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A B S T R A C T

Background: Biomarker-disease relationships are extensively investigated. However, associations between
common clinical biomarkers and healthspan, the disease-free lifespan, are largely unknown. We aimed to
explore the predictive values of ten biomarkers on healthspan and lifespan, and to identify putative causal
mechanisms.
Methods: Using data from 12,098 Swedish individuals aged 47�94 years, we examined both serum concen-
trations and genetically predicted levels of ten glycemic, lipid-, inflammatory, and hematological biomarkers.
During a follow-up period of up to 16 years, 3681 incident cases of any chronic disease (i.e., end of health-
span) and 2674 deaths (i.e., end of lifespan) were documented. Cox regression models were applied to esti-
mate the associations of a one standard deviation increase in biomarkers with healthspan and lifespan.
Findings: Seven out of ten serum biomarkers were significantly associated with risks of any chronic disease
and death; elevated glycemic biomarkers and high-density lipoprotein-related biomarkers showed the
strongest detrimental (hazard ratio [HR] 1¢29 [95% CI 1¢24�1¢34]) and protective effects (HR 0¢92 [95% CI
0¢89�0¢96]), respectively. Genetic predisposition to elevated fasting blood glucose (FBG) was associated with
increased risks of any chronic disease (HR 1¢05 [95% CI 1¢02�1¢09]); genetically determined higher C-reactive
protein correlated with lower death risks (HR 0¢91 [95% CI 0¢87�0¢95]). Notably, the genetically proxied FBG-
healthspan association was largely explained by serum FBG concentration.
Interpretation: Circulating concentrations of glycemic, lipid-, and inflammatory biomarkers are predictive of
healthspan and lifespan. Glucose control is a putative causal mechanism and a potential intervention target
for healthspan maintenance.
Funding: This study was supported by the Swedish Research Council (2015�03,255, 2018�02,077), FORTE
(2013�2292), the Loo & Hans Osterman Foundation, the Foundation for Geriatric Diseases, the Magnus Berg-
wall Foundation, the Strategic Research Program in Epidemiology at Karolinska Institutet (SH, JJ), the China
Scholarship Council, and the Swedish National Graduate School for Competitive Science on Ageing and
Health. The Swedish Twin Registry is managed by Karolinska Institutet and receives funding as an infrastruc-
ture through the Swedish Research Council, 2017�00,641.
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1. Introduction

Global human life expectancy has been growing over the past dec-
ades [1]. As a result, the chance of experiencing detrimental aging-
related phenotypes, including dysfunction and diseases, during an
individuals’ lifetime has increased. The time period that an individual
spends in good health is often referred to as healthspan [2]. This con-
cept emphasizes quality of life and is a key target for health-promot-
ing strategies, especially among older populations [3,4]. Chronic
diseases that can impair life quality irreversibly are administratively
monitored through established health registers in the Nordic coun-
tries, including Sweden. One practical way to quantify healthspan
from a morbidity perspective is therefore to identify the earliest
onset of major chronic diseases and to report the corresponding dis-
ease-free lifetime. Recent studies investigating the genetic architec-
ture underlying morbidity-defined healthspan has suggested
healthspan as a promising phenotype for the study of human aging
[5,6].

Serum biomarkers are useful instruments to predict health risks.
In clinical practice, a set of serum biomarkers, including glycemic,
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Research in Context

Evidence before this study

A literature search without language restriction was performed
on December 5th, 2020, using PubMed. Searching terms were
(1) “healthspan” (or “healthy lifespan” or “disease-free lifespan”
or “morbidity-free lifespan” or “disease-free survival” or “mor-
bidity-free survival”) and (2) “glucose”, “glycated hemoglobin”
(or “HbA1c” or “hemoglobin A1C”), “triglyceride”, “total choles-
terol” (or “cholesterol”), “high-density lipoprotein cholesterol”
(“HDL”), “low-density lipoprotein cholesterol” (or “LDL”), “Apo-
lipoprotein A1”, “Apolipoprotein B”, “C-reactive protein” (or
“CRP”), or “hemoglobin”. We identified two population-based
studies investigating the aforementioned biomarkers as predic-
tors of morbidity-free survival at age 85 years. Terry et al.
assessed total cholesterol and glucose among 2531 participants
in the Framingham Heart Study; Newson et al. studied CRP, glu-
cose, total cholesterol, and HDL cholesterol within 2008 indi-
viduals from the Rotterdam Study. The two studies found that
participants with a lower level of total cholesterol, absence of
glucose intolerance, and a lower concentration of CRP had a
higher odds of survival to the age of 85 years without
experiencing any major diseases, including cardiovascular dis-
eases, stroke, cancer, and dementia. However, we found no
studies providing evidence in the predictive value of the other
biomarkers as well as testing the potential causal relationships
between above biomarkers and healthspan by leveraging
genetically predicted biomarkers.

