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Abstract

Understanding the mechanisms of protein–protein interaction is a fundamental problem with many practical applications.
The fact that different proteins can bind similar partners suggests that convergently evolved binding interfaces are reused in
different complexes. A set of protein complexes composed of non-homologous domains interacting with homologous
partners at equivalent binding sites was collected in 2006, offering an opportunity to investigate this point. We considered
433 pairs of protein–protein complexes from the ABAC database (AB and AC binary protein complexes sharing a
homologous partner A) and analyzed the extent of physico-chemical similarity at the atomic and residue level at the
protein–protein interface. Homologous partners of the complexes were superimposed using Multiprot, and similar atoms at
the interface were quantified using a five class grouping scheme and a distance cut-off. We found that the number of
interfacial atoms with similar properties is systematically lower in the non-homologous proteins than in the homologous
ones. We assessed the significance of the similarity by bootstrapping the atomic properties at the interfaces. We found that
the similarity of binding sites is very significant between homologous proteins, as expected, but generally insignificant
between the non-homologous proteins that bind to homologous partners. Furthermore, evolutionarily conserved residues
are not colocalized within the binding sites of non-homologous proteins. We could only identify a limited number of cases
of structural mimicry at the interface, suggesting that this property is less generic than previously thought. Our results
support the hypothesis that different proteins can interact with similar partners using alternate strategies, but do not
support convergent evolution.
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Introduction

Protein-protein interaction is the basis of numerous biological

functions, such as immune response, supra-molecular assembly,

enzymatic reactions, and many more. Understanding the way

proteins interact is thus a fundamental challenge. The collection of

all protein-protein interactions, the interactome, is also of great

importance for drug discovery [1]. Given their variety and often

transient nature, the number of protein-protein complexes for

which crystallographic structures are available is very limited

compared to the number of individual protein structures in the

Protein Data Bank [2]. But even with this limited amount of data,

the observation of available complexes has helped to decipher

some rules for protein-protein interactions. Among the properties

playing a role in this process, hydrophobicity was suggested as a

major factor by Chothia and Janin in their pioneering work [3].

Other characteristics that are important for interaction, or that

can be used to describe binding sites, include size, shape

complementarity, residue propensity and packing density [4–6].

Sequence conservation is also widely acknowledged as an

important feature of protein-protein recognition [7,8]. Additional

studies have further refined the picture. For example, binding sites

are organized as a core of buried residues, surrounded by a rim of

accessible residues, with distinct amino-acid composition and

evolutionary conservation patterns [9,10]. Nicola and Vakser

found that the binding site is, on average, closer to the center of

mass of the protein compared to other surface residues [11].

Different types of complexes (e.g. homo- or hetero-dimers,

transient or permanent) display different properties [8,12,13].

A notable element to understand the mechanism of protein-

protein interaction is the existence of hot spots, residues that make

major contributions to the binding energy, see for example [14] for

a review. In their landmark paper, Bogan and Thorn showed that

hot spots are localized at the center of interfaces, and surrounded

by a ring of energetically unimportant residues, that protect them

from the solvent [15]. This is called the O-ring theory, and has

been recently refined by Li and Liu [16].

Several groups have addressed the question of the evolutionary

conservation of protein-protein binding sites and binding modes.

At first found to be insignificant [17], the conservation of interface

residues has since been shown to be more pronounced in

biological interfaces than in crystallographic ones or over the rest

of the protein surface [18,19]. This change of viewpoint probably

comes from the increase of available data, as well as the variety of

computational approaches developed to quantify conservation,

and also the fact that some proteins have multiple interfaces [20].
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The link between evolutionary conservation and hot spots is

unclear: overall difference in conservation between hot spot and

non hot spot residues is marginal [21,22]; conservation used in

combination with other features has been found to improve hot

spot prediction in [21] but not in [22]. From a more macroscopic

point of view, complexes that share more than 35% identity

commonly share similar structures and interaction modes [23].

The localization of a binding site on a protein is preserved within

SCOP families, but not necessarily at the super-family level

[24,25].

Another important notion we want to introduce here is the

existence of promiscuous proteins. Promiscuity, also called multi-

functionality or moonlighting, denotes the ability of one protein to

perform distinct functions, see reviews [26,27]. A recent review

reveals that promiscuity is not as rare as previously thought [28].

Examples notably include transcription regulatory proteins that

can act as transcription coactivators or enzymes [29]. More

generally, a promiscuous protein can interact with different

partners. These multi-partner proteins have been the subject of

dedicated studies. For example, Keskin et al have shown that

multi-partner protein interfaces have original properties: they are

smaller and less packed than other interfaces [30]. A recent survey

of proteins with multi-binding protein interfaces involving 97 pairs

of complexes from 49 protein families revealed that multi-binding

interfaces are not more conserved than other interface sites [31].

