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Coronaviruses have lipid envelopes required for their activity. The fact that coronavirus
infection provokes the formation of cubic membranes (CM) (denoted also as
convoluted membranes) in host cells has not been rationalized in the development
of antiviral therapies yet. In this context, the role of bioactive plasmalogens (vinyl
ether glycerophospholipids) is not completely understood. These lipid species display
a propensity for non-lamellar phase formation, facilitating membrane fusion, and
modulate the activity of membrane-bound proteins such as enzymes and receptors.
At the organism level, plasmalogen deficiency is associated with cardiometabolic
disorders including obesity and type 2 diabetes in humans. A straight link is perceived
with the susceptibility of such patients to SARS-CoV-2 (severe acute respiratory
syndrome-coronavirus-2) infection, the severity of illness, and the related difficulty in
treatment. Based on correlations between the coronavirus-induced modifications of lipid
metabolism in host cells, plasmalogen deficiency in the lung surfactant of COVID-19
patients, and the alterations of lipid membrane structural organization and composition
including the induction of CM, we emphasize the key role of plasmalogens in the
coronavirus (SARS-CoV-2, SARS-CoV, or MERS-CoV) entry and replication in host cells.
Considering that plasmalogen-enriched lung surfactant formulations may improve the
respiratory process in severe infected individuals, plasmalogens can be suggested as
an anti-viral prophylactic, a lipid biomarker in SARS-CoV and SARS-CoV-2 infections,
and a potential anti-viral therapeutic component of lung surfactant development for
COVID-19 patients.

Keywords: plasmalogen, cubic membrane, coronavirus, virus-host interaction, TEM, COVID-19

INTRODUCTION

All seven coronaviruses capable of infecting humans, including severe acute respiratory syndrome-
coronavirus-2 (SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle
East respiratory syndrome coronavirus (MERS-CoV), human coronavirus OC43 (HCoV-OC43),
human coronavirus 229E (HCoV-229E), human coronavirus HKU1 (HCoV-HKU1), and human
coronavirus NL63 (HCoV-NL63), employ lipid-binding domains for viral entry into host cells,
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intracellular lipid membrane modifications and host lipid
reservoirs for viral replication and proliferation (Knoops et al.,
2008; Miller and Krijnse-Locker, 2008; Ulasli et al., 2010;
Oudshoorn et al., 2017; Abu-Farha et al., 2020). Lipids play an
essential role during viral infection involving membrane fusion of
virus to host cell, viral internalization through receptor-mediated
or lipid-microdomain-mediated endocytosis, viral replication
and viral exocytosis (Heaton and Randall, 2011; Belouzard et al.,
2012; Li, 2016; Alsaadi and Jones, 2019). Figure 1 presents
an earlier scheme about the viral entry and the replication
cycle during coronaviruses infection. An emphasis is given
on the locations of the membrane interactions, namely the
endoplasmic reticulum (ER) from where double-membrane
vesicles (DMV) and endoplasmic reticulum Golgi intermediate
compartments (ERGIC) are generated. SARS-CoV-2 virus also
enters the targeted host cell via endocytosis and fusion of the viral
membrane with the host cell membrane.

Apart from endocytosis, coronaviruses such as SARS-CoV-2
can infect cells through direct fusion with the plasma membrane
after activation of the human transmembrane protease serine
2 (TMPRSS2) (Li, 2015; Lukassen et al., 2020; Wan et al.,
2020). The TMPRSS2 protein is essential for the viral infectivity
by facilitating virus-cell membrane fusion through ACE2. The
membrane fusion process between viral and host cells is a
crucial step during coronavirus infection (Goldsmith et al.,
2004; Wu et al., 2012). After binding of the surface-exposed
spike protein trimer of SARS-CoV-2 virus to its high affinity
receptor angiotensin-converting enzyme 2 (ACE2) in the host
membranes, the viral entry occurs through fusion of glycoprotein
and remodeling of host cell membranes (Li et al., 2003, 2005;
Li, 2015; Wan et al., 2020). The membrane fusion has been
considered to be several fold more efficient than endocytosis
during viral infection. The role of lipid membrane properties
in this process have not been examined in details. Membrane
fusion of SARS-CoV and of SARS-CoV-2 results in RNA release
into the cytoplasm of host cell followed by viral replication
(Alsaadi and Jones, 2019).

The (+)ssRNA viruses exploit diverse intracellular
membranes in host cells in order to assemble RNA replication
complexes (Stapleford and Miller, 2010; Heaton and Randall,
2011) through creating compartments for viral genome
amplification. Lipids from host cells are used for generation of
lipid membrane envelope shape called double-membrane vesicles
(DMV) (Figure 1). Coronavirus-induced DMVs are formed
by protrusion and budding of the endoplasmic reticulum (ER)
cisternae followed by the detachment of closed vesicular objects
(Oudshoorn et al., 2017; Zhang et al., 2020). The organelle-like
membranous replicative structures serve as sites of viral RNA
synthesis. Of interest, they are generated through topological
transitions and curvature changes of the ER membranes. DMVs
have been observed upon remodeling of convoluted membranes
or reticulovesicular networks occurring after deformation
and compartmentization of the continuous ER membranes
(Knoops et al., 2008; Oudshoorn et al., 2017; Snijder et al., 2020;
Zhang et al., 2020).

During SARS-CoV-2 virus life, the S-protein adopts closed
and open conformations (Yan et al., 2020). High resolution
structural studies of the receptor-binding domains (RBD) of

coronavirus S proteins have established that they involve pockets
of a tube-like shape and a size, which matches that of a free
fatty acid molecule when in a closed conformation of S protein
(Yan et al., 2020). Several studies have supported the evidence
that lipid-binding domains in virus proteins are essential for
virus replication (Stapleford and Miller, 2010; Jeon and Lee,
2017; Yan et al., 2020). Moreover, it has been demonstrated
that viral proliferation requires the increased fatty acid and
cholesterol biosynthesis as well as release of free fatty acids
from lipid droplets (Su et al., 2002; Miller and Krijnse-Locker,
2008; Heaton et al., 2010; Heaton and Randall, 2010; Yin et al.,
2010; Jeon and Lee, 2017). An exogenous supply of linoleic
acid (LA) and arachidonic acid (AA) has been shown to inhibit
the viral replication of MERS-CoV and HCoV-229E (Yan et al.,
2019). LA and AA are polyunsaturated omega-6 fatty acids,
which modulate the activity of enzymes including membrane
receptor proteins and ion channels of the host cells (Das, 2018;
Das, 2020a,b,c,d, 2021).

A free-fatty-acid-binding pocket in the locked structure of
SARS-CoV-2 spike protein has been revealed by cryo-EM analysis
(Yan et al., 2020). The cryo-EM image of SARS-CoV-2 spike (S)
glycoprotein has indicated that the receptor binding domains
entrap linoleic acid (LA) in composite binding pockets present
also in the revealed 3D structures of SARS-CoV and MERS-
CoV coronaviruses. It has been emphasized that free-fatty-
acid binding pocket resembles a bent tube, which well fits
the size and shape of linoleic acid (LA) (Yan et al., 2020).
LA is a metabolic precursor of AA, which mediates host
defensive inflammatory response. The ability of SARS-CoV-2
to sequester LA in the binding pockets has been suggested
as a tissue-independent mechanism in coronavirus infection,
which leads to host inflammation process. Tight LA binding can
stabilize the locked conformation of the S-protein in SARS-CoV-
2 coronavirus, which may lead to diminished interaction with
host ACE2 receptor.

