions, with C#.NET, Node.js, Python, Go, Java and Ruby being
supported runtime environments. Memory allocated for func-
tions must not exceed a maximum memory size, which can
be set between 128 MiB and 10 240 MiB in 1 MiB increments.
Functions can be run for up to 15 min. When a function is
invoked, a function instance is created. For a period of time after
the function termination, the existing ready-to-use instance is
available and may be reused by another invocation. Otherwise,
a new instance is created. A concurrency parameter sets the
maximum number of instances that can be run in parallel.

To improve deployment architecture, that is, to separate a
domain component that implements a proper function and the
additional required libraries, AWS introduced the concept of
layers containing shared libraries. Layers may also be used to
create custom runtime packages for AWS Lambda functions,
which may enable the use of runtime environments or languages
that are not provided by default.

In accordance with the increasing popularity of containerized
solutions, the ability to deliver a function as a Docker image is
also provided. It is therefore possible to use container images to
deploy a function in fully managed FaaS model of AWS Lambda
function processing. This is advantageous, as it allows the shar-
ing of resources/components that can be run either in the FaaS
model (AWS Lambda) or a strictly containerized model, such
as Elastic Kubernetes Services (EKS), Elastic Container Services
(ECS) or others based on K8s.

AWS Fargate

The AWS CaaS platform is AWS Fargate (https://docs.aws.amazo
n.com/AmazonECS/latest/developerguide/AWS_Fargate.html).
Container-orchestration platforms can be managed by AWS.
This includes those that are K8s-compatible, such as EKS, or
AWS-specific solutions, such as ECS, using the AWS model of
processing based on terms: container—task—service—cluster.

Using implicitly installed ECS Container Agent components,
ECS may operate on a user-defined cluster of VMs (EC2
instances). A serverless alternative to ECS, AWS Fargate is a fully
AWS-managed infrastructure which operates on a task-level
abstraction layer (without knowledge of involved EC2 machines).

The resource limits are commonly defined at the task level.
Maximum values of CPU (from 0.25 to 4 vCPUs) and memory
(from 0.5 to 30 GiB) can be set. Working in the CaaS model,
AWS Fargate optionally allows to use and share container image
layers used by classic container solutions (EKS).

Serverless by Microsoft Azure

Azure provides many mechanisms to implement serverless
computing, the most important of which are the following two
building blocks.

Azure Functions

The Azure Functions service plays the most important role in the
Microsoft Azure cloud when it comes to serverless computing. It
is possible to use Azure Functions to build web APIs, process IoT
streams, react to database changes, manage message queues,
respond to file uploads and more. Durable Functions is an

https://knative.dev/docs
https://cloud.google.com/anthos/run/docs/choosing-a-platform
https://cloud.google.com/anthos/run/docs/choosing-a-platform
https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html

Serverless computing in omics data analysis 5

extension of Azure Functions that allows the definition
of stateful workflows via the development of orchestrator
functions and allows the definition of stateful entities via
the development of entity functions. The extension takes
responsibility for managing states, checkpoints and restarts,
as required.

There are several options for deploying FaaS computations
which affect both the scalability and the billing method.
Deployment on top of Azure Kubernetes Service (AKS) is enabled
by Kubernetes-based Event Driven Autoscaling (https://docs.mi
crosoft.com/en-us/azure/azure-functions/functions-kubernete
s-keda) (KEDA) when only resources used by the Kubernetes
service are required. In this case, the scaling capability is derived
from a given Kubernetes cluster configuration.

Azure Functions can also be implemented via the App Service
Environment (ASE). This results in a fixed monthly rate for an
ASE, which pays for the infrastructure and does not change with
the size of the ASE pool. There is an additional cost per vCPU
used for handling function executions. The most transparent
(not necessarily the cheapest) pricing plan is the Consumption
Plan, under which charge is incurred based only on function run
time. In this case, billing is based exclusively on the number of
executions, execution time and memory used.

A further option is for billing to be dependent on vCPU core
seconds used and memory consumed by required, but also
pre-warmed instances. (Pre-warmed instances are instances
warmed (i.e. made ready to immediately respond to a request
by allocating the required computing resources in advance) as a
buffer during scale and activation events. Pre-warmed instances
continue to buffer until the maximum scale-out limit is reached.)
At least one instance per plan must be kept warm at all times.
This execution model, known as the Premium Plan, provides the
most predictable pricing.

Each of the deployment options offers different network
configurations, runtime environments for functions, timeout
duration, scaling configuration options and cold start behavior,
among other properties. These options are described in detail in
the online documentation (https://docs.microsoft.com/en-us/a
zure/azure-functions/functions-scale/).

Azure Container Instances

As with Google and Amazon, Microsoft offers a CaaS class
solution. Azure Container Instances provides a straightforward
method for the deployment of containers to Azure, freeing the
user from configuration or management of lower-level services
such as VPS or higher-level services such as AKS (https://azure.
microsoft.com/pl-pl/services/kubernetes-service/).

