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Retroelements with long-terminal repeats (LTRs) inhabit nearly
all eukaryotic genomes. During the time of their rich evolu-
tionary history they have developed highly diverse forms,
ranging from ordinary retrotransposons to complex patho-
genic retroviruses such as HIV-I. Errantiviruses are a group of
insect endogenous LTR elements that share structural and
functional features with vertebrate endogenous retroviruses.
The errantiviruses illustrate one of the evolutionary strategies
of retrotransposons to become infective, which together with
their similarities to vertebrate retroviruses make them an
attractive object of research promising to shed more light on
the evolution of retroviruses.

Introduction

The evolutionary relationships of retroelements, their polymorph-
ism, transposition and proliferation strategies as well as the cell
control mechanisms of their activity are of great interest due to
their major impact on the genome stability in eukaryotes. They
participate in insertional mutagenesis, epigenetic processes and are
able to provoke chromosomal aberrations.1-5 On the other hand,
retroelements have been shown to interact with genome in a
mutualistic manner and act as a source of new genes.6,7

LTR-retroelements include several groups: exogenous retroviruses,
endogenous retroviruses (ERVs) and LTR-retrotransposons.
During evolution three possible strategies of retroelement exist-
ence were formed. The first one is based on the “copy and
paste” mechanism of genome colonization. It is the most ancient
strategy which is used by classic LTR-retrotransposons. They
become integrated into the genome and are usually insufficiently
genetically equipped to form functional viral particles, enveloped
structures, that contain element’s genome and can bud from one
cell and enter another, and behave as infectious retroviruses.8

Genetic material of LTR-retrotransposons is transferred vertically
via the germ line of the host organism. Exogenous retroviruses
demonstrate the opposite approach—they reproduce via infection
and their genetic material is transferred horizontally. The reproduc-
tion of ERVs can potentially occur by both mechanisms.9 They

transfer via host germ line and at the same time they may still be
transferred horizontally.10

Exogenous retroviruses are widespread among vertebrates and
are quite rare among the invertebrate species. The first inver-
tebrate retrovirus-like infective agent was identified in Drosophila
melanogster genome when it was shown that thoroughly studied
retrotransposon gypsy has the infective ability.11,12 Subsequently
similar properties were reported for other Drosophila retrotrans-
posons such as ZAM and Idefix.13 The latter ones along with
gypsy became first members of the group of insect ERVs—
errantiviruses.14

Some ERVs evolved from retroviruses by losing infectivity and
occupying host germ line. Another group of ERVs gained the
retrovirus-like features, such as ability to leave one cell and enter
another cell de novo and didn’t have infectious retroviral
ancestors. (Fig. 1) Apparently errantiviruses belong to the second
category.

According to the International Committee on Taxonomy of
Viruses (ICTV) both exogenous and endogenous retroviruses of
vertebrates are part of the Retroviridae family whereas invertebrate
retroviruses (as well as some LTR-retrotransposons of Ty3/Gypsy
family, plant and fungi ERVs) belong to the Metaviridae.15 Ty1/
Copia retrotransposons fall into the Pseudoviridae family.15

Errantiviruses and other representatives of Metaviridae did not
evolve to full-fledged viruses, keeping their reproductive strategy
more similar to that used by retrotransposons. However, these
elements are abundant in insect genomes and their life cycle and
interactions with cell control mechanisms draw attention and in a
perspective may shed light on the origin, evolution and behavior
of all retroviruses.

Structure and Classification

The structure and interactions of errantiviral proteins are not as
thoroughly described as for the human retroviral proteins. This
can largely be explained by the fact that human HIV is the
dominant focus of research in retroviruses. Thus, studies of
errnativiruses provide new insight into the evolution of retro-
viruses beyond studies of HIV.

Genes and proteins. The ability of the LTR-retroelement to
infect different cells depends on the functionality of a basic set
of the major genes, and on whether the element has additional
genes and mechanisms that increase its infectivity.
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A typical retrovirus contains two direct long-terminal repeats,
some untranslated fragments and three open reading frames
(ORFs)—gag, pol and env, which are responsible for the element
virus-like particle formation, its retrotranscription ability, and
potential infectivity, respectively.16 Gag gene is responsible for the
synthesis of structural proteins that fold and protect element’s
RNA and form a virus-like particle. Pol is a gene that produce
enzymes required for the reverse transcription and integration of
the element into the host cell genome. Env encodes surface
protein that is integrated into the viral particle membrane and
helps virus to enter the host cell.

