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ABSTRACT
Standard statistical tests for equality of allele frequencies in males and females and

tests for Hardy-Weinberg equilibrium are tightly linked by their assumptions. Tests for

equality of allele frequencies assume Hardy-Weinberg equilibrium, whereas the usual

chi-square or exact test for Hardy-Weinberg equilibrium assume equality of allele

frequencies in the sexes. In this paper, we propose ways to break this interdependence

in assumptions of the two tests by proposing an omnibus exact test that can test both

hypotheses jointly, as well as a likelihood ratio approach that permits these phenomena

to be tested both jointly and separately. The tests are illustrated with data from the 1000

Genomes project.
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1 INTRODUCTION

Quality control filtering of genetic data is a crucial procedure

in modern genetic studies. Extensive procedures and protocols

are used to filter genetic data prior to their use in association

tests (Laurie et al., 2010). Such procedures include, but are not

limited to, gender checks, assessment of relatedness between

individuals, population substructure investigation, tests for

Hardy-Weinberg equilibrium (Gomes et al., 1999; Hosking

et al., 2004; Leal, 2005), and missing data analysis.

In this paper, we focus on two closely related aspects of

the quality control of biallelic genetic markers, the equality

of allele frequencies (EAF) in the sexes and Hardy-Weinberg

proportions (HWP). Under normal conditions, we expect an

autosomal genetic marker to have equal allele frequencies in

males and females, and with genotype frequencies that agree

with the Hardy-Weinberg law. EAF can be tested by a chi-
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square or Fisher's exact test on a two-way table where all

alleles are cross-classified according to sex and type of allele

(𝐴 or 𝐵). If we let 𝑛 represent the sample size (number of

individuals), then such testing assumes the 2𝑛 alleles to be

independent, and therefore the EAF test relies on the assump-

tion of HWP. It thus seems natural to test for HWP prior to

testing for EAF. A genetic marker can be tested for HWP by

means of a chi-square or an exact test, among others (Weir,

1996, Chapter 3). These tests assess to what extent observed

genotypic proportions (𝑓𝐴𝐴, 𝑓𝐴𝐵, 𝑓𝐵𝐵) deviate from the theo-

retically expected proportions (𝑝2, 2𝑝𝑞, 𝑞2), 𝑝 and 𝑞 being the

𝐴 and 𝐵 allele frequency, respectively, with 𝑝 + 𝑞 = 1. It is

thereby implicitly assumed that the allele frequencies 𝑝 and 𝑞

are the same in males and females. This assumption might be

true or not, and it thus seems necessary to test for EAF prior to

testing for HWP. We are thus caught in a vicious testing circle

depicted in Figure 1.
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F I G U R E 1 Vicious testing circle: mutual dependency of a test for

EAF in males and females and a test for HWP

Notes: 𝐴 allele frequencies in males and females are represented by 𝑝𝐴𝑚

and 𝑝𝐴𝑓 , respectively.

In this paper, we address ways to break the mutual depen-

dency between the HWP and EAF test outlined above, but

first motivate the relevance of the issue with an empirical

example. SNP rs147120681 at chromosome 1 of the 104 indi-

viduals of the Japanese (JPT) sample of the 1000 Genomes

project (The 1000 Genomes Project Consortium, 2015) has

genotype counts of AA = 23, AB = 18, BB = 15 for males and

AA = 7, AB = 32, BB = 9 for females, summing to AA=30,

AB=50, BB=24 in total. Applying standard quality control,

an exact test for HWP clearly finds no evidence for disequilib-

rium (P = 0.6981). When we test for EAF by a Fisher's exact

test, we also obtain a nonsignificant result (P= 0.2107). Using

these tests separately and observing both to be nonsignificant,

we are led to believe that the marker is well-behaved, and that

there are no reasons to suspect any genotyping error.

However, strictly speaking we do not know if equilibrium

holds, or that we failed to reject it because the assumptions

of the test were not met, and we neither know if the allele

frequencies are really homogeneous, or we failed to reject

the null because the HWP assumption was not met. Prefer-

ably, one would like to test these phenomena independently,

or jointly in one step. We will reanalyze SNP rs147120681 in

Section 5, once we have developed the statistical procedures

that avoid the dependence in assumptions, to arrive at a dif-

ferent conclusion about this variant.

Two ways to break the mutual dependence between the

HWP test and the EAF test are considered. One approach is to

test HWP and EAF simultaneously in a single omnibus test.

This approach has been used by Graffelman and Weir (2016)

to test biallelic variants on the X chromosome for HWP. An

omnibus test seems attractive, as it allows two aspects of qual-

ity control to be tested with a single statistical test. Alterna-

tively, with a flexible likelihood ratio (LR) approach, disequi-

librium and allele frequency differences can be modeled with

multiple parameters, allowing both phenomena to be tested

jointly or separately. In this paper, we develop an omnibus

exact procedure to test HWP and EAF jointly and we also

develop LR procedures for testing HWP and EAF both jointly

and separately. Extensions for multiple alleles, and a Bayesian

approach, are considered beyond the scope of the current

paper and left for future work.

For biallelic markers, the Hardy-Weinberg law can be

graphically represented by a parabola in a ternary dia-

gram (Cannings & Edwards, 1968; Li, 1976; Graffelman &

Morales-Camarena, 2008). If autosomal genotype frequencies

of both sexes are distinguished, then several scenarios are pos-

sible, which are also conveniently represented in ternary dia-

grams, as is shown in Figure 2. Under normal conditions, we

expect a marker to be in Hardy-Weinberg equilibrium with

equal allele frequencies in males and females, as represented

by Figure 2 A. If a marker is out of equilibrium, then in general

we expect this to affect males and females in the same manner.

This is represented in Figure 2 B, where males and females

have the same allele frequencies and the same inbreeding

coefficient. Alternatively, as represented in Figure 2 C, both

sexes can have equal allele frequencies but different inbreed-

ing coefficients (in magnitude and, possibly, in direction too).

When the allele frequencies of the sexes differ: males and

females can still be in HWP, as shown in Figure 2 D; can have

similar inbreeding coefficients as in Figure 2 E; or can have

different inbreeding coefficients as in Figure 2 F.

The structure of the remainder of this article is as follows.

In Sections 2 and 3, we develop an omnibus exact test and LR

tests, respectively. In Section 4, we study the Type I error rate

and the power of the omnibus tests. Section 5 shows applica-

tions of exact and LR tests. Section 6 presents a discussion.

Some mathematical derivations are given in an Appendix.

2 OMNIBUS EXACT TEST

In this section we develop an exact test that jointly

tests HWP and EAF for an autosomal marker. We will

use the following notation for developing our test proce-

dures. Let 𝑃𝐴𝐴𝑚, 𝑃𝐴𝐵𝑚, 𝑃𝐵𝐵𝑚, 𝑃𝐴𝐴𝑓 , 𝑃𝐴𝐵𝑓 , and 𝑃𝐵𝐵𝑓 be

the male and female genotype frequencies in the popula-

tion with 𝑃𝐴𝐴𝑚 + 𝑃𝐴𝐵𝑚 + 𝑃𝐵𝐵𝑚 = 𝑃𝐴𝐴𝑓 + 𝑃𝐴𝐵𝑓 + 𝑃𝐵𝐵𝑓 =
1. Let 𝑀𝐴𝐴, 𝑀𝐴𝐵 , 𝑀𝐵𝐵 , 𝐹𝐴𝐴, 𝐹𝐴𝐵 , and 𝐹𝐵𝐵 represent

random variables for the male (𝑀) and female (𝐹 ) genotype

counts, respectively, that take on observed values 𝑚𝐴𝐴, 𝑚𝐴𝐵 ,

𝑚𝐵𝐵 , 𝑓𝐴𝐴, 𝑓𝐴𝐵 , and 𝑓𝐵𝐵 in the sample. If no distinction is

made between the sexes, as in the classical autosomal case,

the notation 𝑁𝐴𝐴, 𝑁𝐴𝐵 , and 𝑁𝐵𝐵 with observed values

𝑛𝐴𝐴, 𝑛𝐴𝐵 , and 𝑛𝐵𝐵 will be used. Let 𝑛𝑚 be the number
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F I G U R E 2 Ternary diagrams for male and female genotype frequencies