Added value of this study

Using blood- and health register-based data from 12,098 Swed-
ish individuals aged 47�94 years, we examined both serum
concentrations and genetically predicted levels of ten common
biomarkers in association with healthspan during follow-up
periods of up to 16 years. We found that seven glycemic, lipid-,
and inflammatory biomarkers were significantly associated
with healthspan; elevated glycemic biomarkers and high-den-
sity lipoprotein-related biomarkers showed the strongest detri-
mental and protective effects, respectively. In addition, genetic
predisposition to higher fasting blood glucose (FBG) was associ-
ated with increased risk of any chronic event (i.e., end of
healthspan), largely explained by elevated serum FBG concen-
trations, suggesting glucose control as a putative causal mecha-
nism in healthspan maintenance.

Implications of all the available evidence

Common clinical biomarkers that are routinely assessed at clin-
ics to monitor disease risks could reflect the ability to maintain
healthspan. These results underline the use of existing clinical
biomarkers in identifying individuals with an accelerated
underlying risk for aging yet without known disease diagnosis.
Moreover, the putative causal mechanism of glucose control
suggests that lifestyle and pharmacological interventions, such
as dietary restriction, exercise, and glucose-lowering drug pre-
scription, may help to maintain healthspan within a disease-
free population
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lipid-, and inflammatory markers, are routinely assessed because of
their close relationships with disease onset and progression. As dis-
ease mechanisms often correlate with the underlying aging hall-
marks [7�9], common clinical biomarkers that are initially reflective
of disease risks hold the potential to predict healthspan. Two previ-
ous studies have assessed total cholesterol, glucose tolerance, C-
reactive protein, and high-density lipoprotein cholesterol in associa-
tion with disease-free survival to the age of 85 years [10,11]. How-
ever, besides this evidence, the predictive value of serum
concentrations for other biomarkers on healthspan are largely
unknown.

In order to identify preventive strategies to avoid chronic diseases
and maintain health in older ages, studies that identify causal mecha-
nisms from modifiable risk factors to healthspan are needed. Genetic
predispositions are not affected by environmental factors or reverse-
causality. Hence, examining biomarker concentrations that are geneti-
cally determined could aid in identifying putative causal mechanisms
[12,13]. Common clinical biomarkers are well-studied phenotypes
with respect to their genetic susceptibility [14]; however, it is unclear
how genetically predicted biomarkers could influence healthspan.

Consequently, we aim to estimate the associations of clinical
serum biomarkers, including glycemic, lipid-, inflammatory, and
hematological markers, with the risk of any chronic disease (i.e., end
of healthspan). Secondly, we aim to examine genetically predicted
biomarkers in relation to healthspan as an attempt to identify puta-
tive causal pathways. In addition, we consider a secondary outcome,
death (i.e., end of lifespan), throughout the analysis because all-cause
mortality is a relatively well-studied phenotype [15,16] and compar-
ing healthspan associations against lifespan’s could facilitate the
comprehension of healthspan results.

2. Methods

2.1. Study population

TwinGene, a sub-cohort study within the Swedish Twin Registry
(STR), recruited Swedish twins who were born between 1911 and
1958 and had participated in a prior telephone-interview survey,
Screening Across the Lifespan Twin Study (SALT) in 1998�2002¢[17].
In total, 12,646 individuals participated in TwinGene’s baseline
examination, including self-reported questionnaire query, health
check-up, and blood sample collection between 2004 and 2008. In
the present analyses, we excluded individuals who had unknown
information on disease diagnosis, vital status, any clinical biomarker,
educational attainment, body mass index (BMI), or smoking status,
eventually yielding a sample size of 12,098. A total of 2560 individu-
als had encountered at least one chronic disease before baseline and
were therefore excluded from healthspan analyses, leaving 9538
individuals (Supplementary Fig. 1).