Gag. The first function of Gag protein is the formation of the
complex with retroelement RNA where the reverse transcription
takes place. Also, Gag proteins mediate the nuclear transfer of
the preintegration complex of the retroelement. This basic set of
functions is sufficient for retrotransposition. But in retroviruses
Gag proteins also bind to the cell membrane and mediate the
virus budding.17

Canonical retroviral Gag is usually expressed as a precursor
protein, which is cleaved by virus-encoded protease into the three
separate proteins during the virus maturation. The first one is
MA (matrix). This domain is commonly myristoylated which
makes its binding to the membrane effective. In mature viral
particles MA forms the outer shell that lies right beneath the
membrane, which is captured from the host cell. CA (capsid)
protein forms a hydrophobic cone-shaped shell surrounding the
ribonucleoprotein complex that contains the genomic RNA,
reverse transcriptase, integrase and tRNA primer. Viral RNA
packaging is mediated by the NC (nucleocapsid) protein which is
also one of the gag products.18

Gag proteins of most retroviruses carry several conservative
structural motifs. The CA domain usually contains so called major
homology region, which is represented by QG-X2-E-X5-F-X2-L-
X2-H aminoacid consensus.18 MHR is sufficient for the correct
capsid formation and virus particle assembly.19 NC domain is

characterized by the presence of the zinc-finger motif -
Cys-X2-Cys-X4-His-X4-Cys, necessary for the RNA
binding.20

Errantiviral Gag is capable of mediating the assembly
of extracellular virus-like particles21 but demonstrates
some significant differences from the canonical Gag
protein. First of all, it lacks the conservative motifs that
are commonly found in retroviral Gag protein, and
instead incorporates alternative fragments that allow
to maintain required functions. In particular, the
N-terminal domain of gypsy Gag is not myristoylated,
but, according to some data,22 gypsy Gag carries the motif
that may interact with proteins that mediate clathrin-
dependent protein sorting in the endocytic and secretory
pathways.23 It was shown that an equivalent motif is
required for the budding of the equine infectious anemia
virus (EIAV).24 Second, instead of zinc-finger motif
nucleocapsid-like (NC) domain of errantivituses con-
tains the arginine rich region (RRNSSERSTGPRRQR).
It is considered that this consensus in NC domain is
responsible for RNA binding.25

Finally, the remarkable feature of the errantiviral Gag is that
it is apparently not cleaved into the separate МА, СА and NC
proteins although some studies show that it may be processed in
some other way.26,27 All these peculiarities are also inherent to
foamy viruses that are the only members of the retroviral
subfamily Spumaretrovirinae. Foamy viruses infect nonhuman
primates and are both highly prevalent and highly transmissible.
However, these viruses are not known to cause any disease in
infected host.28,29 The biology of foamy viruses is more well
studied than the biology of errantiviruses (for the review see
ref. 30). Spumaretroviral Gag is not cleaved and not myristoylated
and also does not carry MHR and zinc fingers. At the same time
at the C-terminus of this protein, three boxes rich in glycines and
arginines have been identified. It was recently proposed that the
first box plays a role in the encapsidation of foamy viral Pol
protein.31 The second box was identified to be a nuclear locali-
zation signal and also have the ability to interact with histones
and chromatin.32-34

There is an additional similarity between foamy viruses and
errantiviruses. The assembly of the most retroviral Gag mono-
mers into capsids takes place at a host membrane, while some
retroviruses employ different pathway that is characterized by
formation of capsids in the cytoplasm of the host cell,
independent of membranes. The second variant is utilized by
foamy viruses and some orthoretroviruses such as Mason-Pfizer
monkey virus (MPMV). Some data indicates that errantiviruses
use the same strategy. For example, it was shown that the Gag
protein of gypsy retroelement can form multimeric complexes
and virus-like structures in vitro.35 Foamy viruses Gag contains
a cytoplasmic targeting/retention signal (CTRS) located within
the N terminus of the Gag protein.36 It directs Gag assembly
to a pericentriolar location, as in MPMV, and is crucial for
the production of infective virus particles.37-39 Unfortunately
little is known about the existing of such signal sequences in
errantiviruses.