Coronavirus infection modifies both lipid composition
and membrane structure, topology and trafficking of the
host cells in order to ensure virus particle replication and
proliferation. Thus, host lipid biogenesis is crucial for the
viral life cycle and replication. Host cell lipid alterations
upon coronavirus infection have been analyzed by ultra-
high-performance liquid chromatography (UPLC) and mass
spectrometry (MS)-based lipidomics approach (Yan et al.,
2019). It has been affirmed that viral infection re-programs
host lipid metabolism for the purposes of viral proliferation
(Schoggins and Randall, 2013). Glycerophospholipids and fatty
acids (FAs) have been found to be significantly upregulated in
HCoV-229E-infected host cells. HCoV-229E viral infection has
increased the levels of lyso-phospholipids [lysoPCs (16:0/0:0)
and lysoPEs (16:0/0:0)] and also unsaturated/saturated
FAs arachidonic acid (AA), linoleic acid (LA), palmitic
acid (PA), and oleic acid (OA) (Yan et al., 2019). For
coronaviruses, the LA-AA metabolic pathway is indispensable
for host lipid remodeling (Zaman et al., 2010) and has
been highlighted as a niche for therapeutic interventions
(Yan et al., 2020).

The possibilities of targeting host lipid metabolism and host
membrane trafficking in order to inhibit the viral cycle have
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FIGURE 1 | Coronavirus replication cycle highlighting areas where membrane interaction takes place (ER, Endoplasmic reticulum; DMV, Double-membrane vesicles;
ERGIC, Endoplasmic reticulum Golgi intermediate compartments). SARS-CoV-2 viral particles consist of four proteins: S (“Spike”), M (“Membrane”), E (“Envelope”),
and N (“Nucleocapsid”). The pathway of membrane interactions involves: (1) Viral internalization through binding of the viral spike (S) protein to the membrane protein
receptor as human angiotensin-converting enzyme 2 (ACE2). The coronavirus particle enters the host cell by receptor-mediated endocytosis followed by RNA
release and translation into virus polyproteins, which encode for non-structural proteins (NSPs). (2) NSPs stimulate the production of DMV compartments and the
formation of replication transcription complexes (RTC). Translation of the structural proteins (M, E, and S) occurs in the ER membrane organelles. (3) Coronavirus
assembly occurs in the intermediate compartment between the ER and ERGIC. The protein cargos migrate through Golgi stacks resulting in new virus particles that
are embedded in vesicles (4). These vesicles can further fuse with the plasma membrane and egress. Reprinted from Alsaadi and Jones (2019) with permission.

been intensely discussed recently (Abu-Farha et al., 2020; Das,
2020a,b,c,d, 2021; Glebov, 2020; Xiu et al., 2020). Such approach
is much less susceptible to the development of viral resistance as
compared to the strategies focusing on viral mutations. Targeting
lipid metabolism thus has been suggested as an alternative
antiviral strategy (Das, 2020a,b,c,d, 2021). Figure 2 presents the
advances in antiviral drug development including (i) inhibition
of fatty acid and cholesterol synthesis, and (ii) inhibition of viral
entry, membrane fusion, or endocytosis.

Of interest, cholesterol is involved in multiple steps of
the coronavirus life cycle, and therefore targeting cholesterol
has been suggested as an antiviral strategy (Abu-Farha et al.,
2020). Cholesterol is well distributed in the microdomains of
cell membranes. Considering that microdomains are implicated
in coronavirus-host membrane interactions, drugs that alter
microdomain formation and composition have been tested in
antiviral approaches. An example of a drug with antiviral activity,
which targets lipid metabolism, is statin. It is well known that
statin impairs the biosynthetic pathway of cholesterol. As an
inhibitor of cholesterol synthesis, statin has been considered as
a generic drug against SARS-CoV-2 and other related viruses,

among other agents that are specific for inhibition of fatty acid
biosynthesis (Figure 2).

The development of therapeutic compounds that target
the cell membrane has stimulated the emergent field of
membrane lipid therapy (MLT) (Escribá et al., 2015). The
new therapeutic approach aims at regulation of the lipids in
pathological biomembranes (Escribá, 2017). Thus, the cellular
membranes, rather than specific proteins alone, constitute the
therapeutic targets. The rationale of this strategy accounts for
the fact that coronaviruses cause extensive host cell membrane
perturbations. Therefore, host membrane rearrangements have
been considered as a target as a novel remedy for antiviral
drug development.

An example of a drug for coronavirus membrane targeting
is 2-hydroxyoleic acid (Minerval R©). Minerval interacts with the
membrane lipids and modifies the composition and structure of
host cellular membrane (Prades et al., 2008). The drug influences
the phospholipid packing in the polar region of lipid bilayers at
the interface with contact proteins and increases the non-lamellar
propensity of the lipid membrane assembly. The resulting
increased bilayer fluidity may permit (i) deeper hydrophobic
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FIGURE 2 | Drug targeting strategies in viral infection exploiting the role of lipid metabolism. The scheme of the life cycle of SARS-COV-2 indicates the locations
where lipid-modifying drugs may act as broad-spectrum antiviral compounds to inhibit viral entry, membrane fusion, endocytosis or host cholesterol and fatty acid
biosynthesis. Reprinted from Abu-Farha et al. (2020) with permission.

regions of the membrane to interact with hydrophobic domains
of peripheral proteins, or (ii) fatty acid moieties of phospholipids
to protrude out of the bilayer plane. These structural effects
can activate anchored enzymes such as PKC and sphingomyelin
synthase involved in the lipid metabolism process.

Although detergents and detergent-based disinfectants may
permeabilize the lipid membrane shell of coronavirus by creating
pores and thus destroy the virion, they cannot be used as antiviral
drugs in humans because they have the risks of causing death of
the patients due to the massive destruction of cell membranes. At
variance, antiviral lipids may alter the membrane properties and
trafficking as well as affect signaling and intracellular transport
dynamics, which should be explored as antiviral strategies.

Membrane folding and formation of three-dimensional (3D)
lipid membrane topologies can be provoked by changes in the
membrane lipid composition, protein clustering, bilayer bending
caused by embedded or anchored proteins, or lipid membrane
curvature alteration under the influence of environmental
factors (Almsherqi et al., 2006). Whereas lipids of a cylinder-
like shape (like the typical glycerophospholipids) favor the
formation of lamellar structures, lipids of a truncated-cone
molecular shape tend to form curved membrane assemblies
such as bicontinuous cubic, bicontinuous sponge or inverted
hexagonal structures (Angelova et al., 2021). Among them, cubic
membranes are characterized by periodic structural arrangement
of bicontinuous lipid bilayers organized in cubic lattice networks
(Figure 3, top panel).

Bilayer lipid membranes may rearrange into 3D cubic
membranes under stress conditions, which correspond to
either altered lipid metabolism or protein overexpression
(Almsherqi et al., 2006) in disease states as well as other
types of environmental stress including viral infection (Deng
et al., 2010), pH changes, presence of ions or solutes of
increased concentrations, temperature changes, light, electric
field, etc. (Almsherqi et al., 2009). Out-of-plane membrane
shape deformations of interconnected bilayers have been termed
convoluted membranes (Knoops et al., 2008; Oudshoorn et al.,
2017; Snijder et al., 2020; Figure 3, bottom panel). Formation
of cellular cubic membranes or convoluted membranes can be
induced through reprogrammed lipid metabolism, altered lipid-
protein interactions or by specific protein-protein interactions.
Such non-lamellar structures are considered as transient
states associated with the membrane bending, instabilities and
rearrangement caused by the non-lamellar phase transition.