The energetic determinants of multi-partner proteins have also

been addressed: interactions involving specific binding sites display

higher affinities than those of promiscuous binding sites [32]. In an

earlier work, Humphris and Kortemme employed a computation-

al design procedure to optimize the binding site of 20 multi-

specific proteins, so that they maintained interactions with all their

known partners (multi-constraint protocol) or with each partner

separately (single-constraint protocol) [33]. For half of the tested

cases, they obtained different results using the single and the multi-

constraint protocol, suggesting that promiscuous binding sites are

optimized for multi-specificity in such a way that each partner

prefers its own set of residues on the binding site. A recent analysis

using state-of-the-art computational methods applied on calmod-

ulin, whose structure is available in complex with 16 different

targets, confirmed this hypothesis [34]. These analyzes focused on

the common, promiscuous binding sites, but not on the binding

sites of the multiple partners.

The fact that a promiscuous protein can bind to different

partners using the same binding site is puzzling, but also of

outstanding interest to further understand the mechanisms of

protein-protein interactions. Does this observation imply that

radically different proteins possess similar binding sites in order to

recognize a single promiscuous protein? At first sight, it might

seem hopeless to look for similar binding sites on non-homologous

proteins that differ in structure, function and ancestry. However,

the literature is rich in examples of approaches employing - or

searching for - such local similarities between unrelated proteins.

This is the case for at least three distinct targets: catalytic sites,

ligand binding sites and protein-protein binding sites. In the case

of catalytic sites, the well-known example of the catalytic triad

pattern, found in diverse serine proteases, has motivated a number

of developments [35–40]. Concerning ligand binding sites, their

generic nature among unrelated proteins has lead to the

development of many comparison approaches [41–50]. Lastly,

for protein-protein interactions, the similarity between proteins

with very different folds has been investigated in several studies.

An important corpus of work on this problem comes from

Nussinov and colleagues. Using geometric hashing, they created

clusters of similar interfaces based on the Ca geometry [51] and

found clusters with similar interfaces despite different overall

structures, as well as clusters where only one side of the interface

was conserved [52,53]. Shulman-Peleg et al. subsequently

developed the I2I-SiteEngine software, dedicated to structural

alignment of protein-protein interfaces, based on the similarity of

their physico-chemical properties and shapes [54,55]. These

observations have been applied to the prediction of protein-

protein interactions, with the development of the PRISM database

[56,57], and to structural alignment of protein-protein interfaces,

with the MAPPIS web server [49]. Other groups have also

investigated this question. Zhu et al. proposed the Galinter

method, based on the representation of interfaces by vectors

representing van der Waals interactions and hydrogen bonds

between protein chains, allowing binding site comparison using

graph algorithms [58]. Very recently, Konc et al. have proposed

ProBis, a graph-based method for binding site prediction [59].

Convergent evolution thus seems to exist also for protein-protein

interactions [60,61].

In this paper, we analyze a set of protein-protein complexes

involving homologous proteins in interaction with different

partners. These examples come from an analysis of PDB

complexes in terms of SCOP domains, and are stored in the

ABAC database [61]. Truly speaking, these complexes do not

illustrate promiscuity, since they involve homologous (same SCOP

family) rather than identical proteins. We therefore term this

promiscuous binding at the family level. Our goal is to understand

how unrelated proteins can bind to similar targets. In particular,

we looked for similar atoms or groups of atoms at the interface of

different proteins that bind similar partners and assessed the

significance of the similarity between interfaces using a bootstrap

procedure. We also considered evolutionarily conserved residues,

as they probably play a dominant role in the binding. Our results

support the hypothesis that different partners often interact with a

single partner using alternate strategies, and do not point to

convergent evolution.

Results

The overall methodology used to assess the similarity at protein-

protein interfaces is summarized in Figure 1 detailed in the

Materials and Methods section.

Author Summary

Interaction between proteins is a fundamental process,
generic to most biological pathways. The increasing
number of protein–protein complexes with atomic data
should help us to understand the major factors that guide
protein interactions. In particular, a number of examples
are available of similar proteins that interact with proteins
that are very different in terms of structure and function.
An intuitive hypothesis to explain the ability of these
different proteins to recognize the same partner is that
they display the same local region for interaction, in other
words, they imitate the same binding site. Here, we
quantify the similarity between these putatively mimicking
binding sites. We show that it is not statistically significant.
We confirm this observation on the small sets of
evolutionarily conserved residues. Our results suggest that
different proteins that bind the same protein do not
imitate binding sites, but probably target specific locations
or residues at the binding site.

Protein-Protein Interactions
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The ABAC pairs are classified into five categories on the basis of

the quality of the superimposition between the two complexes, as

illustrated in Figure 2. The first two categories, O and M (see

Figures 2A and B) represent ideal cases to study promiscuous

binding at the family level, with A/A9 domains having very similar

structures which are easily superimposed. These two categories,

encompassing 299 ABAC pairs, will be privileged in analyzing the

similarity of binding sites, since the interfaces of A/A9 domains are

well superimposed and the subsequent analysis of B/C binding sites

is thus expected to be less noisy. Furthermore, the M category has

the interesting particularity of exemplifying interface mimicry:

domains B and C, although they have different global folds, display

strikingly similar structures at the interface. It should be noted that

among the 53 ABAC pairs in the M category, only 3 different

SCOP families of A/A9 domains are represented, see Table 1.