Figure 1. Evolutionary pathways that can lead to the origin of endogenous
retroviruses. (A) Strategy that leads to formation of the most vertebrate
endogenous retroviruses. In this case infectious retrovirus is loosing its infectivity,
enters the germline and transfers vertically. (B) Aquisition of the env gene—
a mechanism, by which errantiviruses gained the properties of endogenous
retroviruses.
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Gag protein of errantiviruses contains regions reflecting its
possible posttranslational modifications. In particular it carries a
number of glycosylation and phosphorylation sites. It also
contains the potential site for interacting with SUMO (Small
Ubiquitin-like Modifier) protein.22 This protein participates in
the intracellular trafficking and mediates the nuclear-cytosolic
transport. Interaction with SUMO was demonstrated for some
retroviruses.40 The exact role of potential SUMOylation in the
errantiviral life cycle remains unknown. Also it is not known
whether errantiviruses interact with ESCRT (endosomal sorting
complex required for transport) and plasma membrane micro-
domains such as lipid rafts during their budding and VLP release,
as it was shown for retroviruses.41,42 However some data con-
cerning ZAM element indicate that transfer of ZAM particles
rely on the use of the endosomal and exosomal pathways that in
Drosophila ovaries are normally employed for vitellogenin release
and uptake.43

Pol. Pol encodes the enzymatic machinery of the retroviruses.
The major component of this reading frame is the reverse trans-
criptase (revertase) domain. Pol products are responsible for the
reverse transcription, integration into the host genome and pro-
cessing of the structural proteins during virus particle maturation.
This ORF is necessarily present in all active retroelements. In view
of its great importance pol is the most conservative reading frame
in retroviral genomes.

Pol consists of protease, reverse transcriptase, RNase H and
integrase. In contrast to Ty1/copia retroelements (Pseudoviridae),
retroviruses carry these domains in this order. In Pseudoviridae
integrase domain stands after the protease (for the review see
refs. 44 and 45). In some cases protease may be encoded
separately or within the Gag precursor.16

Protease is necessary for the Gag and Gag-Pol precursors
cleavage. As it was previously mentioned for the Gag, the pro-
tease of errantiviruses shows high similarity with the protease
of foamy viruses. The most conservative motifs of this enzyme
in errantiviruses are closer to the foamy viruses than to the
pseudoviruses.46

Other domains of pol ORF are represented by the ancient
enzymes. It is generally accepted that reverse transcriptase (RT)
arose in the period of the transition from the RNA world to the
DNA-based genomes. In LTR-retroelements reverse transcriptase
usually works in complex with RNase H domain. Phylogenetic
trees based on sequences of these domains suggest that all LTR-
retroelements are a monophyletic group.47 RT has a core of 180
aminoacids that is highly conservative for all retroelements.48

However the RNase H sequences of Retroviridae members are
highly divergent from those of all groups of LTR retrotrans-
posons.49 In retroviruses RNase H domain and reverse trans-
criptase are separated by a tether domain, which may indicate
that the retroviruses have acquired a new RNase H domain
downstream of the ancestral domain with the ancestral domain
degenerating to become the tether (discussed in ref. 44).
Published data suggests that RT and RNAase H sequences of
errantiviruses are closer to TY3/Gypsy LTR-retrotransposons than
to Retroviridae members.46 RT and RNase H of errantiviruses are
well-adapted to the temperature of its host.50

Integrase of errantiviruses is characterized by the absence of
the GPY/F motif that is inherent to the most of retroviral
families.46 This is another illustration of the errantiviruses and
spumaviruses relatedness. It is believed that these two groups
of LTR-retroelements lost this motif during evolution. It is
noteworthy, that integrase of several errantiviruses demostrates
entry-site specificity, that is not the common feature of LTR-
retroelements.51,52 Moreover, it was shown that gypsy integrase,
unlike the integrase of spumaviruses, can carry out the reverse
reaction: precise excision of the element DNA from the genome.53

This fact may indicate the evolutionary relation between retro-
element integrases and transposases from DNA-transposons.54,55