OPEN QUESTIONS IN THE CURRENT
FOCUS

Accumulating evidence suggests that lipid treatment of virus-
infected cells is a strategy for SARS-CoV-2 inhibition (Das,
2020a,b,c,d, 2021). Whereas the role of different phospholipid
and fatty acid types has received prior attention in the pathology
of cardiometabolic disorders, obesity, and type 2 diabetes, the
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FIGURE 3 | Top panel: Cubic membrane topology represented by a mathematical model of the lipid bilayer organized on a 3D cubic lattice (A) and 2D-projected
transmission electron microscopy (TEM) image of cubic membranes found in the mitochondria of 10-day starved ameba Chaos cells (B). Scale bar: 500 nm.
Reprinted from Deng and Almsherqi (2015) with permission. Bottom panel: TEM images of interconnected convoluted membrane structures (CM) induced by
MERS-CoV infection in mammal Huh7 cells (left) and SARS-CoV and HCoV-229E coronavirus induced convoluted membranes (CM), double-membrane vesicles
(DMV), and double-membrane spherules (middle and right). Scale bars: 250 nm. Reprinted from Snijder et al. (2020) with permission.

question regarding how to exploit the individual lipid classes
against coronavirus SARS-CoV-2 entry and replication is still at
an initial stage of comprehension. Arachidonic acid and other
polyunsaturated fatty acids, as well as their derived metabolites,
have been proposed to serve as antiviral molecules to inactivate
the enveloped viruses and inhibit their proliferation (Das,
2020a,b,c,d, 2021). However, are there other antiviral lipid species
to offer the options for the treatment?

Here we focus on the special phospholipid class of
“plasmalogen,” the bioactive molecules as antiviral prophylactics
and potential constituents of combination treatments against
COVID-19. Plasmalogens are special ether phospholipids that
are critical for cell membrane integrity in terms of structure and
function. In addition to their role as key membrane components,
they are involved in the regulation of cholesterol homeostasis
and macrophage phagocytosis in addition to immunomodulation
(Figure 4). Moreover, their antioxidant properties may determine
the outcome of host illness during viral infections. Biosynthesis
of endogenous plasmalogens requires functional peroxisomes,

the oxidative cell organelles in almost all the eukaryotes. The
deficiency of plasmalogens implicated in cardiometabolic and
multiple neurodegenerative diseases may render humans host
susceptible to SARS-CoV-2 (COVID-19) and other similar viral
infections (SARS-CoV or MERS-CoV).

The plasmalogen lipid type has received less attention in
the comprehension of the coronavirus infection and therapy
as compared to free fatty acids like linoleic acid (LA) and
arachidonic acid (AA) (Das, 2020c; Yan et al., 2020). It is of
current interest to explore how plasmalogens may participate
in the stages of virus-host interaction process including:
(1) viral entry host cells via non-receptor microdomain-
mediated endocytosis pathways; (2) lipid-modulated host
innate immune response; (3) virus-induced host membrane
rearrangements, especially cubic membrane (CM) formation.
Plasmalogen deficiency, due to impaired nutrition, stress
and contemporary lifestyles, does not support host CM
formation during viral infections. It will be emphasized
here that induced host CM architectures may serve as an
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FIGURE 4 | Top panel: General chemical structure and multiple biological functions of bioactive plasmalogens. Bottom panel: Chemical structures of exemplary
ether phospholipids (plasmalogens) involving arachidonic acid (AA) and docosahexaenoic acid (DHA) chains, e.g., 1-(1Z-hexadecenyl)-2-arachidonoyl-sn-glycero-3-
phosphoethanolamine [C16(Plasm)-20:4 PE] and 1-(1Z-hexadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine [C16(Plasm)-22:6 PE].

evolutionally conserved antioxidant defense system to favor viral
proliferation in a controlled manner and also the fast return of
host homeostasis.

Another question is whether a host response treatment
approach to viral infections may essentially reduce the severity
of COVID-19 illness and improve patient survival. In fact, the
balanced immune and inflammatory response is the key for
host to live and not to die after SARS-CoV-2 infection. The

shift of virus-targeted therapies to host response treatment,
especially lipid and membrane factors, might be an alternative
solution for the host survival. The presented concept here
is based on our previous opinion paper “Do viruses subvert
cholesterol homeostasis to induce host cubic membranes?”
(Deng et al., 2010). We further ask the questions: (i) What is the
role of plasmalogens in the remodeling of host lipid membrane?
and (ii) What would be the role of plasmalogens in antiviral
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therapy? Moreover, the potential applications of plasmalogen-
preconditioning treatment and prophylaxis are discussed.

THE SIGNIFICANCE OF PLASMALOGEN
LIPID CLASS

Plasmalogens constitute a class of ether phospholipids containing
a fatty alcohol with a vinyl-ether bond at sn-1 position
and a polyunsaturated fatty acid at sn-2 position of the
glycerol backbone (Figure 4). Compared to their diacyl
counterparts, plasmalogens appear to be highly fusogenic lipids
(Glaser and Gross, 1995) enriched in lipid microdomains
(Pike et al., 2002) and tend to form more densely packed
and thicker bilayer membranes (Rog and Koivuniemi, 2016).
Plasmalogens are significant structural components of various
subcellular organelle membranes including nucleus, endoplasmic
reticulum (ER), post-Golgi network and mitochondria (Honsho
et al., 2008). Plasmalogens are determinants in membrane
dynamics and trafficking. A recent structural study has revealed
that they can strongly influence the membrane thickness
and curvature (Angelova et al., 2021). They also serve as
endogenous antioxidants, protect against ROS, and prevent
lipoprotein oxidation.

Plasmalogens are abundant in human brain, heart, kidney,
lung, skeletal muscle and immune cells (Braverman and
Moser, 2012). Lipidomic profiling of multiple human cohorts
have identified negative associations between plasmalogens and
obesity (Weir et al., 2013), type 2 diabetes (Meikle et al., 2013)
and cardiovascular diseases (Meikle et al., 2011), supporting the
concept of the vital role of plasmalogens in the prevention of
cardiometabolic diseases (Paul et al., 2019).

Plasmalogens are prominent for regulation of cholesterol
homeostasis (Honsho et al., 2015), which has previously
attracted great attentions as a key host factor during multiple
viral infections (Deng et al., 2010). Having both enriched in
lipid microdomains (Pike et al., 2002), the existence of a
metabolic relationship between cholesterol and plasmalogen is
therefore directly emergent. Fedson et al. (2020) proposed the
prophylaxis use of statins (generic drug to lower cholesterol)
for the previous epidemic and current pandemic including
influenza (Fedson, 2006), Ebola (Fedson, 2016) and COVID-
19 (Fedson et al., 2020). Statin drugs display anti-inflammatory
and immunomodulatory effects in the host response treatment
approach. Despite that the potential use of plasmalogens in
achieving cholesterol homeostasis has been proposed as an
alternative to statin therapy (Mankidy et al., 2010), further studies
are required toward the translation of plasmalogens into future
clinical applications.