Azure Container Instances allows container groups to be
directly exposed to the Internet using an IP address and a fully
qualified domain name. Azure Container Instances also sup-
ports command execution in a running container, providing an
interactive shell for application development and troubleshoot-
ing. Access is granted over HTTPS using Transport Layer Secu-
rity to secure client connections. Previously, containers offered
resource management and application dependency isolation but
were not sufficiently resilient for usage in multi-tenant envi-
ronments. Azure Container Instances ensures, however, that
the application is isolated in the container to the same extent
that it would be in a dedicated VM. Containers are typically
optimized to run only one application; however, the specific
needs of individual applications can vary widely. Azure Con-
tainer Instances ensures optimal computing resource utilization
by allowing precise specifications for CPU cores and memory.
Billing is set according to both demand and usage per second,

so it is possible to adjust expenses efficiently, based on the
needs of the user. For compute-intensive tasks such as machine
learning, Azure Container Instances can schedule NVIDIA Tesla
GPU resources using Linux containers.

In addition to Azure Functions and Azure Container
Instances, Microsoft offers also Azure Logic Apps (https://azu
re.microsoft.com/en-us/services/logic-apps/), Microsoft Power
Automate (https://flow.microsoft.com/en-us/) and Azure App
Service WebJobs (https://docs.microsoft.com/en-us/azure/app-
service/webjobs-create).

Open serverless platforms

The above solutions are services specific to individual cloud
service providers, so their use will result in the vendor lock-in
effect. In comparison, the KNative platform is developed on an
open-source basis, but deploying it on a K8s cluster is however
quite complex, and results in the creation of 110 custom resource
definitions, 24 deployments, 3 daemon sets and 51 containers
in total for laying foundations for functions deployment. This
section details solutions that are lighter and more open.

OpenFaaS

OpenFaaS (https://www.openfaas.com/) provides the basic fea-
tures expected from a serverless solution:

• avoidance of vendor lock-in thanks to the use of Docker,
which is de facto industry standard for application con-
tainerization and deployment;

• the ability to run on any public or private cloud;
• the ability to build both microservices and functions in any

language; and
• autoscaling on demand or to zero when idle.

The system architecture consists of several key components:
OpenFaaS API Gateway and OpenFaaS Watchdog, which are
responsible for running and monitoring functions; NATS, which,
as a Cloud-native queuing system, supports asynchronous
execution and queuing; and Prometheus, which provides
performance metrics and enables easy autoscaling via its
AlertManager.

Note that the OpenFaaS platform is suitable for use by data
scientists. It provides templates for wrapping R code into server-
less functions or microservices without the significant overhead
that can slow deployment. A regularly updated list of templates
can be found in the dedicated GitHub repository (https://github.
com/analythium/openfaas-rstats-templates/).

Apache OpenWhisk

Another example of an open FaaS platform is OpenWhisk
(https://openwhisk.apache.org/). This project was initially
developed by IBM and is still the foundation of the IBM
Cloud Functions (https://cloud.ibm.com/functions/) service.
The current version is open-source, controlled by the Apache
Foundation. OpenWhisk can be deployed on top of K8s, Docker
Swarm, OpenShift and Mesos cluster managers. As an open-
source solution, it is based on open source components, and
its architecture includes an NGINX web server, which acts as
an HTTP server and reverse proxy. Its main role is to support
SSL (Secure Sockets Layer) encryption and the forwarding of
HTTP requests to other components. The Controller component
plays an important role as it uses the representational state
transfer protocol API to manage the entire platform and invoke
actions. All platform configuration data, function source codes
and authentication and authorization data are stored in a highly

https://docs.microsoft.com/en-us/azure/azure-functions/functions-kubernetes-keda
https://docs.microsoft.com/en-us/azure/azure-functions/functions-kubernetes-keda
https://docs.microsoft.com/en-us/azure/azure-functions/functions-kubernetes-keda
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale/
https://azure.microsoft.com/pl-pl/services/kubernetes-service/
https://azure.microsoft.com/pl-pl/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/logic-apps/
https://azure.microsoft.com/en-us/services/logic-apps/
https://flow.microsoft.com/en-us/
https://docs.microsoft.com/en-us/azure/app-service/webjobs-create
https://docs.microsoft.com/en-us/azure/app-service/webjobs-create
https://www.openfaas.com/
https://github.com/analythium/openfaas-rstats-templates/
https://github.com/analythium/openfaas-rstats-templates/
https://openwhisk.apache.org/
https://cloud.ibm.com/functions/

6 Grzesik et al.

Table 1. Comparison of principal FaaS features

Service name Supplier Deployment/pricing models Supported languages License

Azure Functions Microsoft AKS, ASE, Consumption Plan,
Premium Plan, BYOa (KEDA)

C#, JavaScript, F#, Java,
PowerShell, Python, TypeScript

Proprietary, Apache 2.0
(KEDA)

Google Functions Google Native Go, JavaScript, C#, Python,
Ruby, PHP

Proprietary

AWS Lambda Amazon Native C#, JavaScript, Python, Go, Java,
Ruby

Proprietary

OpenFaaS OpenFaaS Ltd. BYO Go, JavaScript, Python, Ruby,
C#, PHP, Java

MIT

OpenWhisk Apache BYO Go, JavaScript, Python, C#, PHP,
Java, Rust, Scala, Swift,

Ballerina

Apache 2.0

a‘Bring Your Own’, that is to say, the user must deploy on their own infrastructure or IaaS.

scalable CouchDB document database. As a request queuing
system, it uses the Kafka message broker. All requests from
the Controller are handled by Kafka and then forwarded to
corresponding Invokers. Relying on Docker, these Invokers form
the core of OpenWhisk.

