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Abstract: (1) Background: Prostate-specific membrane antigen (PSMA) has been extensively studied
in the last decade. It became a promising biological target in the diagnosis and therapy of PSMA-
expressing cancer diseases. Although there are several radiolabeled PSMA inhibitors available, the
search for new compounds with improved pharmacokinetic properties and simplified synthesis is
still ongoing. In this study, we developed PSMA ligands with two different hybrid chelators and a
modified linker. Both compounds have displayed a promising pharmacokinetic profile. (2) Meth-
ods: DATA5m.SA.KuE and AAZTA5.SA.KuE were synthesized. DATA5m.SA.KuE was labeled with
gallium-68 and radiochemical yields of various amounts of precursor at different temperatures were
determined. Complex stability in phosphate-buffered saline (PBS) and human serum (HS) was
examined at 37 ◦C. Binding affinity and internalization ratio were determined in in vitro assays using
PSMA-positive LNCaP cells. Tumor accumulation and biodistribution were evaluated in vivo and
ex vivo using an LNCaP Balb/c nude mouse model. All experiments were conducted with PSMA-11
as reference. (3) Results: DATA5m.SA.KuE was synthesized successfully. AAZTA5.SA.KuE was syn-
thesized and labeled according to the literature. Radiolabeling of DATA5m.SA.KuE with gallium-68
was performed in ammonium acetate buffer (1 M, pH 5.5). High radiochemical yields (>98%) were
obtained with 5 nmol at 70 ◦C, 15 nmol at 50 ◦C, and 60 nmol (50 µg) at room temperature. [68Ga]Ga-
DATA5m.SA.KuE was stable in human serum as well as in PBS after 120 min. PSMA binding affinities
of AAZTA5.SA.KuE and DATA5m.SA.KuE were in the nanomolar range. PSMA-specific internaliza-
tion ratio was comparable to PSMA-11. In vivo and ex vivo studies of [177Lu]Lu-AAZTA5.SA.KuE,
[44Sc]Sc-AAZTA5.SA.KuE and [68Ga]Ga-DATA5m.SA.KuE displayed specific accumulation in the
tumor along with fast clearance and reduced off-target uptake. (4) Conclusions: Both KuE-conjugates
showed promising properties especially in vivo allowing for translational theranostic use.

Keywords: prostate specific membrane antigen PSMA; hybrid chelator; radionuclide diagnosis
and therapy

1. Introduction

Prostate-specific membrane antigen (PSMA) has become a very popular target in the
diagnosis and treatment of prostate cancer in the last decade. PSMA is a glycoprotein
with several functions originating from its glutamate-carboxypeptidase activity. In the
central nervous system, PSMA acts as NAALADase, which cleaves the glutamate moiety
from the neurotransmitter N-acetyl aspartyl glutamate. However, in the proximal small
intestine, this enzyme, called folate hydrolase FOLH1, releases glutamate residues from
poly-glutamated folate [1,2]. Besides these physiological functions, PSMA seems to play an
important role in prostate carcinogenesis since it is highly expressed in prostate tumor cells.
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This expression correlates with the aggressiveness and invasiveness of the tumor [3–5], and
is a major reason for choosing PSMA as a molecular target in the management of prostate
cancer (PC).

Prostate cancer is the second most common cancer among men and the fifth leading
cause of death worldwide [6,7]. However, early detection of PC in a localized stage can
significantly reduce its mortality, leading to a 5-year survival rate of more than 90% [8].
In contrast, late-stage tumors are aggressive and almost resistant to available therapies.
Metastatic castration-resistant prostate cancer (mCRPC) is one of the most aggressive
forms of prostate cancer, with poor outcomes and restricted therapy options [9]. One
of the most promising approaches herein is PSMA-targeted radioligand diagnosis and
therapy. The unique characteristics of PSMA as a molecular target in combination with the
small-molecule PSMA inhibitors as target vectors paved the way for the development of
highly sensitive radiopharmaceuticals like the PET radioligand [68Ga]Ga-PSMA-11 and its
therapeutic counterpart [177Lu]Lu-PSMA-617 [10,11].