2.2. Any chronic disease (end of healthspan) and death (end of lifespan)

In line with previous research [5], we defined the healthspan of
each individual as the age at first occurrence of any of the following
conditions (hereafter referred to as “any chronic disease”): cancer,
diabetes, cardiovascular diseases (coronary heart failure [CHF], myo-
cardial infarction [MI], stroke), chronic obstructive pulmonary dis-
ease (COPD), dementia, and death (ICD codes in Supplementary Table
1). Disease diagnosis was ascertained through linkages between STR
and the Swedish National Patient Register (NPR). For each disease,
we selected the earliest medical record with the corresponding diag-
nosis and assigned disease onset date as the admission date (inpa-
tient record) or record date (outpatient care). All-cause mortality
data, including vital status and dates of death, were obtained from
the Swedish Population Register. Healthspan information was fol-
lowed up through December 31st 2016; lifespan was updated
through April 1, 2020.

2.3. Serum biomarker assessment

All TwinGene participants were instructed to fast overnight before
blood collection. Blood samples were then prepared for DNA
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extraction and clinical chemistry tests. We investigated circulating
concentrations of clinical biomarkers that reflect glycemic control
(fasting blood glucose [FBG], glycated hemoglobin [HbA1c]), lipid
metabolism (total cholesterol [TC], high-density lipoprotein choles-
terol [HDL-C], low-density lipoprotein cholesterol [LDL-C], Apolipo-
protein A1 [ApoA1], Apolipoprotein B [ApoB], triglyceride [TG]),
inflammation (C-reactive protein [CRP]), and hematological function
(hemoglobin [Hb]). HbA1c was assessed by ion exchange chromatog-
raphy and the other clinical biomarkers were measured by a semi-
automated biochemistry analyzer (Beckman Coulter, CA). Biomarkers
that appeared strongly right-skewed (FBG, HbA1c, TG, and CRP) were
first log-transformed; all biomarkers were then standardized (to
units of 1 standard deviation [SD]).

2.4. Polygenic risk score (PRS) calculation

Genotypes were assessed in a total of 10,946 TwinGene partici-
pants, of whom 9835 individuals were genotyped on Illumina
OmniExpress BeadChips, and 1111 individuals from complete mono-
zygotic (MZ) twin pairs were imputed by using the genotypes of their
MZ co-twins. Arrayed genetic data were then imputed against the
1000 Genomes Project phase 1 version 3 panel.

To calculate polygenic risk scores for each clinical biomarker, we
referred to the genome-wide association study (GWAS) results of the
UK Biobank (UKB) released by Neale’s Lab (GWAS round 2) [14] and
utilized the individual-level genotypes in TwinGene. For each clinical
biomarker, we performed the following procedures: first, down-
loaded UKB GWAS summary statistics (phenotype codes and data
linkage listed in Supplementary Table 2), and discarded the palin-
dromic single-nucleotide polymorphisms (SNPs) and rare variants
(minor allele frequency [MAF] < 5%); second, identified post-imputa-
tion SNPs that passed the quality control criteria in TwinGene: 1)
non-palindromic SNPs, 2) imputation quality R square >0¢8, and 3)
MAF>=5%; third, filtered UKB summary statistics by keeping quality
controlled SNPs, and performed linkage disequilibrium (LD)-based
clumping to select independent genetic variants using PLINK1¢9,
where reference panel, significance threshold for index SNPs, second-
ary significance threshold, LD r2 threshold, and physical distance
threshold were set to 1000 Genomes EUR, 1, 1, 0¢1, and 1000 kb,
respectively; fourth, selected the index SNPs with a GWAS significant
P value (<5E-8), calculated the PRSs as the weighted sum of bio-
marker-elevating alleles for each TwinGene participant, and lastly
standardized PRS values to SD units.

In summary, PRSs were derived from a different number of SNPs
(from 63 for FBG to 590 for HDL-C), were positively associated with
the corresponding serum biomarker (P values from 1¢49e-44 to
1¢16e-261), and explained varying degrees of phenotypic variance
(1¢9% - 8¢8%; Supplementary Table 3).

2.5. Covariate assessment

BMI was derived from TwinGene’s baseline physical measure-
ments and calculated as weight (kg) divided by height (m) squared.
Statin usage was self-reported in TwinGene’s baseline survey. The
number of attained years of education and smoking status (never
smokers vs. ever smokers) were ascertained through self-reported
information from the SALT study, which was conducted about six
years prior to TwinGene.

2.6. Statistical methods

First, we described the baseline characters using mean (SD),
median (interquartile range [IQR]), and frequency (proportion)
whenever appropriate. Correlations between clinical biomarker pairs
were quantified by Pearson correlation coefficients. Smooth hazard
functions (i.e. instantaneous incidence rates) for outcomes of interest
were estimated non-parametrically using the R package bshazard
[18].