Notes: (A) HWP and EAF. (B) Equality of inbreeding coefficients, EAF, and both sexes out of HWP. (C) Unequal inbreeding coefficients, both sexes

out of equilibrium but with equal allele frequencies. (D) Both sexes in HWP but with different allele frequencies. (E) Each sex out of equilibrium with

identical inbreeding coefficients and different allele frequencies. (F) Both sexes out of equilibrium, with different inbreeding coefficients and different

allele frequencies. The number of free parameters 𝑘 is given below the basis of each scenario.

of males and 𝑛𝑓 the number of females, such that 𝑛𝑚 =
𝑚𝐴𝐴 + 𝑚𝐴𝐵 + 𝑚𝐵𝐵 and 𝑛𝑓 = 𝑓𝐴𝐴 + 𝑓𝐴𝐵 + 𝑓𝐵𝐵 and the total

sample size is 𝑛 = 𝑛𝑚 + 𝑛𝑓 . Let 𝐹𝐴, and 𝐹𝐵 , be the num-

ber of 𝐴 and 𝐵 alleles in females, and 𝑀𝐴 and 𝑀𝐵 the

number of these alleles in males. The total 𝐴 and 𝐵 allele

counts are 𝑁𝐴 = 𝑀𝐴 + 𝐹𝐴 and 𝑁𝐵 = 𝑀𝐵 + 𝐹𝐵 , respec-

tively, with sample values 𝑛𝐴, 𝑚𝐴, 𝑓𝐴, 𝑛𝐵 , 𝑚𝐵 , and 𝑓𝐵 .

Finally, let 𝜌𝑚 and 𝜌𝑓 be the inbreeding coefficients of males

and females, respectively, given by:

𝜌𝑚 =
𝑃𝐴𝐴𝑚 − 𝑝2

𝐴𝑚

𝑝𝐴𝑚(1 − 𝑝𝐴𝑚)
, 𝜌𝑓 =

𝑃𝐴𝐴𝑓 − 𝑝2
𝐴𝑓

𝑝𝐴𝑓 (1 − 𝑝𝐴𝑓 )
.

We base our inference for HWP and EAF on the joint distri-

bution of the number of male and female heterozygotes. Under

the assumptions of HWP and EAF, this joint distribution is

given by:

𝑃
(
𝑀𝐴𝐵, 𝐹𝐴𝐵 ∣ 𝑛, 𝑛𝐴, 𝑛𝑚

)
=

𝑛𝐴!𝑛𝐵!𝑛𝑚!𝑛𝑓 !
𝑚𝐴𝐴!𝑚𝐴𝐵!𝑚𝐵𝐵!𝑓𝐴𝐴!𝑓𝐴𝐵!𝑓𝐵𝐵!(2𝑛)!

2𝑚𝐴𝐵+𝑓𝐴𝐵 . (1)

This joint density resembles the density used in the

omnibus exact test for markers on the X chromosome recently

proposed by Graffelman and Weir (2016). A derivation of this

joint density is given in the Appendix, where its relationship

with the classical autosomal and the X chromosomal test is

shown as well. Rejection of the null may be caused by geno-

type frequencies in the population deviating from HWP, by

unequal allele frequencies, or by both these factors simulta-

neously, or can be a chance effect in the sample. We con-

sider a toy example sample of six males and seven females

with genotype counts (𝑚𝐴𝐴 = 1, 𝑚𝐴𝐵 = 2, 𝑚𝐵𝐵 = 3, 𝑓𝐴𝐴 =
0, 𝑓𝐴𝐵 = 2, 𝑓𝐵𝐵 = 5) to illustrate the calculations. Table 1

shows all possible samples for the given minor allele (𝐴) count

of six, together with their probabilities according to Equa-

tion (1).

The observed sample (row 27 of Table 1) has probabil-

ity 0.0876. The sum of all probabilities of all samples hav-

ing a probability smaller or equal to 0.0876 is 0.5500. At

a usual significance level of 𝛼 = 0.05, the composite null

hypothesis of HWP and EAF is not rejected. Recently, the

use of the mid P-value has been recommended for exact tests
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T A B L E 1 All possible samples (30) for a set of 13 individuals (six

males and seven females) with a total of six A alleles, and their proba-

bilities

Sample 𝒎𝑨𝑨 𝒎𝑨𝑩 𝒎𝑩𝑩 𝒇𝑨𝑨 𝒇𝑨𝑩 𝒇𝑩𝑩 𝑷 (𝑴𝑨𝑩, 𝑭𝑨𝑩) Cum.
1 3 0 3 0 0 7 0.0001 0.0001

2 0 0 6 3 0 4 0.0001 0.0002

3 0 6 0 0 0 7 0.0003 0.0005

4 2 0 4 1 0 6 0.0005 0.0010

5 1 0 5 2 0 5 0.0006 0.0015

6 2 2 2 0 0 7 0.0016 0.0031

7 0 0 6 0 6 1 0.0019 0.0050

8 1 4 1 0 0 7 0.0021 0.0071

9 0 0 6 2 2 3 0.0036 0.0108

10 2 0 4 0 2 5 0.0055 0.0162

11 0 2 4 2 0 5 0.0055 0.0217

12 0 4 2 1 0 6 0.0073 0.0290

13 0 0 6 1 4 2 0.0073 0.0363

14 2 1 3 0 1 6 0.0073 0.0436

15 1 2 3 1 0 6 0.0073 0.0509

16 1 0 5 1 2 4 0.0109 0.0618

17 0 1 5 2 1 4 0.0109 0.0728

18 0 5 1 0 1 6 0.0117 0.0845

19 1 0 5 0 4 3 0.0146 0.0991

20 1 1 4 1 1 5 0.0219 0.1210

21 1 3 2 0 1 6 0.0292 0.1501

22 0 1 5 0 5 2 0.0350 0.1852

23 0 3 3 1 1 5 0.0584 0.2435

24 0 1 5 1 3 3 0.0584 0.3019

25 1 1 4 0 3 4 0.0730 0.3749

26 0 4 2 0 2 5 0.0876 0.4625

27 1 2 3 0 2 5 0.0876 0.5500

28 0 2 4 1 2 4 0.1095 0.6595

29 0 2 4 0 4 3 0.1459 0.8054

30 0 3 3 0 3 4 0.1946 1.0000

The last column (Cum.) gives the cumulative probabilities. The observed sample

is marked in red.

for HWP (Graffelman & Moreno, 2013). The mid P-value,

calculated as half the probability of the observed sample plus

the sum of the probabilities of more extreme samples, for

this example is 0.5062 and points to the same conclusion.

Note that samples 26 and 27 have the same probability and

that 26 is therefore included in the sum that constitutes the

P-value.

3 LIKELIHOOD RATIO TESTS

In this section, we develop LR tests for HWP and EAF.