Eukaryotic proteases (family 50514) are seen in 49 pairs, subtilisin-

likes (family 52744) in three pairs, and interleukin 8-like chemokines

(family 54118) in one pair. Pairs of the category M are thus largely

dominated by eukaryotic proteases complexed with various

inhibitors, which, as shown in Figure 2 B, display a protruding/

interwound geometry, with the B/C mimicry interfaces embedded

in the A/A9 domain. This introduces a significant bias in interface

size, with more residues involved in the interface on the A/A9 side

than on the B/C side, see Figure 3 and Table 3 in Text S1. The

three other categories, E, I and S (see Figures 2 C, D and E),

illustrate three degrees of difficulty in A/A9 superimposition, with,

respectively, alternate conformations in the binding site, residue

insertion/deletion in the binding site, and overall poor structural

similarity, which might alter the analysis of interface similarity.

In the rest of the paper, we present a quantitative analysis of

similarity at protein-protein interfaces in ABAC pairs, and then

evaluate its significance against a random model. We also survey the

similarity of interfaces in terms of evolutionarily conserved residues.

Quantification of similarity
We first compute the number of similar elements - atoms,

pseudo-atoms or residues - in each partner of the protein

Figure 1. Schematic representation of the methodology. (1) pairs of complexes in which homologous proteins A and A9 are seen in
interaction with two unrelated proteins B and C are retrieved from the ABAC database; (2) homologous proteins A and A9 are superimposed using
Multiprot; (3) the analysis is restricted to protein-protein interaction binding sites, and carried out separately for A/A9 and B/C sides; (4) the number of
similar atoms is computed after superimposition of the binding sites: here, two different types of atoms are represented by squares and triangles; (5)
random interfaces are created by randomizing the atom types, in order to obtain random distributions and to compute p-values.
doi:10.1371/journal.pcbi.1000821.g001
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complexes after structural superimposition of the common

partners A and A9. Domains A and A9 are from homologous

domains from the same SCOP family. Consequently, we expect a

good level of similarity between them. However, since such

similarity results from divergence from a common ancestor and

fold conservation, it does not necessarily imply that the similar

elements are key determinants for the protein-protein interaction.

Domains B and C are from different SCOP superfamilies. They

thus have very different structures, but a common ability to bind to

the same, or, at least, a similar partner. Similar elements between

B and C could thus be a sign of evolutionary convergence to a

given binding motif, or indicate which functional groups are

essential for the binding.

Figure 3 presents the number of superimposed and similar

elements at the interface in the 433 pairs of complexes, and the

ratio of similarity, with different interface representations (separate

Figures for each category are given in Figures 4 to 8 in Text S1).

For each ABAC pair, the number of superimposed and similar

elements is computed separately for each domain, and we

compare the statistics on the homologous sides (A and A9) versus

the non-homologous sides (B and C) of each complex. Each ABAC

pair is thus represented by two points: one for complex AB and

one for complex A9C. We previously checked that the sizes of the

binding sites on A/A9 and B/C sides are roughly similar (see

Figure 2. The five categories of ABAC pairs. For each pair of complexes, one structure is displayed in pink and the other in green, with the
superimposed A/A9 domains on the left side and the B/C domains on the right side. Images are generated using Pymol [78]. Structural mimicry,
alternate loop conformations and residue insertion/deletion are highlighted by thicker representations. Hereafter, complexes are named by their PDB
code (first four letters), combined with the identifiers of interacting chains (last two letters). A: category O, PDB structure 1dg1_HG (dimer of domain 2
of elongation factor Tu of E. coli) versus PDB structure 1g7c_AB (domain 2 of elongation factor eEF-1 alpha from S. cerevisiae complexed with guanine
nucleotide exchange factor domain from elongation factor-1 beta), B: category M, PDB structure 1avw_AB (trypsin from pig complexed with soybean
trypsin inhibitor) versus PDB structure 1fak_BD (human coagulation factor VIIa complexed with bovine pancreatic trypsin inhibitor), C: category E, PDB
structure 1wq1_RG (human cH-p21 Ras protein complexed with p120GAP domain) versus PDB structure 1gzs_AB (human CDC42 complexed with GEF
domain of SopE toxin from S. typhimurium), D: category I, PDB structure 1bui_AC (catalytic domain of human plasmin complexed with staphylokinase
from S. aureus) versus PDB structure 1gl0_BA (bovine chymotrypsinogen complexed with protease inhibitor PMP-D2V from L. migratoria), E: category
S, PDB structure 1p8j_HE (N-terminal domain of murine furin complexed with C-terminal domain of furin) versus PDB structure 1ic6_AB (dimer
proteinase K from T. album).
doi:10.1371/journal.pcbi.1000821.g002

Table 1. SCOP family diversity in the data set.