Next, we applied proportional hazard Cox regression models to
estimate the hazard ratios (HRs), which indicate the associations
between serum biomarkers at baseline and the hazard of outcomes
(any chronic disease and death) during follow-up among all partici-
pants, men, and women, respectively. To account for relatedness
within twin pairs, we used robust standard errors in the Cox models.
Each participant was followed from the baseline age until the age of
any chronic disease, death, or the end of follow-up. All models were
adjusted for age (by using attained age as underlying time scale), sex,
birth year category in decades, educational attainment, BMI, smoking
status, and statin usage. To control the false discovery due to multiple
testing, we corrected P values using Benjamini-Hochberg false dis-
covery rate (FDR). In addition, we analyzed multiple biomarkers in
the same model simultaneously and conducted variable selection
using a stepwise procedure. We started with a Cox model where all
serum biomarkers were included. Then we used Akaike information
criterion (AIC) to select a model through both a forward and back-
ward strategy.

To estimate genetic associations between biomarker PRSs and
outcomes of interest, we adopted a similar Cox regression approach,
with a few modifications: survival models were adjusted for age
(through treating attained age as time scale), sex, birth year category,
and the first ten genomic PCs. Two additional models were estimated
to explore potential pathways that underlie the association between
FBG PRS and healthspan, with further adjustment for (1) BMI and
serum TG, LDL-C, HDL-C, CRP, Hb, and (2) serum FBG. Similar models
were applied to CRP PRS and lifespan, with further adjustment for (1)
BMI and serum TG, LDL-C, HDL-C, FBG, Hb, and (2) serum CRP.

To further demonstrate the validity of findings related to health-
span and to increase the generalizability, we replicated the statistically
significant associations in an independent cohort, the Swedish Adop-
tion/Twin Study of Aging (SATSA) [19]. Study characteristics in SATSA
and analytical procedures are detailed in Supplementary Method 1.

Lastly, we performed two sensitivity analyses to test the robust-
ness of our findings. First, to test whether the associations between
biomarkers and healthspan were solely driven by one individual dis-
ease, we performed a “leave-one-disease-out” sensitivity analysis.
We changed the definition of healthspan seven times by excluding
one disease out of the healthspan-ending event list at a time. Next, to
rule out the effects due to outliers, we excluded participants with
serum biomarkers values exceeding the range of mean§3SD.

Statistical significance was defined as a P value or a FDR-corrected
P value of less than 0¢05. All analyses were implemented in R 3¢6¢1
and PLINK1¢9.

2.7. Ethics statement

Informed consent was obtained from all participants. The study
was approved by the Swedish Ethical Review Authority in Stockholm
(Dnr 2016/1888�31/1).

2.8. Role of the funding source

The funders of the study had no role in study design, data collec-
tion, data analysis, data interpretation, or manuscript drafting. All
authors had full access to all the data in the study and accept respon-
sibility to submit for publication.

3. Results

3.1. Baseline characteristics of study participants

Among 12,098 participants, 9300 (76¢9%) constituted complete
twin pairs, 5469 (45¢2%) were men, average age was 64¢9 years, and



Table 1
Characteristics of study participants.

Participants in
healthspan analysis

Participants in
lifespan analysis

Number of individuals 9538 12,098
Number of twin pairs/individuals 1

MZ pairs 880 (18¢5%) 1307 (21¢6%)
Same-sex DZ pairs 1159 (24¢3%) 1768 (29¢2%)
Opposite-sex DZ pairs 1005 (21¢1%) 1573 (26¢0%)
Single individuals 2 3446 (36¢1%) 2798 (23¢1%)

Baseline characteristics 3 (N [%] or Mean [SD])
Men 4110 (43¢1%) 5469 (45¢2%)
Age (year) 63¢9 (7¢8) 64¢9 (8¢1)
Educational attainment (year) 10¢9 (3¢2) 10¢8 (3¢2)
BMI (kg/m2) 25¢7 (3¢8) 25¢9 (3¢9)
Ever-smokers 5233 (54¢9%) 6776 (56¢0%)
Statin-users 594 (6¢2%) 1158 (9¢6%)

Prevalent diseases at baseline (N [%])
Cancer 0 (0¢0%) 1221 (10¢1%)
Diabetes 0 (0¢0%) 482 (4¢0%)
MI 0 (0¢0%) 686 (5¢7%)
CHF 0 (0¢0%) 219 (1¢8%)
Stroke 0 (0¢0%) 348 (2¢9%)
COPD 0 (0¢0%) 192 (1¢6%)
Dementia 0 (0¢0%) 21 (0¢2%)
Any prevalent chronic disease 4 0 (0¢0%) 2560 (21¢2%)