Similar work has been done by Zheng, Joo, Zhang, and

Geller (2007) and You, Zou, Li, and Zhou (2015) for the X

chromosome. To the best of our knowledge, a likelihood

framework for jointly addressing HWP and EAF on the auto-

somes has hitherto not been developed. The LR approach is

flexible, because it allows us to test HWP and EAF jointly,

but also separately and it can avoid the dependence outlined

in Figure 1. The probabilistic model used to describe the data

is again the multinomial distribution, but with different allele

frequencies for males and females and different inbreeding

coefficients for males and females. The full model for the data

is, conditioning on the observed number of males and females,

obtained by multiplying the multinomial likelihoods of males

and females:

𝐿(𝜃) =
(

𝑛𝑚
𝑚𝐴𝐴,𝑚𝐴𝐵, 𝑚𝐵𝐵

)
𝑃𝐴𝐴𝑚

𝑚𝐴𝐴𝑃𝐴𝐵𝑚
𝑚𝐴𝐵𝑃𝐵𝐵𝑚

𝑚𝐵𝐵

×
(

𝑛𝑓

𝑓𝐴𝐴, 𝑓𝐴𝐵, 𝑓𝐵𝐵

)
𝑃𝐴𝐴𝑓

𝑓𝐴𝐴𝑃𝐴𝐵𝑓
𝑓𝐴𝐵𝑃𝐵𝐵𝑓

𝑓𝐵𝐵 (2)

with

𝑃𝐴𝐴𝑚 = 𝑝2
𝐴𝑚

+ 𝑝𝐴𝑚(1 − 𝑝𝐴𝑚)𝜌𝑚,

𝑃𝐴𝐵𝑚 = 2𝑝𝐴𝑚(1 − 𝑝𝐴𝑚)(1 − 𝜌𝑚),

𝑃𝐵𝐵𝑚 = (1 − 𝑝𝐴𝑚)2 + 𝑝𝐴𝑚(1 − 𝑝𝐴𝑚)𝜌𝑚, (3)

𝑃𝐴𝐴𝑓 = 𝑝2
𝐴𝑓

+ 𝑝𝐴𝑓 (1 − 𝑝𝐴𝑓 )𝜌𝑓 ,

𝑃𝐴𝐵𝑓 = 2𝑝𝐴𝑓 (1 − 𝑝𝐴𝑓 )(1 − 𝜌𝑓 ),

𝑃𝐵𝐵𝑓 = (1 − 𝑝𝐴𝑓 )2 + 𝑝𝐴𝑓 (1 − 𝑝𝐴𝑓 )𝜌𝑓 ,

where 𝜃 = (𝑝𝐴𝑚, 𝑝𝐴𝑓 , 𝜌𝑚, 𝜌𝑓 ) is the parameter vector.

Closed form expressions for the maximum likelihood estima-

tors exist, and are given by:

�̂�𝐴𝑚 =
2𝑚𝐴𝐴 + 𝑚𝐴𝐵

2𝑛𝑚
, �̂�𝑚 =

4𝑚𝐴𝐴𝑚𝐵𝐵 − 𝑚2
𝐴𝐵

𝑛𝐴𝑚𝑛𝐵𝑚
, (4)

�̂�𝐴𝑓 =
2𝑓𝐴𝐴 + 𝑓𝐴𝐵

2𝑛𝑓
, �̂�𝑓 =

4𝑓𝐴𝐴𝑓𝐵𝐵 − 𝑓 2
𝐴𝐵

𝑓𝐴𝑓𝐵
.

These expressions are the same as the well-known auto-

somal estimators, but then applied to the genotype counts of

each gender separately. Several hypothesis tests of interest can

now be developed and are detailed in the following sections.

For each hypothesis, we initially use the unrestricted full four

parameter model as the alternative.

Scenario A: EAF and HWP
If no disturbing factors (selection, migration, etc.) are operat-

ing, one expects EAF and HWP, which can be phrased as the

null hypothesis 𝐻0 ∶ 𝑝𝐴𝑓 = 𝑝𝐴𝑚 ∩ 𝜌𝑚 = 𝜌𝑓 = 0. Under the
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null, the sexes are not distinguished, which we parametrize

as 𝑝𝐴 = 𝑝𝐴𝑓 = 𝑝𝐴𝑚 and 𝜌 = 𝜌𝑓 = 𝜌𝑚 = 0. The ML estima-

tor of 𝑝𝐴 is the usual autosomal allele count estimator given

by �̂�𝐴 = (2𝑛𝐴𝐴 + 𝑛𝐴𝐵)∕(2𝑛). We can test this hypothesis by

using the generalized LR statistic, Λ𝐴 = 𝐿(�̂�0)∕𝐿(�̂�1), where

�̂�0 = (�̂�𝐴, �̂�𝐴, 0, 0) and �̂�1 = (�̂�𝐴𝑚, �̂�𝐴𝑓 , �̂�𝑚, �̂�𝑓 ) are the con-

strained and unconstrained maximizers of 𝐿, respectively. We

have 𝐺2
𝐴
= −2 ln(Λ𝐴), and asymptotically 𝐺2

𝐴
∼ 𝜒2

(3). At a

conventional significance threshold of 𝛼 = 0.05 one rejects

the null of HWP and EAF if 𝐺2
𝐴

exceeds 7.81.

Scenario B: EAF and EIC
Under this scenario, deviation from Hardy-Weinberg equilib-

rium is admitted, but the inbreeding coefficient is assumed

to be the same in both sexes, such that we have equal-

ity of inbreeding coefficients (EIC). The corresponding null

hypothesis can be stated as 𝐻0 ∶ 𝑝𝐴𝑓 = 𝑝𝐴𝑚 ∩ 𝜌𝑓 = 𝜌𝑚.

Under the null, the sexes are not distinguished, which we

parametrize as 𝑝𝐴 = 𝑝𝐴𝑓 = 𝑝𝐴𝑚 and 𝜌 = 𝜌𝑓 = 𝜌𝑚. The ML

estimators of 𝑝𝐴 and 𝜌 are the usual autosomal estima-

tors given by �̂�𝐴 = (2𝑛𝐴𝐴 + 𝑛𝐴𝐵)∕(2𝑛) and �̂� = (4𝑛𝐴𝐴𝑛𝐵𝐵 −
𝑛2
𝐴𝐵

)∕(𝑛𝐴𝑛𝐵). We can test this hypothesis by using the LR

statistic Λ𝐵 = 𝐿(�̂�0)∕𝐿(�̂�1) with �̂�0 = (�̂�𝐴, �̂�𝐴, �̂�, �̂�) and �̂�1 =
(�̂�𝐴𝑚, �̂�𝐴𝑓 , �̂�𝑚, �̂�𝑓 ) and we have 𝐺2

𝐵
= −2 ln(Λ𝐵), and asymp-

totically 𝐺2
𝐵
∼ 𝜒2

(2). At a conventional significance threshold

of 𝛼 = 0.05 one rejects the null of EAF and EIC if 𝐺2
𝐵

exceeds

5.99.

Scenario C: EAF Only
This scenario assumes EAF, but possibly different inbreeding

coefficients for males and females. The null hypothesis is

now simply 𝐻0 ∶ 𝑝𝐴𝑓 = 𝑝𝐴𝑚 = 𝑝𝐴, with no restrictions

on the inbreeding coefficients. No closed form expressions

for the ML estimators of the parameters were found. ML

estimators were therefore obtained by maximizing the

likelihood function numerically, using R-package Rsolnp

(Ghalanos & Theussl, 2015). Maximization respected the

nonlinear constraint −min (𝑝𝐴, 𝑝𝐵)∕(1 − min (𝑝𝐴, 𝑝𝐵))
≤ 𝜌𝑚 ≤ 1 for males; the analogous constraint was used

for females with 𝜌𝑚 replaced by 𝜌𝑓 . The LR statis-

tic is Λ𝐶 = 𝐿(�̂�0)∕𝐿(�̂�1) with �̂�0 = (�̂�𝐴, �̂�𝐴, �̂�𝑚, �̂�𝑓 ) and

�̂�1 = (�̂�𝐴𝑚, �̂�𝐴𝑓 , �̂�𝑚, �̂�𝑓 ) and we have 𝐺2
𝐶
= −2 ln(Λ𝐶 ), and

asymptotically 𝐺2
𝐶
∼ 𝜒2

(1). At a conventional significance

threshold of 𝛼 = 0.05 one rejects the null of EAF if 𝐺2
𝐶

exceeds 3.84. This test breaks the vicious circle in Figure 1,

as it is a test for EAF that is free of the HWP assumption.