Plasmalogens, by virtue of their vinyl ether bond and
enrichment in PUFAs moieties (AA and DHA chains), play
vital roles in many cellular processes. They provide unique
membrane structural attributes to potentially modulate lipid-
associated signaling pathways and protecting important
macromolecules (nucleic acids and lipids) from oxidative
damages (Almsherqi et al., 2008; Deng and Almsherqi (2015).
Their metabolic products of DHA and AA derived from

physiological breakdown of plasmalogens via phospholipase
A2 (PLA2) have been shown to increase the expression
of inflammatory cytokines, which also increase the
activity of plasmalogen-specific PLA2 (Farooqui, 2010).
The neuroinflammatory modulation of plasmalogens has
been reported in a couple of studies (Ifuku et al., 2012;
Katafuchi et al., 2012).

VIRAL ENTRY DEPENDS ON HOST
MEMBRANE LIPID COMPOSITIONS: A
FOCUS ON PLASMALOGENS

Viral infection initiates with the virus particles crossing the
host plasma membrane, often via receptor-mediated endocytosis
pathway (Figure 1). However, an alternative non-receptor
lipid-microdomain-mediated endocytosis and membrane fusion
process may proceed as well. The non-specific lipid-mediated
viral entry may possibly explain the puzzling zoonotic viral
transmission via jumps of pathogenic viruses between different
species (e.g., from bat to human). Even though virions
mainly enter host cells through specific proteinaceous receptors,
such as ACE2/TMPRSS2 in the case of SARS-CoV-2, the
strengthened or weakened attachment and entry of viruses
depend on the lipid composition of viral envelopes in addition
to host plasma membranes. Although plasmalogens similar to
cholesterols have been found to be enriched in membrane
microdomains (Pike et al., 2002), the scarce plasmalogen research
somehow impedes our understandings of this special lipid class
and the potentially significant roles they may act in virus-
host interactions.

The increased levels of plasmalogens have been detected
in the serum of ZIKA infected subjects (Queiroz et al.,
2019) and chronic HBV patients (Schoeman et al., 2016).
The strong enrichment of plasmalogens has been noticed in
virion lipidome of human cytomegalovirus (Liu et al., 2011)
and HIV (Brugger et al., 2006). Moreover, the virus-induced
alterations in both plasmalogen levels and peroxisome activity
have been examined at host level (Satoh et al., 1990; Farooqui
and Horrocks, 2001; Dixit et al., 2010; Odendall and Kagan, 2013;
Martin-Acebes et al., 2014).

The endogenous biosynthesis of plasmalogens requires
functional peroxisomes in almost all the eukaryotes. Peroxisomes
are the important host organelles where certain viral replication
may take place (Cook et al., 2019). Peroxisome plasticity in
virus-host interaction and its role as double-edged sword
in multiple viruses’ infections have attracted great attention
recently. The increased levels of plasmalogens in the serum
of ZIKA (flavivirus) viral infected subjects suggested a strong
link between ZIKA virus life cycle and host peroxisomes. The
observation that flaviviruses induce peroxisome-mediated
lipid alterations in the host cells may further explain the
established upregulation of plasmalogens in the serum
of ZIKV infected patients (Martín-Acebes et al., 2019;
Queiroz et al., 2019). Meanwhile, plasmalogen PC was also
reported to play a pivotal role in influenza virus infection
(Tanner et al., 2014).
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CORONAVIRUS-INDUCED HOST CUBIC
MEMBRANE FORMATION FOR BOTH
VIRUS AND HOST FITNESS

Severe acute respiratory syndrome-coronavirus infection induces
multiple alterations of the lipid membrane architecture in
the host cells. Remodeling of endoplasmic reticulum (ER)
cisternae upon coronavirus infection starts with detachment of
closed vesicular objects called double-membrane vesicles (DMV)
(Alsaadi and Jones, 2019; Zhang et al., 2020). In addition
to the generation of DMV lipid envelopes (referred to as
coronavirus replication organelles), the host membrane may
adopt 3D topologies called “convoluted membranes” (Knoops
et al., 2008; Zhang et al., 2020). They form through fusion of
multiple DMV or other type of structural transitions (Knoops
et al., 2008). Examples of such host membrane rearrangements
are illustrated by the transmission electron microscopy (TEM)
images in Figure 5.

In the absence of a clear appreciation of the 3D nature
of cytomembraneous inclusions observed in the TEM
micrographs of virus-induced host membrane complexes,
various terminologies have been used to denote the formation
of 3D non-lamellar assemblies of folded membranes (Almsherqi
et al., 2005). For instance, “tubule-crystalline inclusions” have
been described in HCV-infected liver, “convoluted membraneous
mass” in viral St. Louis Encephalitis, and “tubule-reticular
structures (TRS)” in AIDS as well as in multiple coronavirus
infections including SARS-CoV infected Vero cells (Goldsmith
et al., 2004; Almsherqi et al., 2005). TRS has been considered
as a specific ultrastructural marker of AIDS in various organs
(Maturi and Font, 1996). Most of the time, the 3D membrane
rearrangements, observed also in MERS-CoA infected Huh-7
cells (Oudshoorn et al., 2017) and coronavirus MHV infected
Hela cells (Ulasli et al., 2010; Figure 5) have been termed
“Convoluted Membranes” (Knoops et al., 2008; Oudshoorn et al.,
2017; Snijder et al., 2020; Zhang et al., 2020). They have been
unified by the name “Cubic Membranes” in the last decade (Deng
et al., 2010; Deng and Almsherqi, 2015).

Using the direct template matching method in electron
microscopy, we have characterized TEM micrographs of host
membrane rearrangements, induced by multiple viral infections,
as Cubic Membranes (CM) (Almsherqi et al., 2006; Deng
et al., 2010). Although the molecular mechanisms behind viral-
induced host CM remains unclear, CM was proposed to act as
antioxidant defense system in ameba Chaos cell model (Deng
and Almsherqi, 2015; Deng et al., 2017). This concept fairly
supports our current hypothesis that virus-induced CM may not
only benefit for viral proliferations in terms of viral assembly
and egress (Figure 5A), but CM may also help the return of
host homeostasis by mitigating the oxidative damages (Deng and
Almsherqi, 2015) during viral infection to further promote cell
survival (Chong et al., 2018).

In addition to the antioxidant properties of CM
nanostructures, plasmalogens pre-conditioning treatment
or supplementation may determine the degree of host CM
abundance during viral infections. This hypothesis is based on

our findings from ameba cell model system (Chong et al., 2018).
We have previously asked an intriguing question whether viruses
subvert cholesterol homeostasis to induce host CM (Deng
et al., 2010). At that time, we were not aware of the emergent
links of plasmalogens in multiple viruses’ life cycle and the
corresponding host CM formation. At present, we highlight
the close relationship between plasmalogen and cholesterol
metabolism as both species are enriched in membrane rafts
microdomains. These microdomains and their associated lipid
molecular types might have been overlooked in the process
of viral entry and host immune signaling. Plasmalogen pre-
conditioning is indispensable in ameba CM formation under cell
starvation stress conditions, and it may also apply to host stress
response during coronavirus infections. Therefore, the role of
CM in the virus-host interaction and balance, host cell response
and survival appear of significance.

PEROXISOME-MEDIATED ANTIVIRAL
IMMUNE SIGNALING: A FOCUS ON
PLASMALOGENS

The host response to infection may turn out to be the key
determinant of pathogenesis of emergent infectious diseases
including the current COVID-19 pandemics. The first step
of virus life cycle is to enter the host cells by crossing the
plasma membrane, where the lipid composition might be very
crucial. Upon viral infections in humans, peroxisomes act as vital
immune signaling organelles, aiding the host by orchestrating
antiviral signaling (Cook et al., 2019). Peroxisomes are critical
host organelles emerging as a double-edged sword during the
progression of viral infections. These cellular organelles, that
both host or kill pathogen, can make use of their functions to
achieve host antiviral defense or to be hijacked to serve for viral
proliferation (Karnati and Baumgart-Vogt, 2008).