Env. The third important ORF in retroviral genome is env.
This ORF encodes the transmembrane glycoprotein that is
capable of target cell receptor recognition and mediates the viral
and host membrane fusion. It is considered that the LTR-
retroelement without this gene cannot propagete via infection.
Env protein consists of transmembrane and surface domains. In
mature viral particles they are not-covalently connected. Env
cleavage is mediated by cellular endopeptidases which recognize
the conservative RIAR motif in its primary structure.56

Env gene has a complicated evolutionary history. It is con-
sidered that this activity could be obtained by retroviruses as a
result of fusion proteins capturing from other infectious viruses.
Furthermore there is some evidence that this event might took
place several times during evolution. This could be the reason
why the env genes of distant retroelements may not share the
common ancestor.57,58

Some data indicates that env of errantiviruses was captured
from the genome of baculoviruses, the large group of insect
viruses, via some recombination event. This conclusion is based
on the sequence similarity between baculoviral fusion protein
Ld130 and errantiviral Env.57 It is shown that Env of erranti-
viruses contains potential glycosylation sites, however it is
apparently cleaved at the non-canonical site.59

It is noteworthy that not all errantiviruses carry functional
third ORF. In some elements it is either broken or completely
lost. This suggests that this gene is not crucial for the life cycle
and propagation strategy of errantiviruses.60

Accessory Genes and Regulatory Elements

Most of the retroviruses carry additional genes and ORFs,
which enhance their infectious ability. For example, HIV-1
carries genes, responsible for regulation of viral proteins expres-
sion, protection from the cellular anti-viral mechanisms (such as
APOBEC 3G protein—a human innate factor, restricting viral
propagation),61,62 or may even interact with a cell cycle and
differentiation regulation.63 Activity of such genes provides LTR-
retroelements with a major advance in effectiveness in comparison
with the elements lacking such regulatory genes.

Existence of such “upgrades” is not shown for the erranti-
viruses, however some of them carry IRES sequences (internal
ribosome entry site—a sequence initiating translation without
scanning all of the prior 5' mRNA),64 which are well known for
being used by viruses.65 The most well-studied regulating
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sequence found in errantiviral genomes is the insulator in 5'
untranslated region (UTR) of gypsy element.66 The gypsy insulator
is a 340 bp long sequence, containing 12 binding motifs for the
12 zinc finger Supressor of Hairy-wing [Su(Hw)] protein.67,68

Gypsy insulator performs both enhancer blocking and barrier
functions,69 that require recruitment of different set of proteins
(for the review, see ref. 70), and using them provides gypsy
insulator with a versatile capacity of defining regulatory inter-
changes throughout the Drosophila genome.

One of the most well studied mutations, caused by the gypsy
insulator, is the y2 allele of the yellow gene. This gene expression
is controlled by a number of tissue-specific enhancers. y2 mutants
contain an insertion of gypsy 700 bp upstream from the trans-
cription start, which leads to blockage in the interaction of
promoter and body and wing enhancers of the gene. Several works
demonstrate, that mutation in su(Hw) gene or insertion of some
element into the insulator sequence of gypsy leads to reversion
of mutation.71,72 The gypsy insulator also interacts with a Mod
(mdg4) and Cp190 proteins.73,74 This interaction is very strong
and has been exploited through usage of the gypsy insulator as a
powerful instrument for transgene shielding.75

It is possible, that the presence of insulator sequence, within
the mobile element, may give this element some advantage in case
if the element is inserted in the region of the genome, where
the insulator appears to be useful to the host. But insulator is
more likely to affect element’s ability to propagate and spread
throughout the genome negatively, since increase in copy number
of the element, that is able to cause mutations not only by
insertion into the coding region but also by effecting the expres-
sion of neighboring genes, can be much more deleterious for
the genome, then transpositions of the element carrying no
regulatory sequences.