Serum biomarkers at baseline (Mean [SD] or Median [IQR])
FBG (mmol/L; median) 5¢3 (0¢7) 5¢3 (0¢8)
HbA1c (%; median) 4¢6 (0¢4) 4¢7 (0¢4)
TG (mmol/L; median) 1¢1 (0¢8) 1¢2 (0¢8)
TC (mmol/L) 5¢9 (1¢1) 5¢8 (1¢1)
HDL-C (mmol/L) 1¢4 (0¢4) 1¢4 (0¢4)
LDL-C (mmol/L) 3¢9 (0¢9) 3¢8 (1¢0)
ApoA1 (g/L) 1¢7 (0¢3) 1¢6 (0¢3)
ApoB (g/L) 1¢09 (0¢24) 1¢08 (0¢24)
CRP (mg/L; median) 1¢6 (2¢5) 1¢7 (2¢7)
Hb (g/L) 142¢5 (11¢5) 142¢3 (11¢9)

Follow-up information (N [%] or Median [IQR])
Follow-up time (year) 9¢5 (3¢4) 13¢0 (1¢5)
Number of incident cases 3681 (38¢6%) 2674 (22¢1%)
Onset age of incident
cases / age at death

72¢3 (11¢8) 81¢7 (12¢1)

1 Two twin pairs with unknown zygosity were not shown in the table.
2 Individuals whose co-twins were not included.
3 Baseline survey refers to the blood sampling conducted in 2004�2008.
4 Including cancer, diabetes, MI, CHF, stroke, COPD, and dementia.

MZ monozygotic, DZ dizygotic, N number of individuals, SD standard deviation,
IQR interquartile range, MI myocardial infarction, CHF coronary heart failure,
COPD chronic obstructive pulmonary disease, FBG fasting blood glucose, HbA1c
hemoglobin A1C, TC total cholesterol, HDL-C high-density lipoprotein cholesterol,
LDL-C low-density lipoprotein cholesterol, ApoA1 Apolipoprotein A1, ApoB Apoli-
poprotein B, TG triglyceride, CRP C-reactive protein, Hb hemoglobin.
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9538 (78¢8%) were free from any chronic disease at baseline (Table 1).
Men presented higher proportions of prevalent diabetes and cardio-
vascular diseases (including diabetes, MI, CHF, and stroke) at baseline
than women (P<0¢001) (Supplementary Table 4).

Pearson correlations analysis showed glycemic and lipid bio-
markers constituted three correlation clusters (coefficients higher
than 0¢6), namely 1) FBG and HbA1c, 2) TC, LDL-C, and ApoB, and 3)
HDL-C and ApoA1 (Supplementary Fig. 2).

3.2. Any chronic disease (end of healthspan) and death (end of lifespan)

During a median follow-up time of 9¢5 years, 3681 (38¢6%) indi-
viduals experienced at least one incident event (Table 1). The most
frequent events leading to an end of healthspan were cancer, diabe-
tes, and MI (Fig. 1a). A total of 2674 (22¢1%) deaths were documented
during a median follow-up time of 13¢0 years (Table 1). Median ages
of any chronic disease and of death were 72¢3 and 81¢7, respectively
(Supplementary Table 5).

We found the risks of encountering any chronic disease and death
increased exponentially with age, with the rate of increase slowing at
the age of 60. The hazard of any chronic disease was higher than the
hazard of death throughout, but increased at a slower speed, with
almost-convergence at the very end of the observed age range
(Fig. 1b).
3.3. Serum biomarkers, healthspan and lifespan

We observed that higher circulating levels of HbA1c, FBG, CRP,
and TG were indicative of a higher risk of healthspan ending (Fig. 2a
and Supplementary Table 6); in contrast, increased levels of HDL-C,
ApoA1, TC were associated with a lower risk of any chronic disease;
no statistically significant evidence of association was observed after
multiple testing correction for LDL-C, Hb and ApoB. Of all healthspan-
detrimental biomarkers, glycemic biomarkers exhibited the largest
effect sizes, with a one-SD increase in HbA1c associated with a 29%
increased risk (HR 1¢29, 95% CI 1¢24�1¢34]). Within all healthspan-
beneficial biomarkers, those related to HDL metabolism showed the
greatest effects, in which a one-SD increase in HDL-C was associated
with a 8% decreased risk (HR 0¢92, 95% CI 0¢89�0¢96). In an indepen-
dent Swedish cohort, SATSA, we also observed statistically significant
results for serum FBG, CRP, and HDL-C in association with heathspan,
as well as directionally consistent evidence for serum HbA1c, TC, and
ApoA1 (Supplementary Table 7).