Scenario D: HWP in Both Sexes
In this scenario, there is equilibrium in both sexes such

that we have 𝐻0 ∶ 𝜌𝑚 = 𝜌𝑓 = 0, whereas male and female

allele frequencies can freely vary. The ML estimators for

the allele frequencies are �̂�𝐴𝑚 = (2𝑚𝐴𝐴 + 𝑚𝐴𝐵)∕(2𝑛𝑚) and

�̂�𝐴𝑓 = (2𝑓𝐴𝐴 + 𝑓𝐴𝐵)∕(2𝑛𝑓 ). We can test this hypothesis

by using the LR statistic Λ𝐷 = 𝐿(�̂�0)∕𝐿(�̂�1) with �̂�0 =
(�̂�𝐴𝑚, �̂�𝐴𝑓 , 0, 0) and �̂�1 = (�̂�𝐴𝑚, �̂�𝐴𝑓 , �̂�𝑚, �̂�𝑓 ). We have 𝐺2

𝐷
=

−2 ln(Λ𝐷), and asymptotically 𝐺2
𝐷
∼ 𝜒2

(2). This test also

breaks the vicious circle in Figure 1, as it is a test for HWP

that does not make the EAF assumption.

Scenario E: EIC
In this scenario, the inbreeding coefficient is the same in both

sexes, and their allele frequencies are not restricted, such

that we have 𝐻0 ∶ 𝜌𝑚 = 𝜌𝑓 = 𝜌. No closed form expressions

for the ML estimators were obtained, and for this sce-

nario, we also maximized the likelihood numerically, using

the constraint −min (𝑝𝐴𝑚, 𝑝𝐵𝑚)∕(1 − min (𝑝𝐴𝑚, 𝑝𝐵𝑚)) ≤ 𝜌

≤ 1 for male allele frequencies. The same constraint was

applied to females, replacing 𝑝𝐴𝑚 and 𝑝𝐵𝑚 by 𝑝𝐴𝑓 and 𝑝𝐵𝑓 ,

respectively. The null hypothesis can be tested with the LR

statistic Λ𝐸 = 𝐿(�̂�0)∕𝐿(�̂�1) with �̂�0 = (�̂�𝐴𝑚, �̂�𝐴𝑓 , �̂�, �̂�) and

�̂�1 = (�̂�𝐴𝑚, �̂�𝐴𝑓 , �̂�𝑚, �̂�𝑓 ). We have 𝐺2
𝐸
= −2 ln(Λ𝐸), and

asymptotically 𝐺2
𝐸
∼ 𝜒2

(1).

Scenario F
Scenario F corresponds to the full model that does not have

any additional constraints on the parameters beyond the usual

range constraints for inbreeding coefficients and allele fre-

quencies. The ML estimators for this scenario were given in

Equation (4).

In the foregoing, we have used the entirely unrestricted

scenario F as a reference against which the other scenarios

were compared. In particular, an LR test of scenario A

against F is a joint test for EAF and HWP, and the LR test

of D against F establishes a test for HWP that does not

assume the EAF. Likewise, an LR test of scenario C against

F is a test for EAF that does not rely on the assumption

of HWP. However, many other scenarios have a nested

relationship, with one being a particular case of another.

For example, A, B, and C are particular instances of D, E,

and F, respectively, and thus we could also test A versus

D, B versus E, and C versus F by an LR test, all three

corresponding LR statistics having a 𝜒2
(1) distribution under

the null. If EAF is assumed, then A can also be tested against

B, B against C, and A against C. Likewise, if EAF is not

assumed, D can also be tested against E, or E against F, or

D against F, for these are all nested models. The degrees of

freedom for the corresponding LR statistics are calculated

as the difference in number of parameters of the two

scenarios involved. The number of free parameters

for each model (𝑘) is shown in Figure 2. Note that

some scenarios cannot be compared for not being

nested.
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In order to determine which scenario best describes a

marker, successive hypothesis tests can be performed until a

model is found that cannot be rejected. The principle of par-

simony applies, where we favor, among the models that can-

not be rejected, the one that has fewer parameters. Alterna-

tively, model selection can also be performed by calculating

Akaike's information criterion (AIC; Akaike, 1973), defined

as 2𝑘 − 2 ln(𝐿(�̂�)) for all six models and choosing the model

with the smallest AIC.

4 TYPE I ERROR RATE AND
POWER

In this section, we evaluate the proposed omnibus exact and

LR tests of the previous sections with Type I error rate and

power calculations.

4.1 Type I Error Rate
We compare the Type I error rate of the omnibus exact and

LR tests of the previous sections as a function of the minor

allele frequency and the sex ratio. Type I error rates were cal-

culated by exhaustive enumeration, which is computationally

expensive, following the procedure detailed by Graffelman

and Moreno (2013), and are shown in Figure 3.

Figure 3 shows that the omnibus exact test has a better

Type I error rate than the LR test. The convergence to the

nominal rate is faster, and the exact test strictly controls the

Type I error rate, never exceeding the nominal level. For low

MAF variants, the LR test is more conservative than the exact

test, and for higher MAF, the LR test is above the nominal

level. The Type I error rate of the exact test is improved,

coming closer to the nominal level, by using the mid

P-value, which is particularly manifest for low MAF variants.

This has also been observed for the usual standard autoso-

mal exact test for HWP (Graffelman & Moreno, 2013). Mod-

erate bias in the sex ratio has little influence on the Type I

error rate, and changes only its erratic pattern at low MAF.

The better Type I error rate profile of the joint exact test

implies the latter also has better power than the LR test at low

MAF.

4.2 Power
Exact power calculations require the distributions of the LR

statistic and the joint density of 𝑀𝐴𝐵 and 𝐹𝐴𝐵 under the alter-

native hypothesis. These distributions are not readily avail-

able, and we therefore evaluate power by carrying out some

simulations. Simulations were designed as follows. Geno-

type data was simulated under the six different scenarios

by sampling males and females separately from multinomial

distributions with parameters specified by Equation (3). Sce-

narios A, B, and C were simulated with 𝜌𝑚 = 𝜌𝑓 = 0, 𝜌𝑚 =
𝜌𝑓 = −0.1, and 𝜌𝑚 = +0.1, 𝜌𝑓 = −0.1, respectively, for vary-

ing minor allele frequencies that were equal in males and

females. We used 10,000 simulations with 𝛼 = 0.05 and 𝑛𝑚 =
𝑛𝑓 = 50. This sample size corresponds closely to the empir-

ical data analyzed in Section 5. Scenarios D, E, and F were

also simulated with 𝜌𝑚 = 𝜌𝑓 = 0, 𝜌𝑚 = 𝜌𝑓 = −0.1 and 𝜌𝑚 =
+0.1, 𝜌𝑓 = −0.1, respectively, but with a varying ratio of male

and female allele frequencies. Power graphics for the six sce-

narios are shown in Figure 4. Scenarios D, E, and F were simu-

lated twice, for a low male MAF (𝑝𝐴𝑚 = 0.1), and for a higher

male MAF (𝑝𝐴𝑚 = 0.2). Figures 4.4, 4.5, and 4.6 correspond

to the low MAF simulations, and Figures 4.7, 4.8, and 4.9

to the higher MAF simulations. Power was calculated as the

fraction of simulations for which the tests rejected the null

hypothesis of the corresponding scenario. We evaluated four

tests: the standard exact test for HWP (ignoring sex), a stan-

dard exact test for EAF (ignoring HWP), the joint exact test

for HWP and EAF, and the joint LR ratio test for HWP and

EAF (scenario A against F).