Other errantaviruses, besides gypsy, carry additional regulatory
sequences, for example ZAM and Idefix.76 The gypsy-like element
gtwin also contains a series of short repeats in it’s 5' UTR,
identified as zinc-finger motifs, but there are only 6 of them,
which is not enough to compose an insulator. Supposedly, gtwin
ancestor had a regulatory element, which was lost throughout
the evolution of the element. Some data indicates, that ZAM
element carries not an insulator, but an enhancer sequence.76

As opposed to the gypsy retroelement, for which the insulator
interacts with Su(Hw), Mod(mdg4), and Cp190 proteins,
ZAM’s regulatory element interacts with HP1 protein.77 It is also
known, that Idefix insulatior has not only enhancer-blocking,
but also a barrier activity.78

Classification, Distribution
and Individual Features of Errantiviruses

The place of Drosophila errantiviruses in systematics may be
discussed in terms of both virus classification15 and transposable
element classification.79 Neither system fully reflects the evolution
of retroelements, and both tend to use functional criteria in
classification. Systematics of mobile elements is still a subject for
discussion (see refs. 80 and 81), and a final, well-established
classification system reflective of phylogeny has yet to emerge.

However, there are several works that allow us to estimate the
place of errantiviruses in the evolution of retroelements, which
combines processes of phylogenetic divergence with episodes
of modular, saltatory, and reticulate evolution.82 As it was
mentioned earlier, according to ICTV, errantiviruses are repre-
sentatives of the Metaviridae family, which also includes
semotiviruses (also reffered to as Bel/Pao retrotransposon family)
and metaviruses (retroelements, spread among plants and fungi,
related to Saccharomyces cerevisiae Ty3 retrotransposon).15 From
the transposable elements classification system point of view,
errantiviruses are part of the large Ty3/Gypsy superfamily of
LTR-retrotransposons.79 The closest relatives of errantiviruses
among retrotransposons, according to the phylogeny based on
pol ORF, are Drosophila retrotransposon families 412 and
Mdg1.82 Representatives of these families do not carry the env
gene.83,84

Classification of errantiviruses is not entirely straightforward.
Some of the difficulty can be explained by the fact that the
errantivirus classification system is based mostly on the Pol
phylogeny and that the system largely ignores the fact that some
elements do not carry a functional env gene (see Table 1) and
thus may not formally be considered Metaviridae members.
Moreover, copies of one element found in genomes of different
species may exhibit marked differences from one another; their
similarity is usually not much greater than that of different
elements occupying one genome. According to some phylogenetic
studies, one element may be placed within the phylogeny of
another, as demonstrated by gypsy and gtwin.87 In fact, we observe
the unstructured set of accumulated orthologous and paralogous
genetic elements that are subjected to various recombination
events and deleterious effects. Sometimes it may be difficult to
distinguish a functional copy of the element from a divergent
“genomic fossil” that has lost its ability to transpose, which is fixed
in the genome and passed from generation to generation like a
pseudogene. However, LTR-retroelements demonstrate relatively
low frequency of fixed insertions in Drosophila melanogaster.88

Errantiviruses are not limited to Drosophila; they are found in
the genomes of various arthropods, as well.89-91 These elements
are, on average, found in low copy number, often represented
by only one or two copies. Even in a case of element amplifi-
cation, the number of copies usually does not exceed two or three
dozen. Some errantiviruses may be absent in certain species or
strains of Drosophila.92 For example, elements 297, Tom and
rover seem to be restricted to species from the D. melanogaster
group.93 Furthermore, no homologous sequences to the env gene
of the gypsy, gypsy2, gypsy3, gypsy4, and gypsy6 retroelements were
found in D. grimshawi and D. ananassae.87

Errantiviruses, as well as other LTR-retroelements, contain the
short sites necessary for reverse transcription priming and the
beginning of DNA (+) strand synthesis. These are the tRNA
primer binding site (PBS) located downstream to 5'LTR and the
polypurine tract (PPT) observed upstream from 3'LTR. PBS is
not conservative. Among errantiviruses there are two groups
of elements: the Gypsy group and the 17.6 group, which use
tRNALys and tRNASer, respectively, as primers for reverse trans-
cription.85 Currently, approximately 15 to 20 (according to
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different authors) different errantiviruses are described in
Drosophila (Table 1).