With regard to lifespan associations, we found all clinical bio-
markers were statistically significantly associated with death (Fig. 2b
and Supplementary Table 6); specifically, Hb, ApoB, and LDL-C were
inversely associated with death risks, while the other biomarkers
showed similar patterns as with healthspan.

In the multiple-biomarker models, the two sets of biomarkers
selected were only slightly different. Specifically, FBG, HbA1c, TG, TC,
and CRP provided independent information associated with both
healthspan and lifespan (Supplementary Table 8).
3.4. Biomarker PRSs, healthspan and lifespan

We observed a statistically significant relationship between FBG
PRS and the risk of any chronic disease with an HR of 1¢05 (1¢02,
1¢09), meaning a one-SD increase in genetic predisposition to ele-
vated blood glucose level was associated with a 5% higher risk (HR
1¢05, 95% CI 1¢02�1¢09). The other glycemic PRS, HbA1c PRS, showed
a weak association in the same direction, but was not statistically sig-
nificant. Results for other clinical biomarkers PRSs showed either null
or very weak associations (Fig. 3a and Supplementary Table 9).

Additional models showed that the effect of FBG PRS on any
chronic disease was independent of other non-glycemic markers,
including BMI, as well as serum TG, HDL-C, LDL-C, CRP, and Hb (HR
1¢05, 95% CI 1¢01�1¢09). However, controlling for serum FBG led to a
substantial attenuation in effect estimate (HR 1¢01, 95% CI 0¢98�1¢05;
Table 2). The result suggests FBG PRS-healthspan association could
be explained by serum FBG level to a large extent.

Lifespan associations showed statistically significant evidence
suggesting genetically predicted higher CRP was associated with a
lower risk of death, with an HR of 0¢91 (95% CI 0¢87�0¢95) estimated
for a one-SD increase in CRP PRS. HR estimates also suggested an
increase in the PRS predisposing to higher circulating levels of TC,
LDL-C, and ApoB increased the risk of death, albeit with statistically
non-significant P values after multiple testing correction. No robust
evidence of lifespan association was observed for the other PRSs
(Fig. 3b and Supplementary Table 9).

Further, we found neither serum CRP nor other markers (BMI and
serum TG, LDL-C, HDL-C, FBG, and Hb) could explain the beneficial
survival effect of CRP PRS (Table 2). Particularly, the results remained
intact when we replaced the whole-genome CRP PRS derived from
95 SNPs with a regional CRP PRS derived from 4 SNPs located in the
CRP gene region (Supplementary Table 10).



Fig. 1. Events leading to an end of healthspan and smooth hazard functions of any chronic event and death.
Panel a illustrated the event-specific number of cases that lead to an end of healthspan. Panel b presented the hazard of experiencing any chronic event and death across age

spectrum. Results derived from all, men, and women were colored in black, blue, and red (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.).

Fig. 2. Associations of serum clinical biomarkers with healthspan and lifespan.
Panel a�b illustrated the associations, quantified as HR (95% CI), of serum biomarkers with any chronic event and death, respectively. HRs indicate the relative risk of experienc-

ing any chronic event or death associated with one-SD increase in serum biomarker concentrations. In each panel, we used dots and lines to present HR point estimates and confi-
dence intervals; estimations derived from all, men, and women were colored in black, blue, and red. In panel a, we sorted the biomarkers along y scale by the magnitudes of HRs
observed among all participants, from the highest (risk factor) to the lowest (protective factor); panel b adopted the same biomarker order as in panel a. P values that were signifi-
cant after FDR-correction were marked by * (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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3.5. Sensitivity analyses

Generally, the directions of biomarker associations were consis-
tent in the “leave-one-disease-out” sensitivity analysis; most associa-
tions were more pronounced (HR further from 1) after excluding
cancer cases, while less pronounced (HR closer to 1) after excluding
diabetes cases. Particularly, the effects of glycemic biomarkers were
largely attenuated with the exclusion of diabetes. The exclusion of
diseases other than cancer and diabetes barely changed the results
(Supplementary Fig. 3 and Supplementary Table 11). After exclusion
of outliers, we observed slightly changed point estimates of HRs and
CIs (Supplementary Fig. 4).
4. Discussion