The FaaS solutions discussed in this chapter are listed in
Table 1, which specifies the deployment models, supported pro-
gramming languages and licenses. Many other serverless com-
puting orchestration platforms are currently under active devel-
opment, such as Kubeless (https://github.com/kubeless/kubele
ss/), Fission (https://github.com/fission/fission/) and Fn (https://
github.com/fnproject/fn/). Serverless computing is an area of
active development, with new solutions expected to add to those
listed here.

Omics serverless computing
Given the diversity of platforms and approaches to delivering
serverless computing, developers have a high degree of choice in
picking the best solution to a particular scenario of omics data
analysis. However, the choice may be limited by the availability
and the runtime environment of particular tools that must be
integrated while implementing a complex omics data analysis
pipeline. In this section, we review several case studies of server-
less computing being used in various areas of bioinformatics
that involve the approaches described in the previous section.

Case studies

Challenges and potential opportunities of using AWS Lambda
functions for running bioinformatics workflows were described
by Crespo-Cepeda et al. [15]. The authors consider an application
that mines single nucleotide polymorphism (SNP) data. Rules are
extracted from the data which allow patients to be associated
with their responsiveness to certain drugs. The authors pro-
posed the use of a serverless architecture that takes advantage
of AWS Lambda and AWS S3 as a storage engine. The application
itself is based on DMET-Miner, adapted for AWS Lambda runtime.
Within the proposed architecture, processing is initiated upon
uploading a specific task file to an S3 bucket, which in turn
triggers a serverless function to interpret the task and launch
asynchronous worker functions that download the SNP dataset
and execute the DMET-Miner workflow. The outputs of each
worker function are saved to a separate directory on the S3
Bucket. The SNP dataset is also stored on the same bucket. The
authors ran performance experiments where they observed that,

for certain scenarios, processing time could be reduced from 2 h
and 20 min of synchronous processing to 2 min and 8 s of parallel
processing with AWS Lambda.

Aboukhalil [2] presents another example of the use of server-
less computing in bioinformatics. The author built an API for
simulating DNA sequencing data, in the form of a serverless
function running on Cloudflare Workers Unbound [14]. The solu-
tion is based on ‘wgsim’, an existing tool for simulating sequence
reads from a reference genome. Using the ‘biowasm’ recipes,
‘wgsim’ was compiled from C to WebAssembly. As a reference
DNA sequence, the author used a publicly accessible human
genome reference dataset taken from the 1000 Genomes Project,
which is part of the AWS Open Data Registry [43] and is hosted
on an AWS S3 bucket. As the dataset was over 3 GBs in size,
and due to the limited memory available for serverless functions,
the solution only fetched subsets of reference data specified as
parameters and streamed the simulation results back to the user.
The solution also offers a simple graphical interface for more
interactive exploration of simulation results.

Another tool that relies on serverless architecture has been
proposed by Lee et al. [33]. The authors present the DNAVi-
sualisation (https://dnavisualisation.org/) application for DNA
sequence visualization. The application takes advantage of the
function-as-a-service model to parallelize the visualization of
DNA sequences. Data are accepted in the FASTA format, then
parsed and submitted in parallel to serverless functions, which
transform the sequences and then store them in Parquet format
on an AWS S3 bucket. While the user explores the data (e.g.
zooms or rearranges the visualization), processing is handled
by a serverless function that retrieves all necessary data from
previously transformed Parquet files, using S3 Select. According
to the authors, the application is limited to visualizing up to 30
sequences, each with a maximum size of 4.5 MB. There are five
supported visualization methods: ‘Yau’, ‘Squiggle’, ‘Randić’, ‘Qi’
and ‘Gates’. The application also offers the ability to export data
in PNG, SVG, JPEG or JSON format. The solution is based on the
AWS Lambda offering, but the authors note that it can be ported
to other cloud providers such as Azure or Google Cloud.

Portability across different cloud platforms was tested by
Niu et al. [41], who proposed and described an implementa-
tion of all-against-all pairwise comparison between over 20 000
human protein sequences. The authors used the striped Smith–
Waterman algorithm [17] to perform the comparison, running
on AWS Lambda and GCF platforms. To take advantage of the
massive parallelism capabilities of these platforms, the authors
partitioned protein sequences into subsets of 500 sequences.

https://github.com/kubeless/kubeless/
https://github.com/kubeless/kubeless/
https://github.com/fission/fission/
https://github.com/fnproject/fn/
https://github.com/fnproject/fn/
https://dnavisualisation.org/

Serverless computing in omics data analysis 7

They identified that individual functions, given the constraints
of the environment, would be able to compute the interac-
tions between two such subsets successfully. This resulted in
861 unique tasks being executed. After running benchmarking
experiments, the authors observed that running the workload
on Lambda functions triggered directly from a laptop took on
average 2.2 min; for GCF, it was about 11.82 min, while running
the whole workload on a laptop computer took almost 9 h.
For both AWS and Google-based solutions, the cost of running
sequence comparison was less than $1.