In light of the ever-increasing number of whole genome
sequences, we expect the list of LTR-retroelements and erranti-
viruses to continue expanding. Currently there are a number of
software tools that allow the prediction and annotation of LTR-
containing elements in genomes. The search strategy is based on
the annotation of LTRs, PBS, and conservative domains of the
gag, pol and env genes.94-97

Activity and Regulation

Activity. Despite the fact that errantiviruses carry the env gene
which is responsible for the retroviral infectious ability, the
evidence for their infectivity are indirect because it is difficult
to manipulate errantiviruses with commonly used virological
techniques such as titering or neutralizing with antibodies. Also
no cytopathogenic effects of errantiviruses have been described.
Apparently errantiviruses are significantly less infective than the
majority of insect and Drosophila viruses.98,99

Potential errantiviral infectivity was demonstrated as a result
of experiments with feeding larvae that carried no active gypsy
element in their genomes with the extract from embryos of
“gypsy positive” flies or the purified virus-like particles of this

element.11,12 In addition, using cell cultures it was shown that
gypsy particles from Drosophila melanogaster are able to enter the
cells of distinct species such as Drosophila hydei with subsequent
amplification of the element and the reinfection of new cells.100

The role that Env protein plays in the errantivirus life cycle
and infectivity is not entirely clear because in cell culture
experiments the ability to enter the cytoplasm is demonstrated by
the particles that carried no surface glycoproteins.101 Further-
more it is generally accepted that Env is not necessary for the
retrotransposition.102

Errantiviruses attract attention not only because of their
potential infectivity. They can also multiply inside the genomes
via “copy and paste” pathway. These commonly low-copied
elements in some cases escape from the host control mechanisms
and start to transpose with a significant frequency.103,104 Some
data indicate that there are so called hot spots for the integration
of several elements. For example gypsy, in case of its activation in
the genome, enters cut, forked and ovo loci with a much higher
frequency than other places in genome.105-107

Retrotransposition activity of errantiviruses may be altered as a
response to the structural changes. Thus for the gypsy element the
existence of two functionally distinct forms was demonstrated.108

At the nucleotide level, differences between two variants of the
element involve single substitutions, deletions and insertions that

Table 1. LTR-retroelements referred to as errantiviruses by different authors

Element Group tRNA
primer

Demonstrated
infectivity

Env is
lost

Presence in
flamenco locus

Described in different
Drosophila species

FlyBase ID References

Nomad Gypsy Lys * FBte0000918 85, 86, 140

Burdock Gypsy Lys * * FBte0000739 86

Springer Gypsy Lys FBte0000333 86

Gypsy Gypsy Lys * * * FBte0000021 15, 81, 82, 140

Gypsy 2 Gypsy Lys * FBte0001040 127

Gypsy 3 Gypsy Lys * FBte0001030 127

Gypsy 4 Gypsy Lys * FBte0000688 127

Gypsy 6 Gypsy Lys * FBte0001175 127

Gtwin Gypsy Lys * * FBte0001062 127

Beagle Gypsy Lys * * FBte0000726 86

ZAM 17.6 Ser * * * FBte0000217 15, 85, 86, 140

Rover 17.6 Ser * FBte0000692 140

Idefix 17.6 Ser * * FBte0000104 15, 85, 86, 140

17.6 17.6 Ser * FBte0000109 15, 85, 86, 140

297 17.6 Ser * FBte0000675 15, 85, 86, 140

Tv1 17.6 Ser FBte0000783 15, 86, 86

Tom 17.6 Ser * * FBte0000773 15, 85, 86, 140

Tirant 17.6 Ser * * FBte0000179 15, 85, 140

Quasimodo 17.6 Ser * * FBte0000640 140

Yoyo Non-drosophila
element

Lys n/a n/a n/a 15, 85, 86

Ted Non-drosophila
element

Ser n/a n/a n/a 15, 85, 86
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does not dramatically affect the proteins structure, however the
activity of these variants differ fundamentally.109 The similar
situation was demonstrated for the two variants of the gtwin
element. They carry polymorphic nucleotides in the PBS.
Remarkable feature is that the element with functional tRNALys

PBS did not transpose in the genome of the Drosophila melano-
gaster strain G32 but the variant with two substitutions in this
site, decreasing the primer annealing efficiency, is amplified.104

Phylogenetic studies of the 17.6, 297, rover and Tom retro-
elements demonstrate that these errantiviruses also have different
subfamilies.93

Extensive data concerning the distribution and polymorphism
of errantiviruses in different Drosophila strains and species is
accumulated.110,111,46,112 Moreover, there is a growing amount
of data indicating the significant rate of horizontal transfer
of errantiviruses between evolutionary distant Drosophila
species.113,114 The role of the env gene in this process is yet
unclear. The analysis of the reported and putative horizontal
transfer events does not demonstrate any increase of its rate for
the elements with the env ORF. The possible mechanisms of
the horizontal transfer may not be associated with retroviral
infectivity, although virus-like particles may be considered as a
transfer vectors (for the review see ref. 115).