Category1 Nb2 Fam(A/A9)3 Fam(B/C)4

O 246 77 188

M 53 3 18

E 63 16 57

I 21 13 34

S 50 21 67

Total 433 105 241

1: Category of the pairs of complexes.
2: number of pairs.
3: number of distinct SCOP families for A/A9 domains.
4: number of distinct SCOP families for B/C domains.
doi:10.1371/journal.pcbi.1000821.t001
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Figure 3 and Table 3 in Text S1), which is true, except for

complexes of the M category, due to their protruding/interwound

geometry as illustrated in Figure 2.

As expected, there is a positive correlation between the number

of superimposed elements - defining the size of the overlap - on the

A/A9 domains versus B/C domains, see Figures 3A, D and G,

resulting from geometrical considerations. The number of

superimposed elements is almost always lower on the B/C side

than on the A/A9 side, for every interface representation. This is

due to the fact that the structural superimposition is guided by

domains A and A9, which favours better overlap on the A/A9 side,

as illustrated in Figure 4. This bias introduced by the

superimposition results in a mean ratio of overlap sizes equal to

1.3–1.8, depending on the interface representation: for 100

elements superimposed on the B/C side, there is an average of

130 to 180 elements on the A/A9 side (statistics for each pair

category are presented in Table 4 in Text S1). Because of this

effect alone, the number of similar elements on B/C sides is

expected to be lower than on the A/A9 sides. It can be seen, in

Figures 3B, E and H, that the number of similar elements on the

B/C side is effectively lower. The mean numbers of similar

elements for the five categories are given in Table 2. The mean

ratio is around 2 for all-atom and coarse-grain representations and

3 for residues: there is, on average only one similar residue on the

Figure 3. Similarity at protein-protein interfaces in ABAC pairs. First row: all-atom representations, second row: coarse-grain representations,
third row: Ca representations. First column: number of superimposed elements on A/A9 versus B/C side, second column: number of similar elements
on A/A9 versus B/C side, third column: fraction of similar elements on A/A9 versus B/C side.
doi:10.1371/journal.pcbi.1000821.g003
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B/C side for 3 residues on the A/A9 side. Interestingly, the

correlation between the similarity ratios, i.e., number of similar

elements normalized by the number of superimposed elements (see

Figures 3C, F and I) is lower. For example, the Pearson correlation

coefficient between the numbers of similar atoms (see Figure 3B) is

equal to 0.8, versus 0.4 between the corresponding similarity ratios

(see Figure 3C). In other words, a greater similarity between A/A9

interfaces does not automatically correspond to a greater similarity

between B/C interfaces. It thus seems that the low level of

similarity in B/C domains is not only the result of the

superimposition bias, but reflects a real sparsity of common

binding determinants in different proteins that bind to similar

partners. Indeed, some ABAC pairs with very similar common

domains can exhibit very low similarity on the B/C sides. As an

example, when complex 1m4u_BA (human bone morphogenetic

protein-7 complexed with noggin) is compared with complex

1nys_DC (human activin A complexed with rat activin receptor)

11 out of 16 superimposed residues are similar for the A/A9

domain, and only 2 residues out of 9 for the B/C domain. Similar

binding sites can thus bind two proteins that present a very

restricted set of similar residues. To go further with this analysis,

we computed similarity P-values as explained in the Materials and

Methods section.

Significance of similarity
Similarity P-values, computed using a bootstrap procedure, are

presented as histograms in Figure 5 for the ABAC pairs of category O.

A P-value equal to x% means that in x% of the randomly

sampled interfaces, the number of similar elements is greater or

equal to the number of similar elements in the real interface.

Consequently, a high P-values indicates that the similarity has a

high probability to occur by chance. Inversely, a very low P-value

means that the similarity is significantly higher than expected with

a random model. A value of 5% is classically used as the

significance cut-off.

It is clear from Figures 5A and 5B that the distribution of

similarity P-values is very different between A/A9 and B/C sides,

with a bias toward low P-values on the A/A9 sides, and high P-

values on the B/C sides. For A/A9 interfaces, we intuitively expect

low P-values, indicating a significant similarity, since A and A9

domains belong to the same SCOP family and share a common

ancestor. This is the case, see Figure 5A. What is less expected, is

that the P-values for the B/C sides are rather high, indicating that

the similarity between binding sites of the B and C domains is,

most of the time, insignificant, see Figure 5B.

We note that the all-atom model (see Figure 5A) can however

result in high P-values for A/A9 domains. This can be due to the

Figure 4. Schematic illustration of ABAC pairs. Domains A and A9, from the same SCOP family, interact with B and C from different SCOP
superfamilies. The overlaps of binding sites, indicated by gray ellipses, are highlighted in red. The three figures illustrate three levels of spatial
overlapping between binding sites. By construction, the size of the overlap on the A/A9 side is greater than on the B/C side.
doi:10.1371/journal.pcbi.1000821.g004

Table 2. Mean numbers of similar elements in different categories of ABAC pairs.