The parallelization of data processing and analysis is an
inherent property of serverless computing that provides a reduc-
tion in computation time. This was demonstrated by Hung et al.
[25], who presented a serverless approach to the analysis of RNA
sequencing data, in order to determine differentially expressed
genes. The authors proposed a three-step architecture: split,
merge and align. The merge step is parallelized with serverless
functions that align human transcriptome reads by using the
Burrows–Wheeler Aligner [35]. The other two steps are executed
from a laptop computer, which also triggers functions that exe-
cute alignment workflow. During implementation, the authors
had to accommodate constrained computing capabilities and
limited execution time of a single function invocation. They
managed to overcome these challenges by reducing processed
file sizes and using asynchronous execution with partial data,
along with configuration tuning and optimization. With their
configuration, they determined that sharding data into files with
a size of approximately 60 MB was near-optimal, which trans-
lated to a workflow invoking 1752 functions in parallel during
the alignment step. By taking advantage of such an architecture,
they were able to reduce the total execution time of the workflow
from 2.5 h when running on a cloud server with 16 threads
to about 6 min, with subsequent workflows taking less than 2
min to obtain results. The estimated cost of running the whole
workflow was less than $4.

A slightly different approach was adopted by Burkat et al. [12],
who compared the feasibility of using CaaS platforms such as
AWS Fargate and Google Cloud Run, to FaaS offerings such as
AWS Lambda, as potential computing platforms for running sci-
entific workflows. The authors extended the HyperFlow (https://
github.com/hyperflow-wms/hyperflow) engine by adding sup-
port for the above platforms. Three workflows were considered:
AutoDock Vina [51], which is an open-source tool used for molec-
ular docking and virtual screening; OSG-KINC [45], an open-
source application that is used to construct gene co-expression
networks based on Open Science Grid resources; and Soybean
Knowledge Base (SoyKB) [29], which is an application used for
soybean translational genomics. Due to the complexity of the
SoyKB workflow, the authors proposed a hybrid approach that
uses both AWS Lambda and AWS Fargate. The authors highlight
the fact that serverless computing can be used for complex
workflows and that a combination of AWS Lambda and AWS
Fargate for specific parts of the workflow can be more effective
than using either alone. They also list AWS Fargate as more
suitable for long-running tasks than AWS Lambda. The authors
note that AWS Fargate could be replaced with a cluster of VMs,
which would however introduce additional maintenance and
setup overhead.

Reducing execution time and usage costs for cloud infras-
tructure provides a large motivation for serverless computing.
The Commonwealth Scientific and Industrial Research Organ-
isation (https://www.csiro.au/) (CSIRO), one of the strongest
proponents for the adoption of serverless architectures for
bioinformatic workflows, notes however that many workloads

implemented for omics data analysis have an unpredictable
nature. Many serverless architectures have been developed by
CSIRO. One example is their GT-Scan suite (https://gt-scan.csi
ro.au/), a web application that finds targets with minimal similar
sequences in their genome. Since the application must always
be available but may not always be in use, CSIRO proposed a
solution based on AWS Lambda and AWS DynamoDB, which
allowed costs per month to be reduced from $714 for a VM-
based solution to around $2.50 [48]. Another use case developed
at CSIRO is sBeacon [27], which is a serverless implementation
of the Beacon protocol (https://beacon-project.io/), an open
protocol for the discovery of genomics data, used, for example,
for detecting mutations that cause diseases. Reimplementation
on AWS Lambda and AWS S3 reduced the time taken to upload
new genomes into the database—in one case, it reduced the time
from 33 h for an AWS EC2-based solution to only 22 s. In addition,
both query run time and costs were reduced, as information has
to be collected only from relevant parts of the database, which
was previously stored in separate files across AWS S3 buckets.
The authors also state that the chosen architecture helped to
ensure privacy and ownership of data. They also prepared a
supplementary repository dedicated to the use of sBeacon in the
context of rapid querying of the SARS-CoV-2 genome (https://
github.com/aehrc/COVID-sBeacon). In their latest research, the
authors used the Serverless Variant Effect Predictor (https://gi
thub.com/aehrc/sVEP) (sVEP) to predict genomic variants using a
serverless architecture. The sVEP analyzes and predicts genomic
variants, which in turn can be used to select improved treatment
for patients. Due to potential parallelization of the workflow
thanks to the AWS Lambda scaling model, sVEP has been
estimated to be 99% faster than traditional VEP implementations
[49]. It was developed at CSIRO in collaboration with Pathology
Queensland and QIMR Berghofer (https://www.qimrberghofer.e
du.au/).

A further example of a serverless approach in bioinformatics
was presented by Grzesik et al. [20]. The authors propose, imple-
ment and evaluate the feasibility of running a basecalling pro-
cess for nanopore sequencing reads. They use AWS Lambda as
the underlying computing platform due to its computing capa-
bilities and support for Docker containers. During experiments,
the authors evaluated several basecalling tools. They determined
that three to four Lambda functions have enough computing
power to support near real-time processing of data from a single
MinION Nanopore (https://nanoporetech.com/products/minion)
device and that it is possible to scale up to 100 simultaneously
running functions in less than 1 min. The authors also suggest
that thanks to recent improvements to AWS Lambda, it is a
more promising choice for the growing number of bioinformatics
applications.

The findings of this section are summarized in Table 2.