The host genome can be broadly considered as the
environmental niche for ERVs and transposable elements.116,117

According to the dominant existing model, the proliferation of
transposable elements in genomes is controlled by number of
factors. The introduction of a new element to the cell is
commonly followed by its transpositions, amplification and
possible alterations. The element cannot propagate permanently
because TEs are likely to cause deleterious effects and decrease
the host fitness.118-121

Species with high amount of novel TE insertions are com-
monly eliminated from the population by the natural selection
(for review, see ref. 122). Furthermore, the host cell has its own
pathways allowing to restrict the TEs activity. For this reason
elements always reach equlibrium copy number and after that
tend to be eliminated from the genome. In some cases, elements
can be subjected to a positive natural selection and remains in the
genome if it appears to be somehow useful for the host.123

For a long time little was known about the specific pathways
of cellular response to the transposable elements activation and
it was thought that the equilibrium copy number of mobile
elements in the genome is achieved solely by a balance between
the forces of transposition, deletion, and natural selection. The
discovery of RNA interference and its profound study in different
fields and objects shed light on the question of how the cell takes
mobile elements’ transpositions under the control. In this context
study of errantiviruses biology is of great interest because they
demonstrate the peculiar mechanism of propagation in the germ
line. Moreover, some Drosophila species have developed the
special pathway to control their activity.

Such errantiviruses as gypsy, ZAM and Idefix are not produced
in oocytes or nurse cells like many other transposable elements
do.124,125,13 Instead, their expression is restricted to somatic follicle
cells. Transcripts of these elements are accumulated inside the

follicle cells and then targeted to the female germ line cells. This
process appears to be independent of the env gene. Chalvet and
co-authors demonstrated that env-defective gypsy element, intro-
duced to the naive fly stock by P-element mediated transforma-
tion is able to mobilize in this stock, and that production of the
gypsy Env in follicle cells does not increase the mobilization of
env-defective gypsy element.126 Apparently errantiviruses use the
endosomal and exosomal pathways that in Drosophila ovaries are
normally employed for the yolk protein precursors transfer to the
oocyte. Impairment of the endocytic traffic in the oocyte disturbs
ZAM viral particles transit to the germline cells.43 Its noteworthy
that the action of the cell control mechanisms are also restricted to
the somatic follicle cells that surround the maternal germline.124

Regulation. The exact mechanism that allows a cell to develop
the adaptive immunity against active transposons remained
unclear for a long time. There was an opinion that there should
be special genes to control each element or a group of elements.
In case of gypsy, the flamenco locus was found. Flamenco is a large
locus on the Drosophila X chromosome. The activity of the
gypsy errantivirus monitored and quantified by detecting ovo
gene insertional mutants was shown to depend on the flamenco
allele.127 Two classes of flamenco alleles, restrictive and permissive,
were found in natural populations in about the same propor-
tions.128 Strains containing flam+ alleles were stable with regard
to gypsy copy number, and permissive alleles, flam-, allowed gypsy
retrotranspositions. Also it was shown that flamenco is capable
of controlling ZAM and Idefix activity.129 Nonetheless, early
attempts to clone this gene and determine its molecular function
failed.

The nature of TE repression and flamenco function in parti-
cular became more clear with the accumulation of the data
concerning RNA interference pathways. It was shown that there
are special small RNAs 23–29 nucleotides long that interact with
the proteins of PIWI subfamily and form a small RNA-based
system that silences transposable elements by sequence-specific
recognition and cleavage of TE transcripts (for the review, see
refs. 130 and 131). The Drosophila genome was found to have
discreet heterochromatic loci termed piRNA clusters, which
contain truncated copies and fragments of transposable elements
and serve as a source of piRNAs.132

In Drosophila, piRNAs bind three different Argonaute pro-
teins of PIWI subfamily: Piwi, Aubergine and AGO3.133-135