Figure 4 A shows that under EAF, the joint exact test has the

best Type I error rate, and confirms the LR test is somewhat

liberal. Under EAF and EIC, the standard exact test for HWP

has better power than the joint exact test. If EIC cannot be

assumed, with different signs for the inbreeding coefficient for

males and females, the power of the standard exact test for

HWP drops, and the joint procedures outperform the standard

exact test. For many scenarios, the joint LR test appears to

have slightly better power than the joint exact test, but this is

most likely due to the fact that the LR test is somewhat liberal,

as it does not control strictly the Type I error 𝛼. As expected,

power is better for larger minor allele frequencies. In general,

under EAF power is low and for the given sample size, and

does not exceed 0.20.

For scenarios D, E, and F, with differences in allele fre-

quencies between the sexes, the joint exact, the joint LR,

and the standard exact test for EAF have similar power, and

their power increases when the ratio of the allele frequencies

increases. The good power of the EAF exact test may be con-

sidered flattered to some extent, because this test is allele-

based and has therefore a doubled sample size. Comparison

of Figures 4.4, 4.5, and 4.6 with 4.7, 4.8, and 4.9 shows, as

expected, that all tests have better power when the MAF of one

sex increases. In scenarios E and F, a standard exact test for

HWP that ignores gender has in general low power to detect

deviation from equilibrium. At extreme 𝑝𝐴𝑓∕𝑝𝐴𝑚 ratios, this

test acquires more power. This can be ascribed to the fact that

the overall allele frequency is the average of the allele fre-

quency of both sexes, and at this average allele frequency,

overall heterozygosity is reduced with respect to HWP (see

Discussion).
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F I G U R E 3 Type I error rates for the omnibus exact and LR tests as a function of the MAF and the sex ratio

Note: (A), (C), and (E) show the Type I error rate for exact and LR tests. (B), (D), and (F) show the Type I error rate for the exact test using the standard

and mid P-value.

5 EMPIRICAL EXAMPLES

In this section, we apply the previously developed method-

ology to single nucleotide polymorphisms (SNPs) from the

JPT sample of the 1000 Genomes project (The 1000 Genomes

Project Consortium, 2015), consisting of 104 individuals,

56 males and 48 females. We first illustrate the methodology

by analyzing some individual SNPs, followed by an analysis

of some larger genomic areas of the same sample.

5.1 Single SNPs
We comment on the analysis of six SNPs that correspond to

the different scenarios, all represented in Figure 5. In these

ternary plots, the acceptance region of a Chi-square test with

𝑛 = 52 (the average of the male and female sample size)

and 𝛼 = 0.05 has been indicated (Graffelman & Morales-

Camarena, 2008). This makes it possible to judge graphi-

cally the significance of the males and the females in separate

tests for HWP. We calculated the AIC for all models in order

to compare this with the final model obtained by successive

hypothesis testing. AIC statistics for all six markers consid-

ered are given in Table 2 C.

We first reanalyze a single SNP, rs147120681, previously

presented in the Introduction, adopting a significance level

𝛼 = 0.05. If we jointly test HWP and EAF for this marker

with the exact test presented in Section 2, we obtain P-value

0.0031. Using the LR approach, the joint test (A against

F) is also significant (P = 0.0029). A test for EAF without

assuming HWP (C against F), shows EAF cannot be rejected

(P = 0.1801). Testing common inbreeding coefficients (B

vs. C) gives P values 0.0005, indicating the marker is best

described by scenario C. Genotype counts and exact test

results are summarized in the third row of Table 2 A. This

example shows one cannot blindly rely on separate HWP and

EAF tests. A ternary diagram of this marker shown in Fig-

ure 5 C shows that if a standard HWP test is applied, the dif-

ferences in inbreeding coefficients between males and females

are averaged out, and disequilibrium goes unnoticed. Note

that Figure 5 C actually shows HWP has to be rejected when
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F I G U R E 4 Power comparison for the omnibus exact test, the joint likelihood-ratio test, and standard exact procedures for HWP and EAF

Notes: Panel letters A, B,..., F correspond to the theoretical scenarios in Figure 2. Panels 1, 2, and 3 show power as a function of the allele frequency.

Panels 4 through 9 show power as a function of the ratio between female and male allele frequencies. For panels 4, 5, and 6, male A allele frequency

was set to 0.1, and for panels 7, 8, and 9, male A allele frequency was set to 0.2.

males and females are tested separately. The proposed joint

exact test detects disequilibrium and with the LR approach,

the most appropriate scenario can be determined. Model C

has the smallest value for the AIC statistic.

Polymorphism rs1574243 is nonsignificant in all three

exact tests. The LR procedures does not reject EAF (with-

out assuming HWP, P = 0.4698), neither rejects EIC (B vs.

C, P = 0.3513), and finally neither rejects HWP (B vs. A,

P = 0.5555). This polymorphism corresponds to scenario A,

which is the generally expected scenario. AIC identifies model

A as the best fitting model.

SNP rs200455936 is significant in the HWP and in the joint

exact tests, but not in an exact test for EAF. With the LR

approach, EAF could not be rejected (C vs. F, P = 0.5079),

a common inbreeding coefficient could neither be rejected

(B vs. C, P = 0.2054), but HWP are rejected (A vs. B,

P < 0.0001). Correspondingly, model B has the lowest AIC.

SNP rs809600 is not significant in an exact test for HWP,

but is significant in an exact test for EAF, and consequently

also significant in the joint test. The LR procedure rejects

EAF (C vs. F, P = 0.0005). Despite differences in allele fre-

quencies, EIC (P = 0.9733) and HWP (P = 0.6690) are not

rejected, and the marker is best described by scenario D.

Model D also clearly has the lowest AIC.

SNP rs536079471 is significant in all exact tests. With an

LR approach, EAF is rejected (C vs. F, P = 0.0074), but

a common inbreeding coefficient is not rejected (E vs. F,

P = 0.6433). Finally, HWP are rejected (D vs. E, P < 0.0001).

The marker is best described by scenario E.

SNP rs536987805 is significant in all exact tests. Using

the LR approach, EAF is rejected (C vs. F, P = 0.0014), and

EICs too (P = 0.0002). Not surprisingly, HWP are rejected

too (D vs. F, P = 0.0002). If, like in this case, EICs can-

not be assumed, then implicitly HWP are rejected for this

would imply both coefficients to be equal (and zero). If,

at any rate, an additional test for HWP is desired, then

it seems more appropriate to test D against F and not D

against E. The ternary diagram in Figure 5 F shows that
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F I G U R E 5 Ternary diagrams for six SNPs on chromosome 1 of the JPT sample

Notes: Dotted curves delimit the acceptance region of a chi-square test with a sample size of 𝑛 = 52 and 𝛼 = 0.05

disequilibrium is principally due to females being out of

HWP.

The six SNPs studied in Table 2 illustrate that all scenar-

ios theoretically envisioned in Figure 2 do actually occur in

practice. The question arises which scenarios are more com-

mon, and which are improbable. This is addressed by studying

larger genomic areas in the next section.

5.2 Genomic Areas
We analyzed all 965.458 complete nonmonomorphic SNPs

with RS identifier on chromosome 1 of the JPT sample with

the HWP, EAF, and joint exact tests described in this paper.

The degree of (dis)agreement of the exact test procedures is

shown in the Venn diagram in Figure 6. This shows that there

are more significant markers in the HWP test (0.65%) than in

the EAF tests (0.02%). The percentage of significant markers

for both tests is larger than what is expected by chance alone,

if the variants are assumed to be independent and using the

HapMap significance threshold, 𝛼 = 0.001. The joint exact

test uncovers 0.05% of the markers as significant that were not

significant when tested separately for HWP and EAF. Not sur-

prisingly, this subset of markers almost exclusively pertains to

scenarios F, E, and C, being F the most frequent. Most of them

have considerable, but statistically nonsignificant, differences

in inbreeding coefficients and allele frequencies between the

sexes. In the joint test, which considers both differences, such

variants then appear significant.