Commonly used computing architecture

Several of the case studies in Section 4.1 share a similar archi-
tectural approach to taking advantage of serverless computing,
specifically regarding the massive parallelism that it offers. The
authors of the works identify the section of the considered
workflow that is most computationally demanding and replace
it with a three-step process. In the 1st step, data are prepared
and chunked into smaller batches. This data preparation process
is driven by the limitations on computing power available to a
single serverless function, as well as the limited execution time,
for example, only 15 min for AWS Lambda runtime. Following the
1st step, the 2nd step is triggered, in which multiple functions,
running in parallel, process previously prepared data and output

https://github.com/hyperflow-wms/hyperflow
https://github.com/hyperflow-wms/hyperflow
https://www.csiro.au/
https://gt-scan.csiro.au/
https://gt-scan.csiro.au/
https://beacon-project.io/
https://github.com/aehrc/COVID-sBeacon
https://github.com/aehrc/COVID-sBeacon
https://github.com/aehrc/sVEP
https://github.com/aehrc/sVEP
https://www.qimrberghofer.edu.au/
https://www.qimrberghofer.edu.au/
https://nanoporetech.com/products/minion

8 Grzesik et al.

Table 2. Summary of omics serverless computing case studies

System Platform(s) Workflow Algorithms/tools Benefits of using serverless
computing

Crespo-Cepeda [15] AWS Lambda SNP genotyping data mining DMET-Miner Reduced processing time
Aboukhalil [2] Cloudflare

Workers
Sequence read simulation wgsim Cost-effectiveness

Lee et al. [33] AWS Lambda DNA sequence visualisation Squiggle Parallelization, scalability,
cost-effectiveness

Niu et al. [41] AWS Lambda,
GCF

All-against-all protein
comparison

Striped Smith-
Waterman

Reduced processing time,
cost-effectiveness

Hung et al. [25] AWS Lambda,
GCF

Differentially expressed
gene determination

BWA Reduced processing time,
cost-effectiveness

Burkat et al. [12] AWS Fargate,
AWS Lambda

Molecular docking AutoDock Vina Reduced maintenance

Burkat et al. [12] AWS Fargate,
Google Cloud

Run

Gene co-expression network
construction

OSG-KINC Reduced maintenance

Burkat et al. [12] AWS Fargate,
AWS Lambda

Genotypic data analysis SoyKB Reduced maintenance

Grzesik et al. [20] AWS Lambda Nanopore read basecalling Guppy, Bonito Parallelization of processing
sBeacon [27] AWS Lambda Genomics data discovery Beacon protocol Reduced processing time,

improved privacy
GT-Scan2 [48] AWS Lambda Genomic sequence target

finding
n/a Cost-effectiveness

sVEP [49] AWS Lambda Genomic variants prediction n/a Reduced processing time

Figure 2. Diagram of commonly used architecture for serverless bioinformatics processing.

the results to shared storage. In the optional 3rd step, after all
functions from the 2nd step finish processing, data can be inte-
grated to produce final results. In all cases, the data for all steps
are stored in shared, cloud-based object storage such as AWS
Simple Storage Service, Google Cloud Storage or Microsoft Azure
Blob Storage. Although the 1st and 3rd steps can be executed by
a serverless function, local laptop or a VM running in the cloud,
the 2nd step always runs on top of a serverless platform. The
general architecture described above is presented in Figure 2.

Discussion
Since its emergence in the past decade, serverless computing
has become a mature technology capable of delivering the com-
puting power required to perform scientific calculations asso-
ciated with data processing and analysis. Serverless computing

has developed important properties that determine its appli-
cation possibilities. It is capable of delivering computational
solutions that can be scaled automatically as required. This is
important functionality for multi-omics data analysis due to
the increasing and unpredictable growth of data. Furthermore,
serverless computing is also event-driven, which allows for the
execution of data analysis in response to incoming events. For
example, a machine learning model for data clustering may
perform successive steps of data analysis. Serverless comput-
ing also eliminates operational overhead associated with the
maintenance of node farms in a data analysis cluster. This
simplifies the preparation of the computational infrastructure
and allows the preparation of the analysis pipeline to be the
primary focus. Consequently, serverless computing allows for
faster adaptation to the current demands of data analysis. This
property has been especially valuable in the case of the COVID-19

Serverless computing in omics data analysis 9

pandemic, which occurred suddenly and did not allow scientists
to prepare their current infrastructures for new data sets and
new challenges, but required integration of new data sources
and new types of data into analysis pipelines. Moreover, server-
less computing provides many built-in services for tool and
data source integration, which is especially useful in situations
which require fast adaptation, such as the pandemic. Unlike
elements of the native cloud infrastructure, under the server-
less computing model, it is not possible to over-provision the
computational resources required for particular data analysis
workflows. It is also worth noting that serverless computing
platforms are constantly expanding and offering more capa-
bilities. For example, AWS Lambda recently added support for
Docker container images, which in the future might unlock new
bioinformatics use cases and workflows. These properties have
resulted in serverless computing being used by several research
teams focused on multi-omics data analysis, suggesting that
this new medium for performing computations may also hold
advantages for the bioinformatics community.