One of the challenges in designing appropriate PSMA inhibitors for theranostic use is
balancing the reduction of off-target accumulation in order to minimize the exposure and
irradiation of excretory organs and other tissues where physiological PSMA expression
is known, such as the salivary glands and the kidneys [12–15], with the development of
PSMA ligands which can be easily synthesized and effectively labeled. To address some of
these concerns, we developed AAZTA5.SA.KuE and DATA5m.SA.KuE.

Like all PSMA ligands, the herein described PSMA radiopharmaceuticals consist of
three parts: chelator, linker moiety, and a KuE-based PSMA-targeting vector.

The chelator is responsible for the introduction of the radionuclide. In this study, the
bifunctional hybrid chelators DATA5m (6-pentanoic acid-6-aminoperhydro-1,4-diazapine-
triacetate) and AAZTA5 (6-pentanoic acid-6-aminoperhydro-1,4-diazepine tetra-acetic acid)
are used (Figure 1). With regard to radiometals, hybrid chelators combine the positive
complexation properties of acyclic chelators, such as fast complexation kinetics at mild
temperatures, with the advantages of cyclic chelators, such as prolonged complex sta-
bility [16,17]. In these structures, the two tertiary diazepine amines provide the cyclic
component for complexation. Another amine outside the perhydro-1,4-diazepine backbone
provides another complexation unit (acyclic component). The remaining complexation
sites are provided by carboxy groups alkylated to the amines [16,18–20].
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AAZTA5 shows ideal labeling properties for transition metals, such as scandium as
well as for lanthanides, e.g., gadolinium and lutetium. Thus, AAZTA5 is suitable as a
chelator for diagnostic use (e.g., scandium-44), as well as for therapeutic applications (e.g.,
lutetium-177) [17,21,22].

The DATA5m chelator has optimal labeling properties at mild conditions for the
generator-based PET nuclide gallium-68. Furthermore, the AAZTA and DATA chela-
tors are also suitable for instant kit-labeling applications with e.g., lutetium-177 and
gallium-68 [17,23].
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Lysine-urea-glutamate (KuE) has been established as a PSMA inhibitor. KuE consists
of lysine and glutamate which are both linked to each other via a urea unit. KuE is based
on the natural PSMA-substrate NAAG, but cannot be cleaved by the enzyme [10]. Both
PSMA-617 and PSMA-11 carry this structural unit as the PSMA-binding entity [24].

The third structural element found in PSMA radiopharmaceuticals is the linker moiety,
connecting the chelator to the urea-based target vector. In addition to the function of
coupling, these linkers are usually designed to improve the pharmacokinetics of the
compounds [10]. These moieties can interact with the aromatic-binding region of the PSMA
binding pocket, leading to an increase in the affinity of the PSMA ligand [25]. The coupling
of KuE is achieved via the side-chain amine of the lysine. Usually, amide coupling reactions
are used for this purpose. Alternatively, conjugation can be achieved by using square
acid diethyl esters (SADE). This group allows two amines to be selectively coupled via
asymmetric amidation, forming a squaramide. This simplifies the synthesis in so far as,
for example, no protective group chemistry is required, as is the case with standard amide
couplings. The coupling reaction is selective with amines only and by controlling the
amidation of both squaric acid esters via pH [17,26–29]. The control of the asymmetric
amidation via the pH value can be explained by the different aromaticity and thus the
different mesomeric stabilities of the individual intermediates at the different pH values
(Figure 2) [30–32].
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With regard to PSMA radiopharmaceuticals, the use of squaric acid shows another
advantage. Squaric acid has an aromatic character and can therefore interact with the
aromatic binding region in the PSMA binding pocket resulting in an increased affinity.
Greifenstein et al. recently demonstrated that a square amide containing DOTAGA-KuE
derivative is comparable to the standard compounds PSMA-617 and PSMA-11 in terms of
in vitro binding affinity, tumor accumulation, and in vivo kinetics [28].