These proteins interact with different piRNAs: Piwi and Aub
bind predominantly antisense-strand (for the element) piRNAs,
while AGO3 binds mainly sense-strand piRNAs.133,134 Sense-
strand piRNAs are generated on the transposable element tem-
plate and antisense-strand molecules are produced at the piRNA
clusters that extend up to 240 kilobases in length.132 It is
considered, that long RNA molecules produced at piRNA clusters
undergo processing to become a set of antisense-strand piRNAs
that are loaded into Piwi or Aubergine. These RNA-protein
complexes cleave sense RNAs, produced from transposable ele-
ments. The cleavage of TE transcripts generate the pool of sense-
stranded piRNAs that are loaded onto AGO3 protein. AGO3
associated with sense piRNAs cleaves antisense piRNA precursors
and the cycle repeats. This model was termed the ping-pong
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mechanism. The ping-pong amplification loop is mostly restricted
to the germline and does not work in the follicle cells.132,134

The flamenco locus appeared to be one of the piRNA
clusters.136,129,132 Interesting, that flamenco is active only in follicle
cells and its piRNAs are exclusively loaded onto Piwi protein
because this is the only member of PIWI subfamily that is
expressed in the Drosophila ovarian soma.137 Transcripts encoded
by flamenco could be cleaved by the putative nuclease encoded
by the zucchini locus, producing RNA fragments that bind to
Piwi.138-140

In Drosophila melanogaster flamenco contains not only gypsy,
Idefix and ZAM truncated copies but fragments of more than ten
errantiviruses and encode antisense piRNAs that can efficiently
target these LTR-retroelements in the absence of an active ping-
pong mechanism.140 Malone and co-authors identified putative
flamenco loci in D. yakuba and D. erecta and showed that the
enrichment for sequences derived from errantiviruses is conserved
in these species.140 However currently there is no evidence that
this particular mechanism with follicle cell expression and trans-
ferring into the germ line balanced by flamenco-like piRNA
cluster works for other errantiviruses in other insect species.

Conclusions

Errantiviruses are endogenous retroviruses and show some infec-
tivity potential. But in contrast to the vertebrate ERVs that are
commonly originated by the degradation of infective retroviruses
(for the review, see refs. 9 and 10) they have obtained their
incipient infectivity de novo and never had infectious retroviruses
as ancestors. Origin of errantiviruses may be an independent case
of gaining the infective properties by retroelements.

Many questions concerning errantiviruses remain unclear. It is
still hard to estimate the abundance of errantiviruses among
insects and arthropods. Functions, adaptive value and reasons for
the conservation of the env gene in errantiviral genome is still
discussable. Also it is not clear whether env has the ability to
enhance the horizontal transfer of elements. The origin and
abundance of the specific errantivirus life cycle with the expres-
sion exclusively in the somatic follicle cells needs to be studied
extensively.

We cannot exclude that the study of errantiviruses may lead
to some practical applications. For example foamy viruses are

successfuly used as transformation vectors. But the most intrigu-
ing point is the evolution and origin of LTR-retroelements and
a place of insect endogenous retroviruses in this process. Careful
and detailed analysis of errantivirus biology may shed light on
the conversion between “copy and paste” strategy of retro-
transposons and propagation via infection that is used by
retroviruses.
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Glossary

Retroelement: non-systematic group that include retroviruses,
retrotransposons and LINE-elements. All these species use reverse
transcription in their life cycle

Retrovirus: enveloped RNA virus with the genome that
contains gag, pol and env genes and the life cycle characterized
by the presence of reverse transcription step and the integration in
the host genome with the formation of provirus. The retroviral
provirus in the host genome has long-terminal repeats at the both
sides of it.

Infectious virus: virus that can be transmitted horizontally via
infection

Exogenous retrovirus: infectious retrovirus that is transmitted
mostly via infection rather than from ancestors to the offspring
inside the germ line.

Endogenous retrovirus: retrovirus that exist mostly in form of a
provirus integrated into the host genome.

Viral particle (virion, virus particle): A complete virus particle
with its DNA or RNA core and protein and lipid coat as it exists
outside the cell.

Virus-like particle: non-infectious virions, with aberrant
structure or not containing virus genetic material.

LTR-retrotransposon: mobile genetic element that uses a
replicative mechanism of transposition through RNA intermedi-
ate and contains reverse transcriptase and integrase domains.
Retrotransposons carry direct long-terminal repeats at the both
ends of the element’s integrated DNA copy.
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