Although serverless computing can offer substantial ben-
efits, it also comes with several drawbacks and challenges
that must be considered when implementing a new solution
or migrating an existing one. The major constraint is limited
computing capability regarding available vCPUs and memory
per single function or container. Another challenge is introduced
by limited execution time. For example, in the case of GCF, the
maximum function timeout is only 9 min. The implementation
process is often driven by both of these factors, as each step
in an implemented workflow has to execute in a constrained
environment in a limited period of time, which often requires
data to be split into multiple chunks, so that each chunk can
be successfully processed given the above constraints. This
approach is presented in Figure 2. However, this technique is
not always applicable. If a certain process requires, for example,
all data to be loaded into memory for processing, the limited
memory available to a function will not be sufficient. Such
tasks must be executed elsewhere, for example, on a traditional
VM cluster. When it comes to currently available computing
capabilities, support for GPU acceleration is very limited, with
only Azure Container Instances offering deployments with
access to GPU resources. Nonetheless, given the rapid growth
of serverless platforms, it is highly likely that more providers
will begin to offer similar support. Although local development
can be more challenging than for traditional approaches, it
has become increasingly straightforward due to support for
container images, which can also be run and tested locally. When
choosing a serverless platform, it should be noted that offerings
from major cloud providers such as AWS, Microsoft Azure or GCP
can introduce vendor lock-in, making future migration to other
platforms more difficult. That risk can however be mitigated by
taking advantage of containers and/or open-source platforms
such as OpenFaaS or Apache OpenWhisk.

Conclusions
Serverless computing is increasingly popular and is slowly
becoming an architectural element of integrative data analysis
in bioinformatics. The technology has the potential to be used
in COVID-19 related projects which demand access to large and
varied types of globally gathered data.

Ongoing development of the technology along with the emer-
gence of new services may accelerate adoption of the new com-
puting model in created analysis environments. The use cases
presented in Section 4.1 demonstrate that serverless computing

can be successfully used for performing multi-omics data anal-
yses and that, compared to alternative computing approaches,
it can provide benefits such as reduced processing time, cost-
effectiveness, reduced maintenance overhead, parallelization of
processing and improved privacy of processed data.

The use cases further demonstrate the applicability and use-
fulness of the model in the newly designed computer architec-
tures for bioinformatics. It is the belief of the authors of this work
that future improvements in serverless computing will enable
additional bioinformatic workflows that can take advantage of
such architectures.

Key Points

• Serverless computing simplifies operations associ-
ated with multi-omics data analysis in cloud environ-
ments.

• Various serverless approaches determine the way of
reusing the existing bioinformatics tools and pack-
ages.

• Hiding the complexity of deployment and software
scaling from end-users makes the parallelization of
complex analysis pipelines much easier.

• By using function-as-a-service solutions, cloud com-
puting costs may be reduced for infrequent multi-
omics calculations.

• Development of time-critical multi-omics data analy-
sis pipelines for COVID-19 patients could be acceler-
ated by using serverless computing.

Acknowledgments

This work was supported by the professorship grant
(02/020/RGP19/0184) of the Rector of the Silesian University
of Technology, Gliwice, Poland, the pro-quality grant for
highly scored publications or issued patents of the Rector
of the Silesian University of Technology, Gliwice, Poland
(grant No 02/100/RGJ21/0009), the Statutory Research funds
of Department of Applied Informatics, Silesian University of
Technology, Gliwice, Poland (grant No 02/100/BK_21/0008),
and the Polish Ministry of Science and Higher Education as
a part of the CyPhiS program at the Silesian University of
Technology, Gliwice, Poland (Contract No. POWR.03.02.00-
00-I007/17-00).

References
1. Amazon AWS Documentation. Announcing Amazon Elastic

Compute cloud (Amazon EC2)—Beta.
https://aws.amazon.com/about-aws/whats-new/2006/
08/24/announcing-amazon-elastic-compute-cloud-amazon
-ec2—beta/ (23 August 2021, date last accessed).

2. Aboukhalil R. Serverless Genomics—Using WebAssembly and
Cloudflare Workers to Power Genomics Analysis. https://roba
boukhalil.medium.com/serverless-genomics-c412f4bed726
(5 June 2021, date last accessed).

3. Angiuoli SV, Matalka M, Gussman A, et al. CloVR: a virtual
machine for automated and portable sequence analysis
from the desktop using cloud computing. BMC Bioinformatics
2011;12:356.

https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://robaboukhalil.medium.com/serverless-genomics-c412f4bed726
https://robaboukhalil.medium.com/serverless-genomics-c412f4bed726

10 Grzesik et al.

4. Anwar N, Deng H. Elastic scheduling of scientific workflows
under deadline constraints in cloud computing environ-
ments. Future Internet 2018;10(1):5.

5. Augustyn DR, Wyciślik L, Mrozek D. Perspectives of using
Cloud computing in integrative analysis of multi-omics data.
Brief Funct Genom 2021;20(4):198–6.

6. Ayres DL, Darling A, Zwickl DJ, et al. BEAGLE: an applica-
tion programming interface and high-performance com-
puting library for statistical phylogenetics. System Biol
2011;61(1):170–3.

7. Baele G, Ayres DL, Rambaut A, et al. High-Performance Comput-
ing in Bayesian Phylogenetics and Phylodynamics Using BEAGLE.
New York, NY: Springer, 2019, 691–722.

8. Bi JH, Tong YF, Qiu ZW, et al. ClickGene: an open cloud-
based platform for big pan-cancer data genome-wide asso-
ciation study, visualization and exploration. BioData Min
2019;12(12):1–15.