All atoms Coarse grain Ca

Category1 NAA’
sim

2 NBC
sim

3 ratio4 NAA’
sim NBC

sim ratio NAA’
sim NBC

sim ratio

O 41 21 2.0 26 14 1.8 9 3 3

M 89 43 2.1 51 18 2.8 21 5 4.2

E 32 20 1.6 23 17 1.4 7 3 2.3

I 37 24 1.5 25 19 1.3 8 3 2.7

S 30 20 1.5 19 14 1.3 5 3 1.7

Total 44 23 1.9 28 16 1.8 9 3 3

1: Category of the pairs of complexes.
2: number of similar elements on domains A/A9.
3: number of similar elements on domains B/C.
4: ratio of NAA’

sim and NBC
sim .

doi:10.1371/journal.pcbi.1000821.t002
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background model used for bootstrapping, in which the atom type

labels are randomly re-distributed among atom positions. In an all-

atom representation, atoms of the same type appear as clusters,

simply because they are part of the same amino acid. Such a

random model is thus not optimal, because it neglects this aspect.

Furthermore, with a distance cut-off equal to 3 Å to detect similar

superimposed points, several atoms can be matched by the same

point after superimposition. The result is an artificially high

number of random similar points, and consequently, high P-

values. Another source of error, with a probable significant impact,

is the inherent sensitivity of the all-atom model to side chain

flexibility. Since the same side chain, upon binding to multiple

partners, might undergo different conformational changes, the all-

atom model might under-estimate the real level of similarity. For

these reasons we considered coarse-grain and Ca representations

only in the following analysis.

Figure 5. Distribution of similarity P-value at protein-protein interfaces of ABAC pairs of the category O. First row: all-atom
representations, second row: coarse-grain representations, third row: Ca representations, first column: P-values of the A/A9 domains, second column:
P-values of the B/C domains. White bars correspond to a number of similar elements equal to zero, which, by definition, yields a P-value equal to 1,
since the random model cannot give a number of similar residues lower than zero.
doi:10.1371/journal.pcbi.1000821.g005
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As shown in Figures 5C and D, the coarse-grain representation

overcomes the high P-value artifact on the A/A9 side. On the B/C

histogram, however, a number of complexes still display high P-

values, meaning that the similarity level is not significant

compared to random. This holds true using a Ca representation,

see Figure 5E and F. We obtained similar results for other

categories of ABAC pairs (Figures 4 to 7 in Text S1), although with

more noisy results (less significant P-values on the A/A9 side) for

the E, I and S categories, as expected due to the difficulty of the

structural alignments for these categories.

Evolutionarily conserved residues
We next considered the restricted set of evolutionarily conserved

residues detected using the ConSurf database (as explained in the

Materials and Methods section) and analyzed the interface

similarity in this light. More precisely, we repeated the same

analysis as for the Ca representation, but instead of considering

five classes of residues, we labelled the residues by their

conservation status, i.e., conserved or non-conserved. Then, we

considered only the conserved residues at the interface, to see if

they are co-localized with conserved residues after domain

superimposition. As before, we computed separately the number

of conserved residues superimposed on the A/A9 interfaces and

the B/C interfaces, and the corresponding P-values. The P-value

histograms follow the same trend as for binding site similarity: low

P-values on the A/A9 side, but not on the B/C side, see Figures 8

and 9 in Text S1. Note that a considerable number of protein

domains have no superimposed conserved residues in their

binding sites, limiting the P-value analysis to a more restricted

data set.

Residues lying outside the overlap
As shown in Figure 6, interfaces are only partially overlapping

after structural superimposition of A/A9 domains. We thus cannot

exclude that some residues located outside the overlap play

dominant roles in the binding. The correlation between the

fraction of similar atoms and the fraction of atoms that are

overlapping is weak but positive (see Figure 21 in Text S1). The

fact that binding sites with a small fraction of similar atoms tend to

have a small fraction of binding site overlap (meaning that a

significant proportion of the binding site is excluded from the

comparison) suggests that key binding determinants could indeed

be missed.

Discussion

In the same way that there is a limited number of protein folds,

it is tempting to speculate that there is a limited number of protein-

protein binding interfaces [62]. Since protein structures are made

of recurrent local conformations, i.e., a-helices and b-strands,

protein-protein interfaces might be made by the assembly of

recurrent binding modules. The present study was motivated by

the search for such modules. Indeed, the fact that unrelated,

dissimilar proteins are able to bind similar, homologous proteins

suggests that common binding strategies might be re-used by

different proteins. It is logical to look for generic binding modules

in the promiscuous binding sites thus formed.