The peroxisome was first recognized as a key subcellular
signaling center upon the discovery of mitochondrial antiviral
signaling (MAVS), an innate host immune response. MAVS,
previously thought to be exclusive to the mitochondria, mounts
up a rapid antiviral reaction. However, combined with the known
detoxification functions of peroxisomes, the recognition of
peroxisomal MAVS has resulted in the realization of peroxisomal
role in host defense as an antiviral signaling organelle. This was
supported by the studies of human cytomegalovirus (HCMV)
and herpes simplex type 1 (HSV-1) infections, along with the
discovery that these viruses promotes host peroxisome biogenesis
during infections (Beltran et al., 2018). Certain cellular lipids,
including very-long-chain fatty acids (e.g., DHA) and ether lipids
(e.g., plasmalogens), can only be synthesized in peroxisomes.

Plasmalogens, the peroxisome-synthesized lipids are
intriguing candidates for various viral infection-induced
cell processes, including the construction of viral envelopes,
modulation of host cholesterol homeostasis, and maintenance
of virus-host balance and fitness. With the knowledge that
plasmalogens are enriched in HCMV virions, Liu et al. (2011)
have proposed that peroxisomal lipid metabolism might be
a general feature of enveloped virus infections. In support of
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FIGURE 5 | Multiple examples of coronavirus-induced cubic membrane (CM) formation in the host cells. (A) SARS-CoV, 3d post-infection (p.i.) Vero-E6 cell with
virus particles egress (Goldsmith et al., 2004) (B) MERS-CoV nsp3-6, 24h post-transfection, Huh-7 cell (Oudshoorn et al., 2017). (C) MHV-59, 8h p.i.
HeLa-CEACAM1a cell (Ulasli et al., 2010); (D) SARS-CoV (nsp3 + nsp4), 24h post-transfection, 293T cell (Oudshoorn et al., 2017).

this, one study of influenza virus, another RNA virus, showed
that host ether lipid metabolism was required and enhanced
upon infection, and that peroxisome-derived plasmalogens were
enriched in influenza virions (Tanner et al., 2014). Plasmalogen
lipids are the key component of several enveloped viruses,
including HCMV (Liu et al., 2011), WNV (Martin-Acebes et al.,
2014), and influenza. We thus highly suspect that this may also
apply to SARS-CoV-2. In this perspective, further lipidomic
analysis of COVID-19 samples will be required for a more
detailed picture.

THE ROLE OF PLASMALOGENS IN
HOST IMMUNE RESPONSE DURING
VIRAL INFECTION: A FOCUS ON
MACROPHAGES

Macrophages, as the professional phagocytes of host immune
system, are capable of detecting and clearing invading pathogens
(e.g., viruses) and damaged cells through phagocytosis.

Macrophages are essential in host innate immunity and
tissue homeostasis in addition to inflammatory modulation
and response. Plasmalogen deficiency in macrophages was
associated with their reduced phagocytosis, and this reduction
was significantly reversed when the cells were exposed to
lyso-plasmalogen PE (Rubio et al., 2018). In parallel, restoration
of plasmalogen level in macrophages also increased the
number and size of lipid microdomains in the membranes of
macrophages. The exogenous administration of plasmalogens
was thus considered as a potential strategy to optimize the
functions of macrophages.

A study on human monocyte to macrophage differentiation,
performed by a bioinformatic approach combined with
transcriptomic and lipidomic analyses (Wallner et al., 2014), has
demonstrated that plasmalogen PE is a potential biomarker of
immune system activation. The authors have further pointed out
that the dysregulation of monocyte-macrophage differentiation is
a hallmark of vascular and metabolic diseases and associated with
persistent low grade of inflammation. In parallel, diminished
plasmalogen levels have been observed in the obese subjects
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(Wallner et al., 2014). All these findings have brought our deep
interest to the potential link of host plasmalogen dysregulation
and high morbidity and mortality of COVID-19 patients.

Another related ether lipid, such as platelet-activating factor
(PAF), may participate in the severe pathology of COVID-19
pneumonia as well. PAF was the first intact phospholipid known
to have messenger functions and a mediator of inflammation
in the mechanism of human immune response (review see
Lordan et al., 2019). PAF is powerful for the activation of
human inflammatory cells at extremely low concentrations,
which imparts a hormone-like character. PAF is present in
many cell types, especially those involved in host defense
such as platelets, endothelial cells, neutrophils, monocytes
and macrophages. PAF has evolved as a part of protective
mechanism in host innate defense system, and with a number
of pro-inflammatory properties necessary for host protection
from pathogenic insults. When produced in an uncontrolled
manner, PAF may have extremely harmful effect, including blood
clotting problem which has been reported in severe COVID-
19 illness. The relation of PAF precursors to plasmalogen
metabolites is indicated in Figure 4 as a part of the ether
lipid role overview.

The increased plasmalogen content may induce the formation
of lipid rafts microdomains and further improve the recruitment,
oligomerization, and interaction of receptors and signaling
proteins involved in the phagocytosis of macrophages.
Plasmalogens also reduce the non-lamellar-to-lamellar phase
transition temperature, exhibiting a high propensity to form non-
lamellar phase structures (Lohner et al., 1991). The non-lamellar
structural intermediates are indeed essential for membrane
fusion process. The increased abundance of plasmalogens
carrying the polyunsaturated fatty acid moieties in the serum
of ZIKA patients may explain its important implication in
viral particle fusion with host cell membranes. On the other
side, polyunsaturated AA and DHA fatty acids carried by
plasmalogens are the substrate sources for generation of soluble
lipid mediators, which participate in host immune signaling and
inflammatory responses.

POTENTIAL ROLE OF PLASMALOGENS
IN THE CYTOKINE STORM OBSERVED
IN COVID-19 PATIENTS. INTERPLAY
WITH A LIPID STORM

Cytokines are a diverse group of small proteins that are
secreted by cells for the purposes of intercellular signaling and
communication. They include interferons (IFNs), interleukins
(ILs), chemokines, and tumor necrosis factors (TNFs). The
multiple functions of cytokines span from control of cell
proliferation and differentiation to immune and inflammatory
responses, which are highly relevant to developing viral
infections (Barry et al., 2000; Imashuku, 2002; Yokota, 2003;
Jahrling et al., 2004; Huang et al., 2005) such as SARS-CoV-
2 (COVID-19) (Castelli et al., 2020; Leisman et al., 2020;
Mulchandani et al., 2020).

The devastating “cytokine storms” occurs when the host
immune homeostasis is broken due to viral infection and
inflammatory responses flaring out of control. They are
associated with a wide variety of infectious and non-infectious
diseases and may even be an unfortunate consequence of
therapeutic intervention attempts. Increased inflammation and
a cytokine storm characterize the COVID-19 cases by severe
pneumonia that can decompensate to an acute respiratory
distress syndrome (Castelli et al., 2020; Leisman et al., 2020;
Mulchandani et al., 2020).