2. Results
2.1. Organic Synthesis

2.1.1. Synthesis of AAZTA5.SA.KuE Was according to Literature

The synthesis of the DATA chelator is based on the synthesis described by Farkas et al. [16]
and Greifenstein et al. [17]. It was synthesized according to Figure 3.

N,N′-dibenzylethyldiamines were first reacted with tert-butyl bromoacetate to give
the di-alkylated compound 1. The benzyl protecting groups were then removed by re-
duction. The diazepane 3 was formed by a double Mannich reaction. For this purpose,
2-nitrocyclohexanone was used, the ring of which was opened using the anion exchanger
Amberlyst® A21. In the following Mannich reaction, this ring-opened intermediate reacted
with 2 to form the desired diazepane 3.

After reduction of the nitro group (4), tert-butyl bromoacetate was added in an un-
dercurrent to give the mono-alkylated compound 5. The secondary amine of 5 was then
methylated in a reductive amination. This led to the protected chelator DATA5m 6. In
order to functionalize 6 with the target vector, however, it was necessary to introduce
an ethylenediamine bridge. For this purpose, the methyl ester of 6 was saponified us-
ing lithium hydroxide (compound 7) and the mono Boc-protected ethylenediamine was
linked via an amide coupling to get 8. After an acidic deprotection compound 9 could be
conjugated to the target vector using squaric acid.
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Figure 3. Synthesis of DATA5m: (a) tert-butyl bromoacetate, Na2CO3, MeCN, 96%; (b) Pd/C, EtOH,
formic acid, H2, 98%; (c) paraformaldehyde, 2-nitrocyclohexanone, MeOH, 77%; (d) Raney®-Nickel,
EtOH, H2, 72%; (e) tert-butyl bromoacetate, DIPEA, MeCN, 62%; (f) Formalin (37%), AcOH, NaBH4,
ACN, 74%; (g) LiOH, dioxane/H2O, 84%; (h) tertbutyl(2aminoethyl)carbamate, HATU, DIPEA, ACN,
94%; (i) TFA/DCM, 1:1.

The PSMA inhibitor lysine-urea-glutamate (KuE) was synthesized and coupled to
3,4-dibutoxycyclobut-3-en-1,2-dione (SADE) according to Figure 4.
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benzoyloxycarbonyl-L-lysine, triphosgene, triethylamine DCM, 0 ◦C; (b) L-glutamic acid di-tert-butyl
ester hydrochloride, triethylamine, DCM, 41%; (c) Pd/C, MeOH, H2, 96%; (d) 3,4-dibutoxycyclobut-
3-en-1,2-dione, 0.5 M phosphate buffer pH 7, ethyl acetate, 77%; (e) TFA/DCM, 1:1, 83%.

For the introduction of the urea unit, the amino group of the protected lysine was
transformed into an isocyanate using triphosgene. The isocyanate was then reacted with
tert-butyl protected glutamate and the protected PSMA inhibitor lysine-urea-glutamate 10
was obtained and followed by reductive deportation of the lysine side chain, yielding 11.
This compound was then coupled to SADE in phosphate buffer at pH 7. Acidic deprotection
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of the protected compound 12 led to the couplable PSMA inhibitor lysine-urea-glutamate-
squaric acid monoester 13 (KuE.SAME).

The free primary amine of DATA5m (9) was then coupled to the free coupling side
of KuE.SAME (13) in 0.5 M phosphate buffer at pH 9 to obtain the final compound
DATA5m.SA.KuE (14) (Figure 5).
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2.1.2. Radiolabeling

Radiolabeling of AAZTA5.SA.KuE with scandium-44 and lutetium-177 was performed
according to the literature [17].