We were not however able to confirm this hypothesis. Starting

from a discrete physico-chemical model, in which interfaces are

described by points - be they atoms, pseudo-atoms or residues -

belonging to five different classes, we found that, in most of the

cases, the similarity between different proteins that bind to

homologous partners is not greater than random (but the similarity

between the homologous partners is significant, suggesting that the

random model is appropriate). It thus seems that protein interfaces

with no detectable similarity can nevertheless bind similar partners.

We should temper this result by noting that the energetic

contribution of interfacial residues is uneven; some hot spot

residues make major contribution, while other residues are

unimportant. Unfortunately, energetic information - requiring

extensive mutation analysis - is not available for our full data set,

we thus approached this particularity in an indirect way. Although

evolutionary conservation is a poor discriminant of hot spots

[21,22], it has been shown to improve the prediction when used in

combination with other features [21]. Conserved residues do not

translate into hot spots but might contain some information. We

thus considered conserved residues at protein-protein interfaces,

and assessed their co-localization in our complex pairs. This time,

the criteria was not to know if superimposed residues are from the

same physico-chemical class, but to know if they are both

conserved during evolution, independently of their class. The

rationale was to restrict the analysis to the subsets of conserved

residues. The co-localization of conserved residues in different

proteins that bind homologous partners was found to be largely

insignificant. Further studies using in silico hot spot prediction

methods could bring additional information.

Altogether, our results suggest the following picture for

promiscuous protein-protein binding: similar, homologous proteins

present binding sites with great similarity, via which they interact

with diverse, dissimilar proteins. The binding interfaces of these

dissimilar proteins exhibit different atomic/residue patterns, and

their conserved residues are not co-localized. It thus suggests that

different proteins use their own set of atoms/residues to perform the

recognition, as illustrated in Figure 7A. There is also the possibility

that atom groups interacting specifically with a single partner could

play a dominant role, i.e., different partners use residues or group of

residues that are outside the overlap between the two binding sites,

see Figure 7B. The mechanism illustrated in Figure 7A is in

agreement with the elegant work of Humphris and Kortemme, who

have shown that multi-specific binding can be achieved by different

mechanisms [33]. Using computational design to ‘‘optimize’’ the

interfaces of promiscuous proteins, they observed two distinct

patterns: (i) for half of the tested case, all partners shared key

interactions; (ii) for the other half, each binding partner preferred its

own set of wild-type residues in the common binding site. Some

experimental studies of promiscuous proteins support this second

pattern. For example, TRAF3 (Tumor Necrosis Factor Receptor-

associated Factor) is able to bind two targets, CD40 and

Lymphotoxin-b receptor, at the same interface, although they

present motifs with distinct sequence and structure motifs for the

binding [63]. Another example of promiscuous protein is protein

kinase A, which is able to bind to different proteins using the same

binding site. Entropy calculations suggest that the binding site of

protein kinase A provides alternative contact points for the partner

side chains [64]. In a recent study of BirA, a protein able to form a

homodimer as well as heterodimer using the same binding site, hot

spot residues were identified specifically for the homodimerization,

but not for the heterodimerization [65]. This suggest that each

complex forms using its own preferred and distinct interactions.

This has also been observed for protein/ligand complexes. For

example, different non-peptidic haptens have been shown to bind to

the same site of an antibody, by forming different hydrogen bonds,

dependent upon their particular chemistry and the availability of

complementary antibody residues [66].

A last point to discuss is the existence of structural mimicry at

interface. Protein mimicry is an intuitive concept, that has been

successfully used in rational design [67]. Examples of protein

interface mimicry - present in our data set - include several
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Figure 6. Extent of overlap of interfaces in ABAC pairs. Overlap of binding sites is highlighted in red. Residues involved in one of the binding
sites but out of the overlap are highlighted in yellow. The four pairs of complexes belong to the O category.
doi:10.1371/journal.pcbi.1000821.g006
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chymotrypsin inhibitors with various global folds (49 ABAC pairs),

the viral protein M3 that mimics the binding site of chemokines for

homodimerization (1 ABAC pair), and different subtilase inhibi-

tors (3 ABAC pairs). Surprisingly, the similarity P-value analysis of

these 53 pairs revealed that the physico-chemical similarity of the

mimicking binding sites is not significant. However, their

structural similarity is obvious, see Figure 2. This might indicate

that the shape - not taken into account by our atomic or residue-

based representations - is an important determinant for interface

mimicry. Indeed, local surface comparison has been successfully

used to retrieve chymotrypsin inhibitors [68].

The present study focused on promiscuous binding at the family

level. The goal was to find the key determinants that allow

unrelated proteins to bind to homologous partners. Our main

conclusions are summarized below.

N Homologous proteins that bind different partners display

different levels of structure similarity. Structural variation and

residue insertion at the interfaces, as well as global structural

variation, are seen in roughly one third of the ABAC pairs.

This has to be taken into account in order to properly analyze

the similarity of the binding sites.