Using a wealth of genetic and phenotypic data from the Swed-
ish population-based cohort TwinGene we examined ten common
clinical biomarkers in association with two aging phenotypes,
healthspan and lifespan. We found that seven out of ten serum
biomarkers predicted future risks of both any chronic disease
and death, with elevated glycemic biomarkers and HDL-related
biomarkers showing the strongest detrimental and protective
effects, respectively. Moreover, genetically predicted FBG was pos-
itively associated with healthspan, and the association was
largely explained by serum FBG concentrations, suggesting



Fig. 3. Associations of biomarker PRSs with healthspan and lifespan.
Panel a�b illustrated the associations, quantified as HR (95% CI), of biomarker PRSs with any chronic event and death, respectively. HRs indicate the relative risk of experiencing

any chronic event or death associated with one-SD increase in biomarker PRSs (i.e., genetic predisposition to elevated biomarker levels). In each panel, we used dots and lines to
present HR point estimates and confidence intervals; estimations derived from all, men, and women were colored in black, blue, and red. Panel a�b adopted the same biomarker
order as in Fig. 2 panel a. P values that were significant after FDR-correction were marked by *.

Table 2
Associations of FBG PRS and CRP PRS with additional adjustment.

Original model Additional Model 11 Additional Model 2 2

HR (95%CI) P HR (95%CI) P HR (95%CI) P

FBG PRS and any chronic disease 1¢05 (1¢02, 1¢09) 0¢005 1¢05 (1¢01, 1¢09) 0¢008 1¢01 (0¢98, 1¢05) 0¢526
CRP PRS and death 0¢91 (0¢87, 0¢95) 1¢5e-5 0¢90 (0¢86, 0¢94) 2¢5e-6 0¢86 (0¢82, 0¢90) 3¢7e-10
1 FBG PRS: Original model + adjustment for BMI and serum TG, LDL-C, HDL-C, CRP, Hb; CRP PRS: Original model + adjustment for

BMI and serum TG, LDL-C, HDL-C, FBG, Hb.
2 FBG PRS: Original model + adjustment for serum FBG; CRP PRS: Original model + adjustment for serum CRP.
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glucose control is a putative causal mechanism in healthspan
maintenance.

Unlike lifespan, which has a universal and unambiguous defini-
tion, the healthspan concept comes with no consensus [2,20,21]. As
“healthy” is a subjective concept, and healthy-unhealthy states could
sometimes transform mutually, the measurement of “healthspan” is
often challenging [21]. Here we started from the morbidity perspec-
tive to quantify healthspan mainly because of three reasons. First,
chronic diseases often indicate impaired organismal health status,
both physiologically and functionally, and are unlikely to be fully
cured. Second, the resource of nationwide health registers in Sweden,
documenting inpatient and out-patient records, made the establish-
ment of morbidity-defined healthspan possible. Third, a morbidity-
assessed healthspan phenotype has been studied previously by Zenin
et al. in a large-scale population cohort, UKB [5]. Similar to UKB, can-
cer is the most common reason accounting for healthspan ending,
followed by diabetes and MI. Two previous studies have examined a
small number of biomarkers (TC, HDL-C, glucose tolerance, CRP) in
relation to disease-free survival at the age of 85 years [10,11]. Both
studies took cardiovascular diseases (CVDs), cancer, and dementia
into account when defining disease-free survival, while we further
incorporated diabetes and COPD in healthspan assessment. We
noticed that diabetes diagnosis might play an important role in deter-
mining healthspan, as excluding diabetes from the list of healthspan-
ending events attenuated the associations of both diabetes (FBG and
HbA1c) and CVD (lipids) markers in the sensitivity analyses. Predia-
betes being a CVD risk factor could partially explain our observation
[22]. Overall, this suggested chronic diseases have overlapping mech-
anisms and reinforce the need to examine risk factors of aging.