In addition to the recognized cytokine storm previously
documented (Castelli et al., 2020; Leisman et al., 2020;
Mulchandani et al., 2020), analyses of lung fluids of SARS-
CoV-2-infected patients have indicated that a “lipid storm” also
occurs. Using liquid chromatography combined with tandem
mass spectrometry, a recent report has quantified several lung
bioactive lipids and has evidenced that the “lipid storm” in
severe SARS-CoV-2 infections involves both pro- and anti-
inflammatory lipids (Archambault et al., 2020). Bronchoalveolar
lavages of severe COVID-19 patients contained large amounts of
the bioactive lipids prostaglandins (PGs), leukotrienes (LTs), and
thromboxanes (TXs) (Archambault et al., 2020). The established
increased oxidative bust in the lungs of severe COVID-19 patients
has pointed out the importance of the lipid storm taking place in
the lungs of pneumonia patients.

The role of plasmalogens in the cytokine and lipid
storms remains to be experimentally elucidated. Figures 6, 7
summarize the pathways of plasmalogen turnover, remodeling
and degradation, which help identifying the metabolites and the
products that may trigger uncontrolled inflammatory responses.

Plasmalogens often carry PUFAs, which can be either of
the omega-6 (pro-inflammatory) or of the omega-3 (anti-
inflammatory) families (e.g., AA or EPA and DHA). Both types
can be catalyzed by cyclooxygenase (PGs, TXs) and lipoxygenase
(LTs) in the production of eicosanoids [prostaglandins (PGs),
thromboxanes (TXs), and leukotrienes (LTs)] (Figure 7).
The balance between these two families is important for the
host immune homeostasis, which determines the potential
development of undesired lipid storm. The controlled
formation of eicosanoids is regarded as beneficial because
it may help optimize cellular defensive reactions against the
invading pathogens including SARS-CoV-2. However, excessive,
uncontrolled production of eicosanoids is associated with the
“lipid storm” (Archambault et al., 2020). Eicosanoid signaling is a
pro-inflammatory component of innate immunity as the cytokine
signaling. Unfortunately, lipid storm can be self-destructive in
interplay together with the peptide-mediated cytokine storm.
Devastating consequence may emerge in the lungs and spread to
other tissues in the body of severe COVID-19 patients.

Plasmalogens, enriched in leukocytes, are one of the primary
targets of hypochlorous acid (HOCl) due to the sensitivity of
the vinyl ether bond to oxidative agents (Figure 6; Üllena et al.,
2010; Braverman and Moser, 2012). The ether lipids, in contrast
to their counterpart ester phospholipids, are the targets of HOCl
generated by leukocyte myeloperoxidase as a part of the immune
defense reaction (respiratory bust). The direct products, α-chloro
fatty aldehyde and lysophospholipids, may produce a family
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FIGURE 6 | Two pathways of plasmalogen turnover, remodeling and degradation: (1) Through phospholipase A2 (PLA2) and (2) through oxidative stress.
Plasmalogens are one of the primary targets of HOCl due to sensitivity of the vinyl-ether bonds to oxidation. X denotes the polar head group, which is typically
ethanolamine or choline. R1 denotes the carbon chain at the sn-1 position, and R2 at the sn-2 position. Reprinted from Braverman and Moser (2012) with
permission.

of chlorinated lipids that can regulate inflammatory responses.
Further inflammatory cascades may deplete the plasmalogen
levels (Braverman and Moser, 2012).

In addition to this breakdown due to oxidative stress,
plasmalogens can be hydrolyzed by phospholipase A2 (PLA2)
into products like lyso-pPE and PUFAs (AA, EPA, or DHA)
(Üllena et al., 2010). The lysophosphatidylethanolamine
plasmalogen (lyso-pPE) has been identified as a self antigen
for natural killer T cells (NKT cells). It is important for the
development, the maturation, and the activation of iNKT cells
in the thymus, which is vital for innate immunity (Facciotti
et al., 2012; Ni et al., 2014). The lyso-pPE is very potent
at low nanomolar concentrations and may induce cytokine
release from freshly isolated iNKT cells. While this activity is
important in immunomodulation, which has been considered
as a sensor of inflammation, the proper stimulation of iNKT
cells is significant for the protection against autoimmunity
(Van Kaer et al., 2013).

To our knowledge, there are no reports on how PUFA
metabolism (PGs, LTs, TXs) can be altered by plasmalogens in
order to clarify their impact on cytokines. The essential PUFAs
metabolism and its role in inflammation have been reviewed by
Das (2019) with a special focus on eicosanoids [prostaglandins
(PGs), leukotrienes (LTs), and thromboxanes (TXs)]. Eicosanoids

and docosanoids are important signaling molecules produced by
the oxidation of omega-6 arachidonic acid (AA) or other omega-
3 PUFAs, eicosapentaenoic acid (EPA) and docosapentaenoic
acid (DHA) from the cell membrane phospholipid pool. Das
(2021) has drawn attention to the fact that pro-inflammatory
metabolites like prostaglandin E2 (PGE2) and leukotrienes (LTs)
(derived from AA) and anti-inflammatory lipoxin A4 (LXA4) as
well as resolvins, protectins, and maresins (derived from EPA and
DHA) facilitate the generation of M1 (pro-inflammatory) and
M2 (anti-inflammatory) macrophages, respectively. Moreover,
AA, PGE2, and LXA4 among others inhibit the synthesis
of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)
(Das, 2019, 2021).

Despite that eicosanoid and cytokine storms are not well
characterized in coronavirus infection yet, published works
indicate that lipid (eicosanoid and related bioactive lipid
mediators) storm might occur before the cytokine storm
(Figure 8). Coronavirus SARS-CoV-2 infection triggers
endoplasmic reticulum (ER) stress response, which may
be followed by subsequent eicosanoid and cytokine storms
(Hammock et al., 2020). Targeting of the proinflammatory
eicosanoids, including PGs, LTs, TXs, would be beneficial
for diminishment of the ER stress. With the contribution of
lipidomics, a better understanding of the eicosanoid storm,
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FIGURE 7 | Essential fatty acids in inflammation and potential “lipid storm” in severe COVID-19 patients. Scheme of eicosanoid and related bioactive lipid mediators
production due to metabolic pathways of fatty acid alteration (eicosanoid related precursors). Reprinted from Zurrier (1991) with permission.

preceding the cytokine storm in severe inflammation (Figure 8),
should provide insights toward new strategies for management
of coronavirus infection.

Taken together, coronavirus infection is associated with
both inflammation and metabolic disorders. Such disorders
cause durable damage of subcellular organelles including
mitochondrial defects and endoplasmic reticulum (ER)
dysfunction (Hotamisligil, 2006). Mitochondrial defects and ER
dysfunction are crucial in the activation of various inflammatory
pathways and widespread inflammatory responses (Figure 8).
Figure 9 represents the impact of the lipid-mediated and
cytokine-mediated metabolic and inflammatory cascades at the
organelle level. In a further step, this impact should be considered

at the lipid membrane level, where the plasmalogen lipid type
plays an important role. Plasmalogens yielding docosanoids
[bioactive oxygenated polyunsaturated fatty acids (22:6n-3)
containing 22 carbons] with anti-inflammatory functions might
be the key lipid components helping to inhibit the inflammation.

Regarding the potential role of plasmalogens in cytokine
storm seen in COVID-19, we speculate that the host immune
homeostasis is broken in response to coronavirus infections.
However, with the sufficient level of membrane plasmalogens, it
may support the host viral-induced CM formation (Deng et al.,
2010). CM formation can lower the oxidative damage (Deng
and Almsherqi, 2015; Deng et al., 2017) and promote the quick
return of host immune homeostasis, otherwise the host may have
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FIGURE 8 | Lipid (eicosanoid) storm may occur before the cytokine storm in SARS-CoV-2 infection. Eicosanoids are bioactive lipid mediators derived from
oxygenated polyunsaturated fatty acids (PUFAs). Reprinted from Hammock et al. (2020) with permission.