DATA5m.SA.KuE was radiolabeled with gallium-68 in ammonium acetate buffer
(1 M, pH 5.5), varying amounts of precursor (5 nmol to 60 nmol), and different tempera-
tures (room temperature to 70 ◦C). Labeling was carried out in triplicate with 30–50 MBq
of gallium-68. Figure 6A shows the kinetic studies of the gallium-68-radiolabeling of
DATA5m.SA.KuE. The lower the quantity of precursor used, the higher the temperature
required to obtain quantitative radiochemical yields (RCY). Labeling of 10 nmol at 50 ◦C
only achieved a RCY of 56% after 15 minutes. The increase to 15 nmol at 50 ◦C results
in quantitative RCY (>99%). The increase of temperature even allowed the quantitative
labeling (>99% RCY) of 5 nmol. Furthermore, 50 µg (60 nmol) can be radiolabeled in yields
of over 99% with gallium-68 even at room temperature. The high radiochemical yield and
high purity of [68Ga]Ga-DATA5m.SA.KuE was confirmed by radio-HPLC (Figure 6B).

Studies of the complex stability were performed in human serum (HS) and phosphate
buffered saline (PBS). In both media, [68Ga]Ga-DATA5m.SA.KuE showed a stability of >98%
over a period of 120 minutes (Figure 6C).

2.2. In Vitro Studies
2.2.1. PSMA Binding Affinity

The PSMA binding affinity of DATA5m.SA.KuE and AAZTA5.SA.KuE, as well as
PSMA-11, was determined in a competitive radioligand assay using PSMA-positive LNCaP
cells that were incubated with 0.75 nM [68Ga]Ga-PSMA-10 in the presence of 12 increasing
concentrations of the non-labeled SA-conjugated compounds. The measured radioac-
tivity values were plotted against the concentrations of the SA conjugates (Figure 7).
IC50 values were determined using GraphPad Prism 9 (Table 1). AAZTA5.SA.KuE and
DATA5m.SA.KuE showed similar binding affinities while PSMA-11 seems to have two-fold
higher affinity in vitro.

Table 1. IC50 values of the investigated compounds. Data represented as mean ± SD (n = 3).

Compound IC50 [nM]

DATA5m.SA.KuE 51.1 ± 5.5
AAZTA5.SA.KuE 52.1 ± 4.0

PSMA-11 26.2 ± 2.4
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resulting in quantitative RCYs after one minute. Radiolabeling of 10 nmol at 50 ◦C results in a RCY of
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tR ([68Ga]Ga-DATA5m.SA.KuE) = 8.8 min. Radio-HPLC confirmed purity and high RCY of [68Ga]Ga-
DATA5m.SA.KuE. (C) Stability studies for [68Ga] Ga-DATA5m.SA.KuE complex in human serum (HS)
and phosphate buffered saline (PBS) of intact conjugate at different time points.
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Figure 7. Inhibition curve of AAZTA5.SA.KuE, DATA5m.SA.KuE and PSMA-11. cpm: counts per minute.



Molecules 2021, 26, 6332 7 of 18

2.2.2. Internalization Ratio

PSMA ligands are internalized upon binding to PSMA, probably via clathrin-mediated
endocytosis [33,34]. To determine the PSMA-specific cellular uptake of the developed
PSMA ligands, we measured both the surface-bound and internalized radioactivity in
PSMA-positive LNCaP cells at four different conditions; at 37 ◦C with and without blocking
with the potent PSMA inhibitor PMPA (2-Phosphonomethyl pentanedioic acid) [35–37], and
at 4 ◦C with and without blocking with PMPA. Results are plotted in Figure 8. [68Ga]Ga-
DATA5m.SA.KuE displayed the highest internalization ratio 6.6 ± 0.6%, whereas the
uptake fractions of [44Sc]Sc-AAZTA5.SA.KuE and [68Ga]Ga-PSMA-11 were slightly lower
(4.8% and 5.2%, respectively). PSMA-specific uptake was mainly reduced at 4 ◦C.

Molecules 2021, 26, 6332 8 of 19 
 

 

uptake of [68Ga]Ga-DATA5.SA.KuE were found to be PSMA-specific, since they could be 
blocked by co-injection of PMPA as seen in Figure 10. 