Among all included blood assays, glycemic biomarkers are among
the strongest risk factors of both any chronic disease and death.
Hyperglycemia is often accompanied by insulin resistance, and in
observational studies has been associated with increased risks of sev-
eral chronic conditions, including liver, pancreatic, and breast cancer,
CVDs, and neurodegenerative diseases [23�27]. Genetic predisposi-
tion represents lifetime exposure and is not affected by lifestyle fac-
tors, hence an ideal tool to identify underlying causal mechanisms
[12,13]. Previous studies found genetic predisposition to elevated
blood glucose was weakly associated with higher risks of breast can-
cer, arterial stiffness, and Alzheimer’s disease [28�30], yet there was
no evidence concerning the association between genetically deter-
mined FBG and healthspan prior to our study. We found the elevated
FBG PRS was a risk factor of any chronic disease and, noticeably,
serum FBG levels could largely explain the FBG PRS - healthspan rela-
tionship. Taken together, these results suggest a putative causal role
of glucose control and that lifestyle and pharmacological interven-
tions, such as dietary restriction, exercise, and glucose-lowering drug
prescription, may help to maintain healthspan within a disease-free
population where 90% of participants’ FBG levels ranged from 4.5
(corresponds to “normal” [31]) to 6.8 (corresponds to “prediabetes”
[31]) mmol/L.

In observational studies, increased circulating concentrations of
LDL and HDL are recognized as protective and risk factors of CVDs,
respectively [32,33]. However, only the LDL-CVD relationship has
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been confirmed to be causal in Mendelian randomization (MR) stud-
ies and randomized controlled trials (RCTs), [34,35] while null causal
associations were found for HDL [36,37]. Our study focused on a
series of chronic diseases rather than CVD alone, and found serum
concentration of HDL and their genetic predispositions were associ-
ated with healthspan/lifespan in a similar directional manner as with
CVD evidence. An inconsistent relationship was observed for serum
LDL, where we found a negative association between LDL and health-
span/lifespan, as opposed to the positive LDL-CVD association. Similar
to our finding, the negative LDL-mortality correlation has been
shown in several observational cohorts [16,38,39], where low levels
of LDL are indicative of a higher risk of death, especially among older
populations and non-statin users. We also found that our participants
with low serum LDL tended to present with other mortality risk fac-
tors such as high glucose level and smoking. Uncontrolled confound-
ers could partly explain the negative observational association
especially since PRS analysis showed an opposite result. Nevertheless,
the direction of our results, albeit non-significant after multiple test-
ing correction, still supported a positive causal relationship between
LDL and death, while our study, along with others [16,38,39], intro-
duce the need to re-evaluate the direction of mortality predictive
value for LDL among the general aging population.

Elevated circulating CRP is a risk factor for CVDs; [40] yet geneti-
cally predicted CRP was not associated with coronary heart disease
[41,42]. Interestingly, our results showed that an elevated serum CRP
concentration was associated with higher risks of any chronic disease
and death, whereas genetic predisposition to higher CRP indicated
lower death risk. In line with our findings, another large-scale popu-
lation study also found contradicting directions when it comes to
mortality associations using serum and genetically proxied CRP,
respectively [16]. We found the effect of PRS CRP on death cannot be
explained by serum CRP level. Since CRP is a protein produced in
response to inflammatory stimuli [43], one possible explanation is
that elevated levels of serum CRP and genetically determined CRP
reflect different health conditions. An increased concentration of
serum CRP often indicates underlying acute infection or chronic
endogenous inflammation; while genetic predisposition to CRP could
influence the response to upstream pro- and anti-inflammatory path-
ways important for chronic disease control [44]. Further investiga-
tions to test this hypothesis are certainly warranted.

The present analysis comes with a few strengths. We used the
data from health registers in Sweden that have nationwide coverage,
making the assessment of morbidity-based healthspan information
during long-term follow-up possible. Next, we used external GWAS
summary statistics in PRSs calculation, avoiding overfitting problems
to a large extend. Meanwhile, we acknowledge several limitations.
The measurement of healthspan only took eight chronic conditions
into account. Our results may not be directly generalized to another
healthspan outcome that incorporates other diseases. In line with
previous studies [5,6], we found that diabetes plays an important role
in the healthspan phenotype, based on both demographic and
genetic evidence. We acknowledge that the strong association
between glycemic biomarkers and healthspan in our material is due
to the inclusion of diabetes as terminating event in the definition of
healthspan adopted, which is highlighted by the results of our sensi-
tivity analysis. It is therefore possible that a different healthspan defi-
nition may result in different findings. Regardless, our evidence
supports diabetes as an important terminating event for overall
healthspan in a generally disease-free population, and FBG as an
actionable target to improve healthspan. Second, the generalizability
of the present analysis is limited since we only studied a middle-aged
Swedish population, which was in relatively good health at baseline.

In conclusion, we demonstrated that circulating glycemic, lipid-,
and inflammatory biomarkers are associated with healthspan and
lifespan. Particularly, glucose control is a putative causal mechanism
and a potential intervention target for healthspan maintenance.
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