Of the small subset (six variants) significant in all exact

tests, several map to the same area and most likely correspond

to the same haplotype. All of these variants had a deficiency of

heterozygotes. A considerable set of variants does not appear

as significant in the joint exact test, but is significant in a HWP

or EAF test only. The first group mainly concerns variants cor-

responding to scenario B, whereas the second group mainly

corresponds to variants with scenario D.

We calculated the AIC for each SNP on chromosome 1,

excluding SNPs with missing data and monomorphic in at

least one of the two sexes, and assigned each SNP to the sce-

nario for which it had minimal AIC. Figure 7 A shows the

prevalence of the different scenarios according to the AIC,

and reveals that 70% of the SNPs are classified as having the

expected scenario of HWP and EAF. A considerable part,

30%, has a different scenario, being scenario D with HWP

and different allele frequencies the second most prevalent

(11.3%). We stratified prevalence by the sign of the inbreeding
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T A B L E 2 (A) Genotype counts and exact test P values for six SNPs of the JPT sample. (B) P values of the most relevant LR tests for comparing

scenarios. (C) Akaike's information criterion (AIC) for the six scenarios for six SNPs of the JPT sample. Models are labeled in accordance with

Figure 2. Best fitting models are marked in bold

(A) Genotype Counts and Exact Test P Values
Males Females Exact P Values

SNP AA AB BB AA AB BB HWP EAF JOINT
rs1574243 11 32 13 14 23 11 0.6947 0.4904 0.6553

rs200455936 8 40 8 6 39 3 0.0000 0.6782 0.0000

rs147120681 23 18 15 7 32 9 0.6981 0.2107 0.0031

rs809600 22 27 7 7 24 17 0.8461 0.0008 0.0082

rs199767071 32 9 15 15 10 23 0.0000 0.0008 0.0000

rs536987805 32 23 1 21 11 16 0.0130 0.0007 0.0000

(B) P Values of the Most Relevant LR Tests
JOINT EAF HWP EIC
A-F C-F D-F B-C A-B E-F D-E

rs1574243 0.6284 0.4698 0.5380 0.3513 0.5555 0.3530 0.5391

rs200455936 0.0000 0.5079 0.0000 0.2054 0.0000 0.2194 0.0000

rs147120681 0.0029 0.1801 0.0022 0.0005 0.7192 0.0005 0.7595

rs809600 0.0073 0.0005 0.9122 0.9633 0.8627 0.9733 0.6690

rs199767071 0.0000 0.0074 0.0000 0.6109 0.0000 0.6433 0.0000

rs536987805 0.0000 0.0014 0.0002 0.0006 0.0096 0.0002 0.0867

C: AIC of Each Model
SNP A B C D E F
rs1574243 214.08 215.74 216.87 215.58 217.21 218.35

rs200455936 180.66 153.01 153.41 182.46 154.48 154.97

rs147120681 220.34 222.21 212.14 220.57 222.48 212.35

rs809600 219.17 221.14 223.14 209.32 211.13 213.13

rs199767071 262.45 219.77 221.52 252.84 214.56 216.35

rs536987805 217.77 213.06 203.27 207.84 206.90 195.09

coefficient, and this shows that variants of all scenarios except

C mostly have negative inbreeding coefficients. We stratified

the variants assigned to each scenario by MAF (Fig. 7 B, MAF

≤ 0.05 or > 0.05), overall HW exact test P-value (Fig. 7 C,

p-value ≤ 0.05 or > 0.05) and EAF exact test P-value

(Fig. 7 D; P-value ≤ 0.05 or > 0.05). These figures show that

low MAF markers are more common among variants with

homogeneous allele frequencies, and relatively more com-

mon, as expected, among variants classified in the equilib-

rium scenarios (A and D). For low MAF markers, there is less

power to detect Hardy-Weinberg disequilibrium (HWD), and

therefore they prevail in the equilibrium scenarios. The largest

portions of markers with significant HWD are found in sce-

narios B and E, suggesting that most HWD is due to variants

with a common inbreeding coefficient for males and females.

Figure 7 D confirms, not surprisingly, that significant devi-

ation from EAF is observed only in the variants assigned to

scenarios D, E, and F. The analysis presented in Figure 7 was

repeated for chromosome 2, and very similar barplots were

obtained (results not shown).

6 DISCUSSION

It is very well-known that an autosomal marker is expected

to reach HWP in one single generation of random mating to

the point that most genetic textbooks state this. We stress that

this is contingent upon EAF in the sexes, and if these are dif-

ferent, then it does not take one but two generations to reach

Hardy-Weinberg equilibrium. In the first generation, the new

𝐴 allele frequency is the average of the male and female allele

frequencies of the previous generation, but genotype frequen-

cies are not in HWP. The allele frequency in the second gener-

ation will now remain unaltered, and this generation will have

its genotype frequencies in the HWP. Supposing that the other

usual assumptions (absence of migration, mutation, selection,

etc.) are met, it may thus be more adequate to state that it will

take at most two generations to reach Hardy-Weinberg equi-

librium.

Standard statistical procedures for testing HWP and EAF

(chi-square tests, exact tests) do, in theory, not allow us to ade-

quately test these phenomena because of a mutual dependence
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F I G U R E 6 Venn diagrams of HWP, EAF, and joint exact test

results for all nonmonomorphic complete SNPs on chromosome 1 of the

JPT sample

Notes: Circles enclose the number of significant SNPs (at 𝛼 = 0.001) for

the different tests.

in their assumptions. An exact test that can test HWP and EAF

jointly has been developed, and it has been shown that this test

can uncover additional potentially problematic markers (e.g.,

see rs147120681 in the previous section). The EAF assump-

tion may be avoided by testing HWP in males and females

separately, but that brings about an unnecessary reduction in

the sample size with a corresponding loss of power.

The LR approach creates a whole family of tests that can

compare many nested scenarios. In order to avoid doing all

tests, we adopted the following strategy. First scenario C is

compared with scenario F. This is a test for EAF without any

assumptions regarding HWP. If this test is significant, EAF is

rejected and one can proceed to test E against F. If the latter

turns out significant, E is rejected and F assumed. If not, D

can be tested against E to finally decide upon the scenario. If

homogeneity of allele frequencies (C vs. F) cannot be rejected,

then, in a similar manner, B might be compared with C, even-

tually followed by A against B. This inevitably brings about

multiple statistical tests, and some correction for multiple test-

ing may be considered in the process. The situation is akin to

model building in general (e.g., regression modeling), where

different models are used successively, and multiple tests for

significance or goodness-of-fit are carried out before one or

some final models are selected. The LR approach relies on

the asymptotic 𝜒2 distribution of the LR statistic, and there-

fore requires large samples. The Type I error rate calculations

shows that the joint LR test can be too conservative or too

liberal, depending on the MAF of the marker, and that exact

procedures are more adequate. Additional exact procedures

could be further developed in order to cover all possible sce-

narios outlined in this paper.

The examples given in Section 5 show that spurious

significant and spurious nonsignificant results can arise if

the standard exact HW test is applied without stratifying for

sex. The example in Figure 5 C suggests the overall HWP

test is spuriously nonsignificant due to the fact that male

and female inbreeding coefficients have a different sign,

and therefore tend to average out when sex is ignored. In

fact, the marker deserves close inspection for having highly

unexpected opposite signs for male and female inbreeding

coefficients. Under scenario D, a spuriously significant

overall HWP test result can arise, in particular if the minor

allele is a different allele for each sex. When the sexes are

analyzed separately, their proportions can correspond to

HWP, whereas if they are analyzed jointly by a standard exact

test, disequilibrium can be found. This is reminiscent of the

well-known Wahlund effect, where reduced heterozygosity

is found due to population substructure. It is well known

that stratified populations with different subgroups hamper

statistical inference on HWP (Laird & Lange, 2011) as

well as inference on disease association. In our context, an

apparently reduced overall heterozygosity can be found due

to allele frequency differences between the sexes.