 
Figure 8. Internalization ratio of [68Ga]Ga-DATA5m.SA.KuE and [44Sc]Sc-AAZTA5.SA.KuE with [68Ga]Ga-PSMA-11 as ref-
erence; % injected dose per 106 LNCaP cells. 

 
Figure 9. Ex vivo biodistribution data of [44Sc]Sc-AAZTA5.SA.KuE, [177Lu]Lu-AAZTA5.SA.KuE, 
[68Ga]Ga-DATA5m.SA.KuE and [68Ga]Ga-PSMA-11 in LNCaP tumor-bearing Balb/c nude mice 1 h 
p.i. %ID/g: % injected dose per gram. Values are mean ± SD. 

0

2

4

6

8

10

37°C 4°C 37°C 4°C 37°C 4°C

[⁶⁸Ga]Ga-DATA⁵ᵐ.SA.KuE [⁴⁴Sc]Sc-AAZTA⁵.SA.KuE [⁶⁸Ga]Ga-PSMA 11

%
 IA

 p
er

 1
06

ce
lls

Tumor 
Blood

Heart Liv
er

Sp
leen

Kidneys

Muscl
e

Fe
mur

0

2

4

6

8

10
20

40

60

80

100
[177Lu]Lu-AAZTA5.SA.KuE
[44Sc]Sc-AAZTA5.SA.KuE [68Ga]Ga-DATA5m.SA.KuE

[68Ga]Ga-PSMA-11

Figure 8. Internalization ratio of [68Ga]Ga-DATA5m.SA.KuE and [44Sc]Sc-AAZTA5.SA.KuE with
[68Ga]Ga-PSMA-11 as reference; % injected dose per 106 LNCaP cells.

2.3. Animal Studies

In order to evaluate the in vivo behavior of the SA.KuE conjugates, an LNCaP-xenograft
model was used. Labeling of AAZTA5.SA.KuE with the different nuclides scandium-44 and
lutetium-177 seemed to have no impact on the pharmacokinetic properties of the conjugates,
since there were no significant differences observed in the biodistribution data (Figure 9).
Tumor accumulation values of all four compounds were similar, 3.92 ± 0.50% ID/g,
5.41 ± 0.83% ID/g, 4.43 ± 0.56% ID/g and 5.52 ± 0.75% ID/g for [44Sc]Sc-AAZTA5.SA.KuE,
[177Lu]Lu-AAZTA5.SA.KuE, [68Ga]Ga-DATA5m.SA.KuE and [68Ga]Ga-PSMA-11 respec-
tively. The higher kidney uptake of [68Ga]Ga-PSMA-11 (73.39 ± 18.77% ID/g) is noteworthy
compared to the uptake of the SA.KuE conjugates (20.69 ± 7.24% ID/g, 22.70 ± 0.90% ID/g,
13.63 ± 6.81% ID/g for [44Sc]Sc-AAZTA5m.SA.KuE, [177Lu]Lu-AAZTA5m.SA.KuE and
[68Ga]Ga-DATA5.SA.KuE respectively). Both tumor and kidney uptake of [68Ga]Ga-
DATA5.SA.KuE were found to be PSMA-specific, since they could be blocked by co-
injection of PMPA as seen in Figure 10.
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Figure 10. Ex vivo biodistribution of [68Ga]Ga-DATA5m.SA.KuE compared to organ accumulation
after co-injection with an access PMPA.