FIGURE 9 | Severe infections trigger inflammatory responses, ER stress and mitochondrial organelle dysfunction through lipid-mediated and cytokine
peptide-mediated mechanisms. Reprinted from Hotamisligil (2006) with permission.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 March 2021 | Volume 9 | Article 630242

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-630242 March 8, 2021 Time: 17:12 # 14

Deng and Angelova Plasmalogens Role in Coronavirus Infection and Therapy

higher risk of developing the uncontrolled lipid storm and further
entangled with cytokine storms.

PLASMALOGENS IN LUNG
SURFACTANT AND ANTIVIRAL
PULMONARY SURFACTANT THERAPIES

Coronavirus infection impairs the capacity of the type 2 alveolar
epithelium cells to synthesize and secrete pulmonary surfactant
required for normal breathing and oxygenation (Schousboe
et al., 2020; Zheng et al., 2020). In healthy individuals, lung
surfactant covers the alveolar surface, facilitates breathing, and
prevents the lungs from collapsing (Hallman et al., 1982;
Daniels and Orgeig, 2003). Dysfunctional endogenous lung
surfactant in the patients with severe respiratory pathologies
provoked by SARS-CoV-2, may be due to the decreased
concentrations of surfactant phospholipid and proteins, the
altered lung surfactant metabolism and composition, or oxidative
inactivation of surfactant proteins (Ahmed et al., 2020;
Schousboe et al., 2020). Considering that pulmonary surfactant
synthesis is diminished by the severe acute respiratory syndrome-
coronavirus-2 pathology, potential therapies of COVID-19
caused pneumonia may include exogenous lung surfactant
replacement or delivery to compensate the deficiency of
surfactant lipids, which are strongly associated with lung
pathogenesis (Mirastschijski et al., 2020).

There is a close interaction and crosstalk between lung
surfactant and phagocytosis behavior of alveolar macrophages
(Juers et al., 1976; Spragg et al., 2004; Diler et al., 2014; Tschernig
et al., 2016). Interestingly, the alveolar macrophages do not kill
in vitro the pathogens unless the latter have been incubated
with alveolar lining material (i.e., lung surfactant) before their
phagocytosis. Although plasmalogens in lung surfactant are not
the major components of the phospholipid mixture, they have
been reported to significantly reduce surface viscosity and surface
tension (Rüdiger et al., 1998, 2005; Zhuo et al., 2021). The role
of plasmalogens in facilitating membrane fusion has been well
recognized (Marrink and Mark, 2004). In this regard, studies with
fibroblasts derived from plasmalogen-deficient human patients
have shown marked inhibition of exocytosis and endocytosis
processes (Perichon et al., 1998; Thai et al., 2001).

Lung surfactant is a multicomponent mixture of lipids
(phospholipids, triglycerides, fatty acids, and cholesterols),
surfactant proteins, and a small amount of carbohydrates
(Bernhard, 2016; Schousboe et al., 2020). The lipid components
comprise saturated and unsaturated phospholipids, neutral
lipids, and ether lipids (plasmalogens). Phosphatidylcholine (PC)
is the predominant lipid class accounting for about 50% of the
phospholipids of lung surfactant. Phosphatidylethanolamine
(PE) accounts for up to 20% of phospholipids, whereas
phosphatidylserine (PS), phosphatidylinositol (PI), and
phosphatidylglycerol (PG) constitute 12–15% of the total
phospholipid content of lung surfactant. The antiviral activity of
the lung surfactant might be due to the pulmonary lipids that
may inhibit virus-mediated host inflammation and infection.
Of interest, surfactant-associated proteins are required for

the formation of tubular myelin (described by a deformed
P-based cubic membrane surface) (Larsson and Larsson,
2014) which promotes the adsorption of lipid molecules at
the air/water interface and play a role in the monolayer film
stability (Figure 10).

Plasmalogen is the minor trace but critical component of lung
surfactant. This ether phospholipid, together with cholesterol and
surfactant-associated proteins, regulate the surfactant monolayer
stability and viscosity. Another key feature is that plasmalogens
act as antioxidants and protect alveolar cells from oxidative stress
that often encountered at alveolar surface (Zhuo et al., 2021).
Plasmalogens may contribute to substantial lowering the surface
tension (Rüdiger et al., 1998) and viscosity (Rüdiger et al., 2005)
of the lipid mixture. It has been emphasized that lower surfactant
viscosity may enhance the clinical response to the therapy of
respiratory pathology (Bernhard, 2016).

Quantitative lipidomic analysis of mouse lung during
postnatal development, using electrospray ionization tandem
mass spectrometry, has determined the individual plasmalogen
lipid types in the pulmonary surfactant (Karnati et al., 2018).
Phosphatidylethanolamine (PE)-based plasmalogens have been
found to be much more abundant as compared to ether-
phosphatidylcholines (PC) during the postnatal mouse lung
development. Figure 11 shows that PE-based plasmalogens
comprise a high content of 20:4, 22:6, 22:5, and 22:4 chains
likely to be arachidonic acid (AA), docosahexaenoic acid (DHA),
docosapentaenoic acid (DPA), and adrenic acid-rich plasmalogen
derivatives. Evidently, this lipid content determines the capacity
of the lung surfactant to protect the alveolar epithelium cells
from hypoxia and ROS-mediated stress and to reduce the risk of
respiratory distress diseases.

Recently, it has been claimed that the lung injury caused by
SARS-CoV-2 coronavirus in the pulmonary tissue of COVID-
19 pneumonia patients developing acute respiratory distress
syndrome (ARDS) strongly resembles the effects of neonatal
respiratory distress syndrome (NRDS) (Schousboe et al., 2020).
Both disorders are associated with lung surfactant deficiency
(Mirastschijski et al., 2020). The clinical consequences from the
impact of SARS-CoV-2 on the alveolar type II cells, and the
production and turnover of pulmonary surfactant, are associated
with alveolar collapse and inflammation, which leads to increased
capillary permeability, edema, and microvascular thrombosis
(Figure 12). The viral infection may cause alterations in the
whole lung lipid composition. Moreover, vascular permeability
increases as the pulmonary pathology progresses and the
pulmonary surfactant gets deactivated, which makes the lungs
unstable with time (Walmrath et al., 1996).

It has been proposed that early administration of natural lung
surfactant may improve the pulmonary function in COVID-
19 patients with severe ARDS (Mirastschijski et al., 2020). The
suggested pulmonary surfactant therapy (Walther et al., 2019;
Ahmed et al., 2020; Mirastschijski et al., 2020; Pramod et al., 2020)
is motivated by the fact that lung surfactant administration is a
safe and efficient therapy for neonates with ARDS (Walmrath
et al., 1996). Therefore, pulmonary surfactant therapy envisions
the development of lung surfactant formulations for pulmonary
barrier restoration in patients with COVID-19 pneumonia
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FIGURE 10 | Life cycle of surfactant produced in the lung with an indication of the tubular myelin, lamellar bodies (LB), and alveolar macrophages (AM). Pulmonary
surfactant is a surface-active lipo-protein complex produced by type II alveolar cells. Reprinted from Ramanathan (2006) with permission.