For the six example SNPs discussed, the final model cho-

sen for each SNP by means of successive hypothesis testing

coincided with the model suggested by their AIC. It should

be noticed that in practice this is not always the case, in

particular if there are only small differences in AIC for two

models. At the 5% significance level, we found that the two

procedures select the same scenario for 81% of the studied

complete nonmonomorphic variants. For the remaining 19%,

AIC selected generally more complex models, mostly sce-

narios B and D instead of A. The AIC approach allows the

comparison of all models, whereas the LR approach can only

compare nested models. The AIC approach is computationally

more demanding because all models are estimated, including

the ones for which we have no closed-form estimators (models

C and E). For a discussion on using a hypothesis testing or an

information-theoretic approach (AIC) in model selection, we

refer to Burnham & Anderson (2002) and Murtaugh (2014).

Alternatively, Bayesian model selection procedures could also

be used in this context.

Variants that were assigned to scenario F often had their

male and female genotype compositions lining up almost per-

pendicularly with respect to the AA or BB angle bisector, the

sexes thus having almost identical frequencies for one of the

two homozygotes. This suggests confounding of the heterozy-

gote with only one of the homozygotes, though it remains

unclear why such confounding appears related to gender.

We emphasize that the analysis in Section 5 refers to com-

plete variants (genotypes observed for all individuals) with a
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F I G U R E 7 Barplots of scenarios based on AIC for all complete SNPs, polymorphic in both sexes, on chromosome 1 of the JPT population

Notes: (A) Prevalence of scenarios stratified by sign of the inbreeding coefficient. (B) Variants in each scenario stratified by MAF. (C) Variants in each

scenario stratified by HWD. (D) Variants in each scenario stratified by EAF.

RS identifier, and that this subset should not be considered

as representative for the studied chromosome. In particular,

variants with missing data typically present more disequilib-

rium (Graffelman, Nelson, Gogarten, & Weir, 2015).

Of all theoretically possible models, A is the generally

expected scenario, as EAF will be reached in one generation,

and HWP in at most two, if we admit the initial allele fre-

quencies to differ between the sexes. EAF is thus established

prior to Hardy-Weinberg equilibrium. The JPT data confirm

this since the equal allele frequency models A, B, and C are all

more prevalent than their corresponding heterogeneous allele

frequency counterparts (see Fig. 7 A), and also there is much

more evidence for deviation from HWP than for differences

in allele frequencies (see Fig. 6), despite the fact that latter

can be expected to have better power because the sample size

is doubled (2𝑛 alleles instead of 𝑛 individuals). If systematic

deviation from HWP does exist, then we expect males and

females to be equally affected. The JPT data confirm this too,

with B and E the second most plausible scenarios given the

hetero- or homogeneity of allele frequencies.

The power study in Section 4.2 shows that the proposed

joint tests have relatively good power under all scenarios. It

should, however, be kept in mind that the joint tests address

a composite, joint null hypothesis, which is different from the

null addressed in a standard HWP and a standard EAF test.

If EAF strictly holds, the standard HWP exact test has better

power to detect HWD, but only if the deviation from equilib-

rium is in the same direction in both sexes. Deviations with

different signs for the sexes are better detected by the joint

procedures.

This paper shows that carrying out the Hardy-Weinberg

quality control part in an automated numerical way is not

without problems. In this context, the ternary diagram,

stratified for males and females, is an excellent graphical

tool that contributes to a better understanding of a genetic

marker. It is not feasible to inspect all ternary diagrams

in a genome-wide association study (GWAS), but it may

be feasible to calculate all AICs in order to filter out

and inspect those SNPs not corresponding to the (most)

expected scenario(s). We do not recommend automated

elimination of SNPs with unlikely scenarios from GWASs,

but we do encourage a thorough inspection of signif-

icant GWAS findings with the tools described in this

paper.
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7 SOFTWARE

Operational versions of the joint exact test and LR procedures

discussed in this paper are made available for the R environ-

ment (R Core Team, 2014) in version 1.5.9 of the R-package

Hardy-Weinberg (Graffelman, 2015), and are in the process

of being optimized for their use in genome-wide studies.
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APPENDIX
OMNIBUS EXACT TEST

In this Appendix, we give a self-contained treatment of exact

tests for HWP and EAF, thereby deriving the density given

in Equation (1) of this paper. We also derive the Graffelman-

Weir X chromosomal exact test for HWP and EAF, and sum-

marize the classical autosomal exact test.

Classical Autosomal Exact Test for HWP
Autosomal exact inference is based on the conditional dis-

tribution of the number of heterozygotes given the number

of A alleles. This distribution is generally ascribed to Lev-

ene (1949) and Haldane (1954), but as Wellek (2004) has

pointed out, had in fact been posed earlier, without derivation,

by Stevens (1938). Haldane (1954) derived the distribution

for two alleles by a combinatorial argument. Levene (1949)

derived it from the multinomial distribution and using condi-

tioning, and obtained the density for multiple alleles. Under

the assumption of HWP, the genotypes counts will follow the

multinomial distribution with probability vector (𝑝2, 2𝑝𝑞, 𝑞2)

given by:

𝑃
(
𝑁𝐴𝐴,𝑁𝐴𝐵,𝑁𝐵𝐵

)
=
(

𝑛

𝑛𝐴𝐴, 𝑛𝐴𝐵, 𝑛𝐵𝐵

)(
𝑝2
)𝑛𝐴𝐴(2𝑝𝑞)𝑛𝐴𝐵(𝑞2)𝑛𝐵𝐵 . (A1)

Under HWP, all alleles are independent, and the distribu-

tion of 𝑁𝐴 is given by the binomial distribution:

𝑃
(
𝑁𝐴

)
=
(

2𝑛
𝑛𝐴, 𝑛𝐵

)
(𝑝)𝑛𝐴 (𝑞)𝑛𝐵 . (A2)

The Stevens-Levene-Haldane distribution is then obtained

by:

𝑃
(
𝑁𝐴𝐵|𝑁𝐴

)
=

𝑃
(
𝑁𝐴𝐵 = 𝑛𝐴𝐵 ∩𝑁𝐴 = 𝑛𝐴

)
𝑃
(
𝑁𝐴 = 𝑛𝐴

)
=

𝑃
(
𝑁𝐴𝐴 = 𝑛𝐴𝐴 ∩𝑁𝐴𝐵 = 𝑛𝐴𝐵 ∩𝑁𝐵𝐵 = 𝑛𝐵𝐵

)
𝑃
(
𝑁𝐴 = 𝑛𝐴

)
=

𝑛𝐴!𝑛𝐵!𝑛!2𝑛𝐴𝐵
𝑛𝐴𝐴!𝑛𝐴𝐵!𝑛𝐵𝐵!(2𝑛)!

, (A3)

where the first step follows because𝑁𝐴𝐵 = 𝑛𝐴𝐵 and𝑁𝐴 = 𝑛𝐴
imply that 𝑁𝐴𝐴 = 𝑛𝐴𝐴, and this in turn implies 𝑁𝐵𝐵 = 𝑛𝐵𝐵
because the total sample size is fixed. Fast recursive algo-

rithms for the calculation of (A3) have been developed (Elston

& Forthofer, 1977; Wigginton, Cutler, & Abecasis, 2005).