N Structural mimicry at the interface of unrelated proteins that

bind to homologous partners has been identified, but only for a

limited number of ABAC pairs (53 out of 433 pairs), and an even

more limited number of protein families (3 out of 105). Interface

mimicry is thus probably not as generic as previously thought.

N Similarity between binding sites of unrelated proteins that bind

to the same target is largely insignificant in terms of physico-

chemical properties with similar spatial arrangement. That

does not exclude the possibility that the same physico-chemical

properties could be organized in a different manner between

unrelated proteins.

N Conserved residues within the binding sites of unrelated

proteins that bind to the same target are not co-localized.

We were not able to find evidence of convergent evolution. Our

results support the hypothesis that promiscuous binding is rather

achieved by alternative binding strategies for different partners.

Materials and Methods

We exploited the data from the ABAC database (http://scoppi.

biotec.tu-dresden.de/abac/) that contains protein-protein com-

plexes organized in pairs [61]. As illustrated in Figure 4, ABAC

pairs are formed by homologous proteins, A and A9, in interaction

with non-homologous proteins B and C at equivalent binding sites.

The SCOP classification [69] was used to ensure that A and A9

belong to the same family and B and C to different super-families.

SCOP families gather proteins that have a clear evolutionary

origin, measured by a sequence identity greater than 30%, or

lower sequence identity, but very similar structure or function. At

the superfamily level, proteins display low sequence identity, but

structures and functions suggest that they are evolutionarily

related. Proteins classified in different superfamilies are unrelated.

Pairs with equivalent binding sites were selected after a two-stage

procedure involving an assessment of interface residue overlap on

A and A9 sequences and spatial overlap between A/B and A9/C

interfaces measured by the angle between the center of mass of A/

A9, and the center of mass of the interfacial region of B and C [61].

Data set
PDB files of protein-protein complexes were retrieved from the

PQS database [70]. Starting from a non-redundant list of ABAC

pairs with only one instance per SCOP family combination, we

selected pairs that fulfilled two criteria: (i) the two partners are

from different chains, i.e., we do not consider intra-chain

interactions, (ii) SCOP domains spanning several protein chains

involved in the binding site are excluded from the analysis for

computational simplicity. We also removed complexes with

missing atomic coordinates at the binding site, and pairs with

very low overlap between the binding sites resulting in no

superimposed atoms on the B/C side. Details concerning the

minimum overlap size in the data set are given in Table 5 in Text

S1. The final data set comprises 433 ABAC pairs. These 433 pairs

were further classified into 5 categories, based on a visual

assessment of the quality of the superimposition between A and

A9 domains, particularly at the interfaces:

N O (optimal class): there is a good superimposition between A

and A9, 246 pairs,

N M (mimicry): same as O, but in addition, domains B and C are

an example of structural mimicry at the binding site, 53 pairs,

N E (ensemble conformation): domains A and A9 display

alternate conformations at the interface, 63 pairs,

N I (insertion/deletion): domains A and A9 differ by an insertion/

deletion at the interface, 21 pairs,

N S (superimposition problem): global superimposition between A and

A9 is poor, due to structural variability between A and A9, 50 pairs.

For the category M, the geometry of the main chain of B and C

domains in the binding site was taken into account. Globally, O

and M categories correspond to smaller rmsd between A and A9

domains, and smaller irmsd (rmsd between interfacial residues)

compared to category S; categories E and I are intermediate; and

categories overlap in terms of rmsd values, see Figure 2 in Text S1.

Note that rmsd and irmsd are average values of structural deviation,

hence they only reflect global tendencies; furthermore, they

depend on the extent of the structural alignments. Also, irmsd

computation does not take into account insertion of residues,

because they are unaligned. Structural mimicry of B and C

Figure 7. Schematic view of promiscuous protein-protein
binding at the family level. Atoms/residues at the interfaces are
symbolized by small squares and circles. The preferred atoms/residues
in each complexes are highlighted in red, they are the key determinant
of the complexes. A: different binding partners B and C interact at the
same binding site of the similar proteins A and A9, but use their own set
of atoms/residues. B: different binding partners B and C use atoms/
residues out of the common binding site of A/A9. In both cases, binding
sites of A and A9 are similar, but the alternate binding strategies can
result in no similarity between B and C binding sites.
doi:10.1371/journal.pcbi.1000821.g007
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domains cannot be detected using rmsd, since domains B and C

are unrelated and hence not superimposable. The classification

thus ultimately results from a careful visual examination that takes

into account all these parameters.

Our data set is non-redundant in the sense that every SCOP

family combination is unique. However, the ABAC pairs are not

independent, since the same SCOP family can be shared by

several pairs. For example, the SCOP family 49504 (Plastocyanin/

azurin-like) is shared by the A/A9 domains of two ABAC pairs:

N PDB structure 1mg2, chains OP (amicyanin of Paracoccus

denitrificans complexed with cytochrome c551) versus PDB structure

1gr7, chains BC (dimer of azurins of Pseudomonas aeruginosa),

N PDB structure 7pcy, chains AC (dimer of plastocyanins of

Enteromorpha prolifera) versus PDB structure 1mda, chains AM

(amicyanin of Paracoccus denitrificans complexed with the light

chain of methylamine dehydrogenase).