FIGURE 11 | Composition of individual phosphatidylethanolamine PE-based plasmalogen (PE-P) lipid species during postnatal development of mouse lung. High
contents of 20:4, 22:6, 22:5, and 22:4 plasmalogen (PE-P) derivatives are detected. PE P-16:0 (sn-1) plasmalogens are present in higher amounts in all 4 groups of
ethanolamine plasmalogens, whereas PE P-18:0 and PE P-18:1 account for smaller amounts. Values are represented as nmol/mg wet weight. Reprinted from
Karnati et al. (2018) with permission. Statistical significance (*, **, ***): p-values <0.05 (significant), < 0.01, < 0.001 (highly significant).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 15 March 2021 | Volume 9 | Article 630242

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-630242 March 8, 2021 Time: 17:12 # 16

Deng and Angelova Plasmalogens Role in Coronavirus Infection and Therapy

FIGURE 12 | Exogenous lung surfactant delivery suggested as a therapy to reduce inflammation and restore pulmonary barrier in severe COVID-19 associated
acute respiratory distress syndrome (ARDS). Reprinted from Mirastschijski et al. (2020) with permission.

(Walther et al., 2019; Mirastschijski et al., 2020; Pramod et al.,
2020). It is expected that this approach may improve the
treatment outcome of COVID-19 patients.

Whereas the levels of plasmalogens might be insufficient for
COVID-19 patient treatment in the clinical studies employing
natural lung surfactants, we propose plasmalogen-enriched lung
surfactant formulations as the next generation therapeutic
opportunity toward more efficient pulmonary surfactant therapy
against COVID-19 pneumonia. Taking into account the results of
the lipidomics analysis about the major ether lipid components
(Karnati et al., 2018), it appears urgent to develop the synthetic
surfactants enriched in phosphatidylethanolamine (PE)-based
plasmalogens as those presented in Figure 11.

INCLUSION OF PLASMALOGENS IN
COMBINATION THERAPIES AGAINST
CORONAVIRUS INFECTIONS

We hypothesize that the inclusion of plasmalogens in antiviral
formulations for combination therapy of severe COVID-19
pneumonia patients may enhance the overall efficacy of anti-
SARS-CoV-2 treatment. This antiviral lipid class may render the
treatment resistant to eventual viral protein mutations during the
viral propagation of the pathology. Both membrane lipid therapy
and pulmonary surfactant therapy with plasmalogen-enriched

antiviral formulations should be applicable to most of the
coronaviruses including SARS-CoV-2, SARS-CoV, and MERS-
CoV.

In the absence of clinical data for severe COVID-19 patients,
it is early to argue whether plasmalogens have a role simply
because they contain PUFAs. Current understanding highlights
that the PUFAs content of plasmalogens is important in
prevention and management of COVID-19. Das (2021) has
emphasized that the PUFA bioactive lipid arachidonic acid (AA,
20:4n-6) has a capacity to inactivate SARS-CoV-2, facilitate
macrophage generation, suppress inflammation, and prevent
vascular endothelial cell damage, which opens new perspectives
for therapeutic uses of AA in anti-coronavirus strategies.

Ongoing early stage inhibitory therapies involve the design
of potential entry inhibitors against SARS-CoV-2. Strategies for
blocking the viral entry consider that the virus utilizes the
angiotensin-converting enzyme 2 (ACE2) as an entry receptor
in human cells. Therefore, the S protein is an important target
for the development of anti-SARS-CoV-2 therapeutics. Blocking
the binding of S protein to ACE2 can be done either by
fatty acids or by peptides and antibodies, which will inhibit
the SARS-CoV-2 virus proliferation. Peptide therapeutics are
promising antagonists in this regard (Struck et al., 2012).
However, considering the molecular diversity of the coronavirus
entry receptors of host cells (Millet et al., 2020), this targeting
mechanism might not be sufficient to stop the pandemics. The
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analysis of COVID-19 lung samples has revealed a dramatic
upregulation of the interferon gamma (IFNγ) protein, which
may be accompanied by a large innate immune response
(Hu et al., 2020).

Various potential therapeutic approaches (Imai et al., 2005;
Struck et al., 2012; Monteil et al., 2020), some of which are
highlighted in Figure 2, can be combined in multi-therapies
toward the aim of SARS-CoV-2 inhibition:

- Development of spike protein-based vaccines;
- Antibody therapy using antibody molecules for targeting

and neutralization of the spike proteins, which mediate the
viral entry;

- Delivering excessive quantity of soluble form of ACE2;
- Blocking ACE2 receptor;
- Inhibition of transmembrane protease serine 2 (TMPRSS2)

activity;
- Using antivirals (RNA polymerase inhibitors) to stop the

viral replication;
- Using short interfering RNAs directly or indirectly

targeting the viral DNA replication machinery;
- Drugs targeting lipid metabolism;
- Exogenous interferon gamma (IFNγ) delivery to

compensate its deficiency in susceptible to virus infection.

In analogy with the human immunodeficiency virus (HIV)
treatment regimen using tri-drug combinations, coronavirus
research may envision future triple therapies or multi-therapies
against SARS-CoV-2 coronavirus infection. Plasmalogens can be
included in the category of membrane-lipid targeted therapies in
approaches of treating the coronavirus and/or host membranes
as antiviral targets. In combination therapies with other
antiviral agents, plasmalogens will be significant as antiviral
lipids and lung surfactant ingredients to treat severe COVID-
19 pneumonia.

CONCLUDING REMARKS

The current COVID-19 pandemics is similar to the previous
severe acute respiratory syndrome (SARS-CoV, 2002–2003) and
Middle East Respiratory Syndrome (MERS-CoV, 2012-ongoing)
outbreaks. All these coronavirus infections are traced through
zoonotic transmission. All have similar clinical manifestations
mainly as lower respiratory tract diseases with significant
mortality especially in the elderly with underlying chronic
illnesses (obesity, type 2 diabetes and cardiometabolic diseases).

Plasmalogens are a class of membrane ether glycerophos
pholipids with unique properties displaying a propensity for non-
lamellar phase formation that may strongly influence the activity
of membrane-bound enzymes and receptors. Plasmalogens are

crucial in human health and disease and playing roles in
immune signaling and as endogenous antioxidants. Increasing
evidence supports the correlation between diminished levels of
plasmalogens and a number of pathological states including
neurodegenerative and cardiometabolic disorders as well as the
severe acute respiratory distress syndrome due to the coronavirus
infections. Dysregulated levels of plasmalogens are found in
infected patients as a result of coronavirus-induced modification
of the lipid metabolism. This strongly indicates that plasmalogen
is among the key lipids potentially modulating the viral infection.

Based on the features discussed above, we suggest the
potential role of plasmalogen pre-conditioning as anti-viral
therapeutic and prophylaxis strategy. Along the line, plasmalogen
pre-conditioning may promote host cubic membrane (CM)
formation in response to multiple stress and diseased conditions
including coronavirus infections. CM has been proposed as an
evolutionary antioxidant defense system Deng and Almsherqi
(2015). The antioxidant plasmalogen molecules participate in
the host CM formation and CM in return to act as antioxidant
defense system. Host cubic membrane induction in virus infected
cells has not been rationalized in the development of antiviral
therapies yet. However, the discussed multiple correlations and
phenomena here lead to the conclusion that the plasmalogen
lipid type is of great interest and significance for the future
COVID-19 therapy and might be considered as a biomarker
in SARS-CoV-2 infection and treatment. Further work in each
of these areas will be necessary to realize the full potential
of plasmalogen modulation and CM formation as therapeutic
strategies in membrane lipid therapy and antiviral combination
remedies for the next pandemics.
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