Omnibus X Chromosomal Exact Test for HWP
and EAF
Graffelman and Weir (2016) proposed an X chromosomal

exact test that takes males into account. For inference with X

chromosomal markers, an additional random variable needs to

be considered, the number of males carrying the minor allele

(𝑀𝐴). We use the joint distribution of the number of female

heterozygotes 𝐹𝐴𝐵 and 𝑀𝐴, given the total minor allele count

𝑁𝐴 and given the number of males observed in the sample.

This joint distribution can be factored as:

𝑃
(
𝑀𝐴,𝐹𝐴𝐵 ∣ 𝑛, 𝑛𝐴, 𝑛𝑚

)
= 𝑃

(
𝐹𝐴𝐵 ∣ 𝑀𝐴, 𝑛, 𝑛𝐴, 𝑛𝑚

)
×𝑃

(
𝑀𝐴 ∣ 𝑛, 𝑛𝐴, 𝑛𝑚

)
. (A4)

We note that the conditional probability 𝑃 (𝐹𝐴𝐵 = 𝑓𝐴𝐵 ∣
𝑀𝐴, 𝑛, 𝑛𝐴, 𝑛𝑚) is the same as 𝑃 (𝐹𝐴𝐵 = 𝑓𝐴𝐵 ∣ 𝐹𝐴, 𝑛, 𝑛𝐴, 𝑛𝑓 )
because for a fixed total number of A alleles, conditioning

on 𝑀𝐴 implies conditioning on 𝐹𝐴 since their sum is con-

stant. Because we also condition on the sample size and the

observed number of males, the conditioning on 𝑛𝑚 is equiva-

lent to conditioning on 𝑛𝑓 . We thus have

𝑃
(
𝐹𝐴𝐵 = 𝑓𝐴𝐵 ∣ 𝐹𝐴, 𝑛, 𝑛𝐴, 𝑛𝑓

)
=

𝑓𝐴!𝑓𝐵!𝑛𝑓 !2𝑓𝐴𝐵

𝑓𝐴𝐴!𝑓𝐴𝐵!𝑓𝐵𝐵!(2𝑛𝑓 )!
. (A5)

Equation (A5) is in fact the Stevens-Levene-Haldane distri-

bution for the number of heterozygotes described above in

Equation (A3), but applied to the females only. We note that

the number of 𝑀𝐴 males in a sample of 𝑛 individuals with 𝑛𝐴
alleles that is partitioned into 𝑛𝑚 males and 𝑛𝑓 females has a

hypergeometric distribution given by:

𝑃
(
𝑀𝐴 = 𝑚𝑎 ∣ 𝑛, 𝑛𝐴, 𝑛𝑚

)
=

𝑛𝐴!𝑛𝐵!𝑛𝑚!(2𝑛𝑓 )!
𝑓𝐴!𝑓𝐵!𝑚𝐴!𝑚𝐵!𝑛𝑡!

. (A6)

Finally, multiplying (A5) by (A6) we obtain:

𝑃
(
𝑀𝐴,𝐹𝐴𝐵 ∣ 𝑛, 𝑛𝐴, 𝑛𝑚

)
=

𝑛𝐴!𝑛𝐵!𝑛𝑚!𝑛𝑓 !2𝑓𝐴𝐵

𝑚𝐴!𝑚𝐵!𝑓𝐴𝐴!𝑓𝐴𝐵!𝑓𝐵𝐵!𝑛𝑡!
, (A7)

which is the hitherto unpublished justification of the result

given by Graffelman and Weir (2016).

Omnibus Autosomal Exact Test for HWP and
EAF
Under the assumption of HWP and EAF, and given a fixed

number of males and females, the genotypes of the two sexes

can be described by two separate multinomial distributions

that both have probability vector (𝑝2
𝐴
, 2𝑝𝐴𝑝𝐵, 𝑝2𝐵). The joint

probability of all six genotypes is given by the product of the



48 GRAFFELMAN AND WEIR

two multinomial densities:

𝑃
(
𝑀𝐴𝐴,𝑀𝐴𝐵,… , 𝐹𝐵𝐵

)
=
(

𝑛𝑚
𝑚𝐴𝐴,𝑚𝐴𝐵, 𝑚𝐵𝐵

)
(𝑝𝐴)2𝑚𝐴𝐴 (2𝑝𝐴𝑝𝐵)𝑚𝐴𝐵 (𝑝𝐵)2𝑚𝐵𝐵

×
(

𝑛𝑓

𝑓𝐴𝐴, 𝑓𝐴𝐵, 𝑓𝐵𝐵

)
(𝑝𝐴)2𝑓𝐴𝐴 (2𝑝𝐴𝑝𝐵)𝑓𝐴𝐵 (𝑝𝐵)2𝑓𝐵𝐵

=
𝑛𝑚!𝑛𝑓 !

𝑚𝐴𝐴!𝑚𝐴𝐵!𝑚𝐵𝐵!𝑓𝐴𝐴!𝑓𝐴𝐵!𝑓𝐵𝐵!
𝑝
𝑛𝐴
𝐴
𝑝
𝑛𝐵
𝐵
2𝑓𝐴𝐵+𝑚𝐴𝐵 .

(A8)

Again assuming HWP, 𝑁𝐴, the number of A alleles, will have

the binomial distribution:

𝑃
(
𝑁𝐴 = 𝑛𝐴

)
=
(
2𝑛
𝑛𝐴

)
(𝑝𝐴)𝑛𝐴(𝑝𝐵)𝑛𝐵 . (A9)

Again conditioning on the total number of A alleles, we have

𝑃
(
𝑀𝐴𝐴,𝑀𝐴𝐵,… , 𝐹𝐵𝐵|𝑁𝐴

)
=

𝑃
(
𝑀𝐴𝐴 = 𝑚𝐴𝐴,… , 𝐹𝐵𝐵 = 𝑓𝐵𝐵 ∩𝑁𝐴 = 𝑛𝐴

)
𝑃
(
𝑁𝐴 = 𝑛𝐴

) .

(A10)

If 𝑁𝐴 is known, and homogeneous allele frequencies

are assumed, then 𝐹𝐴 and 𝑀𝐴 are also known. Joint

knowledge of 𝐹𝐴 with 𝐹𝐴𝐵 and 𝑀𝐴 with 𝑀𝐴𝐵 and the

number of males and females implies all genotype counts.

Consequently, the numerator in (A10) is the product of

the multinomial distributions given in (A8). Dividing (A8)

by (A9) we obtain:

𝑃
(
𝑀𝐴𝐴,𝑀𝐴𝐵,… , 𝐹𝐵𝐵|𝑁𝐴

)
=

𝑛𝐴!𝑛𝐵!𝑛𝑚!𝑛𝑓 !
𝑚𝐴𝐴!𝑚𝐴𝐵!𝑚𝐵𝐵!𝑓𝐴𝐴!𝑓𝐴𝐵!𝑓𝐵𝐵!(2𝑛)!

2𝑚𝐴𝐵+𝑓𝐴𝐵 ,

which is Equation (1) of this paper. We note that this result

strongly resembles the density used in the omnibus exact test

for X chromosomal markers (A7), the difference being that the

hemizygous male genotype counts are replaced by the auto-

somal homozygote counts, 𝑚𝐴𝐵 appears as an extra genotype,

and that the female heterozygotes in the exponent are replaced

by the total number of heterozygotes. Indeed, the classical

autosomal distribution and the Graffelman-Weir exact test are

special cases of Equation (1). By setting all genotype counts

of one sex to zero (e.g., 𝑚𝐴𝐴 = 𝑚𝐴𝐵 = 𝑚𝐵𝐵 = 0 and 𝑛𝑚 = 0),

the classical autosomal density is obtained. Setting 𝑚𝐴𝐵 = 0
and 𝑚𝐴𝐴 to 𝑚𝐴 and 𝑚𝐵𝐵 to 𝑚𝐵 the X chromosomal exact dis-

tribution is obtained.