9. Birger C, Hanna M, Salinas E, et al. FireCloud, a scalable
cloud-based platform for collaborative genome analysis:
strategies for reducing and controlling costs. bioRxiv 2017;
209494:1–28.

10. Blatti C, 3rd, Emad A, Berry MJ, et al. Knowledge-guided
analysis of “omics” data using the KnowEnG cloud platform.
PLoS Biol 2020;18(1):e3000583–3.

11. Buntara F, Lee B, Purbojati RW, Zhou CX. Is GPUs ready
to boost genomic alignment computation. 2019 Interna-
tional Conference on Innovative Trends in Computer Engineer-
ing (ITCE), Aswan, Egypt: IEEE Press, 2019, 130–5. doi:
10.1109/ITCE.2019.8646637.

12. Burkat K, Pawlik M, Balis B, et al. Serverless contain-
ers—rising viable approach to scientific workflows. ArXiv,
abs/2010.11320, 2020, pp. 1–13.

13. Chervova O, Conde L, Afonso Guerra-Assunção J, et al. The
personal genome project-UK: an open access resource of
human multi-omics data. Sci Data 6, 257 (2019), pp. 1–10.
https://doi.org/10.1038/s41597-019-0205-4.

14. Gao N. Announcing Cloudflare Workers Unbound for General
Availability. https://blog.cloudflare.com/workers-unbound-
ga/ (5 June 2021, date last accessed).

15. Crespo-Cepeda R, Agapito G, Vazquez-Poletti JL, et al. Chal-
lenges and opportunities of Amazon serverless Lambda
services in bioinformatics. In: Proceedings of the 10th
ACM International Conference on Bioinformatics, Computa-
tional Biology and Health Informatics, BCB ’19. New York,
NY, USA: Association for Computing Machinery, 2019,
663–8.

16. Farah I, Lalli G, Baker D, et al. A global omics data sharing and
analytics marketplace: case study of a rapid data COVID-19
pandemic response platform. medRxiv, 2020.

17. Farrar M. Striped Smith-Waterman speeds database
searches six times over other SIMD implementations.
Bioinformatics 2006;23(2):156–61.

18. Feng X, Grossman R, Peakranger LS. A cloud-enabled
peak caller for chip-seq data. BMC Bioinformatics 2011;12(1):
139.

19. Frohmberg W, Kierzynka M, Blazewicz J, et al. G-DNA—a
highly efficient multi-GPU/MPI tool for aligning nucleotide
reads. Bull Pol Acad Sci 2013;61(4):989–92.

20. Grzesik P, Mrozek D. Serverless nanopore basecalling
with AWS Lambda. In: Paszynski M, Kranzlmüller D,
Krzhizhanovskaya VV, et al. (eds). Computational Science—ICCS
2021, Vol. 12743. Cham: Springer International Publishing,
2021, 578–86.

21. Heath AP, Greenway M, Powell R, et al. Bionimbus: a cloud for
managing, analyzing and sharing large genomics datasets. J
Amer Med Inform Assoc 2014;21(6):969–75.

22. Hull D, Wolstencroft K, Stevens R, et al. Taverna: a tool for
building and running workflows of services. Nucleic Acids Res
2006;34(suppl_2):W729–32.

23. Hung C-L, Chen W-P, Hua G-J, et al. Cloud computing-based
tagsnp selection algorithm for human genome data. Int J Mol
Sci 2015;16(1):1096–110.

24. Hung C-L, Lin Y-S, Lin C-Y, et al. CUDA ClustalW: an effi-
cient parallel algorithm for progressive multiple sequence
alignment on multi-GPUs. Comput Biol Chem 2015;58:62–8.

25. Hung L-H, Niu X, Lloyd W, et al. Accessible and interactive rna
sequencing analysis using serverless computing. bioRxiv,
2020.

26. Ivanov AA, Revennaugh B, Rusnak L, et al. The OncoPPi Por-
tal: an integrative resource to explore and prioritize protein-
protein interactions for cancer target discovery. Bioinformat-
ics 2017;34(7):1183–91.

27. Jain Y, Hosking B, Twine N, et al. sBeacon: cloud-native
genomic data exchange. ABACBS-2020 2020;2020(1):11.

28. Jalili V, Afgan E, Gu Q, et al. The Galaxy platform for acces-
sible, reproducible and collaborative biomedical analyses:
2020 update. Nucleic Acids Res 2020;48(W1):W395–402.

29. Joshi T, Patil K, Fitzpatrick M, et al. Soybean Knowledge Base
(SoyKB): a web resource for soybean translational genomics.
BMC Genom 2012;13(Suppl 1):S15.

30. Kavis M. Architecting the Cloud: Design Decisions for Cloud Com-
puting Service Models (SaaS, PaaS, and IaaS). Wiley CIO Series.
Hoboken, New Jersey: Wiley, 2014.

31. Krampis K, Booth T, Chapman B, et al. Cloud BioLinux:
pre-configured and on-demand bioinformatics comput-
ing for the genomics community. BMC Bioinformatics 2012;
13:42.

32. Langmead B, Nellore A. Cloud computing for genomic data
analysis and collaboration. Nat Rev Genet 2018;19(4):208–19.

33. Lee BD, Timony MA, Ruiz P. DNAvisualization.org: a server-
less web tool for DNA sequence visualization. Nucleic Acids
Res 2019;47(W1):W20–5.