Overall, 68 SCOP families are present in only one ABAC pair if

we consider their A/A9 domains, and the most abundant family -

family 52592, G proteins - is represented in 130 pairs. This

probably indicates both the capacity of some particular families for

promiscuous binding at the family level, but may also reflect the

bias of structures deposited in the PDB toward proteins with

biomedical interest. The number of distinct SCOP families, for A/

A9 domains and B/C domains are reported in Table 1, for each

category of ABAC pairs. It can be seen that the number of

different SCOP families in A/A9 domains is 105 for the full data

set. This apparent redundancy is not a limitation in our context,

since we consider the similarity between pairs of complexes. In

particular, considering ABAC pairs with unique SCOP domain

combinations is enough to explore how different B/C domains

interact with similar A/A9 domains.

Comparison of binding sites
Interfacial atoms were detected by applying a cut-off of 5 Å

between heavy atoms from interacting chains, as in the SCOPPI

database [71,72]. Residues were considered to be part of the

binding site if they had at least one interfacial atom.

Atoms were classified into five groups adapted from those

proposed by Mintseris and Weng [73] (see Figure 1 in Text S1).

These groups were determined by an optimization procedure, so

as to maximize the mutual information of the pairwise matrix of

atomic contacts at protein-protein interfaces. Although they have

been determined by statistical optimization, they are in excellent

agreement with biochemical criteria and roughly make the

distinction between positively charged/negatively charged/po-

lar/non-polar and hydrophobic groups of atoms.

As in [61], homologous partners of the ABAC pairs, i.e.,

domains A and A9, were superimposed using Multiprot [74]. After

structural superimposition, interfacial atoms from A (resp. B) were

considered as superimposed if there was an interfacial atom from A9

(resp. C) less than d Å away, and similar if both atoms were from

the same group. Cutoff d was set to 3 Å, as in [61]. Note that this

cut-off is used to compute the number of similar atoms between

two binding sites after superimposition, and should not be

confused with the cut-off equal to 5 Å that is used to detect atoms

that are part of the interface.

Binding site similarity was also quantified on a per-residue basis,

by representing each residue by its Ca. In addition, we considered

an intermediate coarse-grain model introduced by Zacharias [75],

in which residues - except GLY - are modeled by two or three

pseudo-atoms: the Ca, and one side-chain pseudo-atom (residues

ALA, SER, THR, VAL, LEU, ILE, ASN, ASP and CYS) or two

side-chain pseudo-atoms (residues PHE, MET, PRO, TRP, HIS,

TYR, GLN, GLU, LYS, ARG). Residues and pseudo-atoms were

clustered into five groups, deduced from the atom groups (see

Tables 1 and 2 in Text S1).

In order to take into account the fact that residues are described

by a reduced number of points using these simplified represen-

tations, the cut-off to detect similar points after complex

superimposition was empirically set to 4 Å for the Ca and the

coarse-grain representations.

Significance of binding site similarity
The significance of the similarity between binding sites was

assessed by bootstrapping. The principle is to generate random

binding sites by randomly re-assigning the atom types in the

overlapping interfaces. The advantage of this re-sampling is that

the sizes of the compared objects are preserved. The procedure

was repeated 500 times in order to obtain the distribution of the

number of similar atoms (or pseudo-atoms or residues) between

two binding sites that can be expected with a random model. The

extent of the observed similarity could then be assessed by

computing the corresponding P-value, P(Nrandom
sim § Nobs

sim ), where

Nrandom
sim and Nobs

sim denote respectively the number of similar atoms

obtained between random binding sites, and observed between

real binding sites. For each ABAC pair, we thus computed four P-

values: one for each of A, A9, B and C binding sites.

Evolutionarily conserved residues
Evolutionarily conserved residues were detected using the

ConSurf database [76]. This database contains pre-calculated

conservation scores, obtained after multiple alignment of homol-

ogous sequences using an empirical Bayesian algorithm [77]. For

each residue of a protein, a normalized conservation score is

assigned. Residues with normalized scores lower than -1 were

considered as evolutionarily conserved. In some cases, when the

number of homologous sequences is too low, the conservation

scores were not available. In such cases, all residues were

considered as unconserved.

During the comparison of binding sites, 131 comparisons out of

433 involved a binding site with no conserved residues when

considering A/A9 domains, and 178 out of 433 when considering

B/C domains. The analysis of evolutionarily conserved residues is

thus inherently based on a smaller data set.

Supporting Information

Text S1 Supporting Figures and Tables.

Found at: doi:10.1371/journal.pcbi.1000821.s001 (1.23 MB PDF)
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