34. Li C, Li K, Li K, et al. MCtandem: an efficient tool for large-
scale peptide identification on many integrated core (MIC)
architecture. BMC Bioinformatics 2019;20(397):1–13.

35. Li H, Durbin R. Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics 2009;25(14):
1754–60.

36. Li Y, Hou G, Zhou H, et al. Multi-platform omics analy-
sis reveals molecular signature for COVID-19 pathogenesis,
prognosis and drug target discovery. Sig Transduct Target Ther
2021;6(155):1–11.

37. Li Y, Chu X. Speeding up scoring module of mass spec-
trometry based protein identification by GPU. In: 2012 IEEE
14th International Conference on High Performance Computing
and Communication, 2012 IEEE 9th International Conference on
Embedded Software and Systems, Liverpool, UK: IEEE Press,
2012, 1315–20.

38. Lin B, Zhu F, Zhang J, et al. A time-driven data placement
strategy for a scientific workflow combining edge com-
puting and cloud computing. IEEE Trans Ind Inf 2019;15(7):
4254–65.

39. Masseroli M, Canakoglu A, Pinoli P, et al. Processing of big
heterogeneous genomic datasets for tertiary analysis of
next generation sequencing data. Bioinformatics 2018;35(5):
729–36.

https://doi.org/10.1109/ITCE.2019.8646637
https://doi.org/10.1038/s41597-019-0205-4
https://blog.cloudflare.com/workers-unbound-ga/
https://blog.cloudflare.com/workers-unbound-ga/

Serverless computing in omics data analysis 11

40. Mell PM, Grance T. Sp 800-145. The NIST definition of
cloud computing. Technical Report. National Institute of
Standards and Technology, U.S. Department of Commerce,
Gaithersburg, MD, USA, 2011.

41. Niu X, Kumanov D, Hung L-H, et al. Leveraging serverless
computing to improve performance for sequence compar-
ison. In: Proceedings of the 10th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics,
BCB ’19. New York, NY, USA: Association for Computing
Machinery, 2019, 683–7.

42. Oinn T, Addis M, Ferris J, et al. Taverna: a tool for the
composition and enactment of bioinformatics workflows.
Bioinformatics 2004;20(17):3045–54.

43. Registry of Open Data on AWS. https://registry.opendata.aws/
(5 June 2021, date last accessed).

44. Patel RY, Shah N, Jackson AR, et al. Clingen pathogenicity cal-
culator: a configurable system for assessing pathogenicity of
genetic variants. Genome Med 2016;9, pp. 1–9.

45. Poehlman WL, Rynge M, Balamurugan D, et al. OSG-KINC:
High-throughput gene co-expression network construction
using the open science grid. In: 2017 IEEE International Confer-
ence on Bioinformatics and Biomedicine (BIBM), Kansas City, MO,
USA: IEEE Press, 2017, 1827–31.

46. Psiuk-Maksymowicz K, Jaksik R, Placzek A, et al. Biotest—re-
mote platform for hypothesis testing and analysis of biomed-
ical data. In: Korbicz J, Maniewski R, Patan K, et al. (eds).
Current Trends in Biomedical Engineering and Bioimages Analysis.

Cham: Springer International Publishing, 2020, 152–65.
47. Qu K, Garamszegi S, Wu F, et al. Integrative genomic analysis

by interoperation of bioinformatics tools in GenomeSpace.
Nat Methods 2016;13(3): 245–7.

48. Bauer D, Hosking B. What Is “Serverless” and “Cloud-Native”
and When to Use It? https://bioinformatics.csiro.au/blog/co
nverting-traditional-architecture-to-cloud-native-applica
tions/ (5 June 2021, date last accessed).

49. Transformational Bioinformatics. Serverless VEP. https://bioi
nformatics.csiro.au/serverless-vep/ (5 June 2021, date last
accessed).

50. Tomazou M, Bourdakou MM, Minadakis G, et al. Multi-
omics data integration and network-based analysis drives
a multiplex drug repurposing approach to a shortlist of
candidate drugs against COVID-19. Brief Bioinform 2021:
bbab114.

51. Trott O, Olson AJ. Autodock vina: improving the speed
and accuracy of docking with a new scoring function,
efficient optimization, and multithreading. J Comput Chem
2010;31(2):455–61.

52. Wang L, Yang L, Peng Z, et al. cisPath: an R/Bioconductor
package for cloud users for visualization and management
of functional protein interaction networks. BMC Syst Biol
2015;9(1):S1.

53. Wilton R, Szalay AS. Arioc: high-concurrency short-read
alignment on multiple GPUs. PLoS Comput Biol 2020;16(11):
1–11.

https://registry.opendata.aws/
https://bioinformatics.csiro.au/blog/converting-traditional-architecture-to-cloud-native-applications/
https://bioinformatics.csiro.au/blog/converting-traditional-architecture-to-cloud-native-applications/
https://bioinformatics.csiro.au/blog/converting-traditional-architecture-to-cloud-native-applications/
https://bioinformatics.csiro.au/serverless-vep/
https://bioinformatics.csiro.au/serverless-vep/

	Serverless computing in omics data analysis and integration
	Introduction
	Cloud computing
	Serverless computing platforms
	Omics serverless computing
	Discussion
	Conclusions