To further understand the pharmacokinetics of the developed PSMA ligands, we
performed µPET-scans with the same xenograft model (Figure 11). Tumor accumulation
of all three compounds was very similar. The kidney uptake of [68Ga]Ga-DATA5.SA.KuE
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was remarkably lower than the reference compound [68Ga]Ga-PSMA-11. This finding
correlates with the results obtained from the time–activity curves of both compounds
(Figure 12). Herein, the radioactivity concentration of [68Ga]Ga-DATA5m.SA.KuE decreased
continuously 10 min p.i. while the concentration in the tumor remained constant. However,
the radioactivity concentration of [68Ga]Ga-PSMA-11 remained at a higher level during the
period of the scan. As demonstrated in the µPET scans, uptake in the tumor as well as in
the kidney was PSMA-specific. After co-injection of PMPA, almost no radioactivity could
be detected (Figure 11).
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Figure 11. Maximum intensity projections of µPET scans 1 h p.i. of (a) [68Ga]Ga-PSMA-11,
(b) [68Ga]Ga-DATA5m.SA.KuE, (c) [44Sc]Sc-AAZTA5.SA.KuE and (d) co-injection of [44Sc]Sc-
AZTA5.SA.KuE and PMPA (tumor circled).
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Figure 12. Time–activity curves of the uptake of [68Ga]Ga-DATA5m.SA.KuE and [68Ga]Ga-PSMA-11 in the kidneys (a) and
the tumor (b) over the total period of the µPET scan.

3. Discussion

The discovery of PSMA as molecular target in the diagnosis and therapy of prostate
cancer, as well as the application of radiolabeled PSMA inhibitors, have revolutionized the
management of this disease resulting in a significant improvement especially in staging
and assessment of prostate cancer [38]. Although several PSMA ligands have been devel-
oped over the last decades, the search for novel tracers with optimized pharmacokinetic
properties particularly for therapeutic purposes is still present, since some of the clinically
used PSMA radioligand therapeutics e.g., [225Ac]Ac-PSMA-617 display some severe side
effects, like xerostomia [12,13,39].
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To determine the effect of the chelator on the PSMA binding affinity and the inter-
nalization ratio of PSMA ligands, we synthesized two PSMA inhibitors with different
hybrid chelators. In the cell-based assays, both DATA5m.SA.KuE and AAZTA5.SA.KuE
showed similar binding affinity and internalization ratios, indicating that an exchange
of DATA5m against AAZTA5 had no impact on either the binding affinity or on the inter-
nalization ratio in PSMA-positive LNCaP cells. These findings correlate with the results
published by Sinnes et al., who investigated the influence of the exchange of DOTA chelator
in DOTA-PSMA-617 against AAZTA5. Both DOTA-PSMA-617 and AAZTA5.-PSMA-617
displayed similar in vitro binding affinities and internalization ratios in LNCaP cells [40].
However, the reported binding affinities and internalization ratios of AATA5-PSMA-617
and DOTA-PSMA-617 were higher than those of the SA.KuE conjugates. In particular,
[44Sc]Sc-PSMA-617 seems to display high PSMA-binding affinity as published by several
groups [41,42]. Since PSMA-617 was not commercially available at the time this study was
performed, PSMA-11 was used as reference.

However, PSMA-11 displayed also higher binding affinity in vitro which could be due
to the better interaction with the PSMA binding pocket. In contrast, the internalization ratio
of PSMA-11 was similar to these of the SA.KuE-conjugates. Interestingly, the investigated
internalization fraction of [68Ga]Ga-PSMA-11 was noticeably lower compared to the ratio
described in literature [42,43] which could be due to differences in study design and setup.
The PSMA-specificity of binding and uptake in LNCaP cells and LNCaP tumors could be
demonstrated for all herein investigated PSMA-inhibitors by blocking PSMA receptors
with the potent inhibitor PMPA.

In order to evaluate the pharmacokinetic behavior of our compounds and to compare
them with PSMA-11, we performed animal studies using an LNCaP xenograft model.

AAZTA5.SA.KuE was labeled with the positron emitter scandium-44 and β−-
emitterlutetium-177. Both radiotracers displayed similar biodistribution data, indicating
that both isotopes do not impact the pharmacokinetic properties of the PSMA radioligand.
This result makes this pair ideal for theranostic use. In addition, [68Ga]Ga-DATA5m.SA.KuE
equally showed a promising biodistribution profile and a good imaging contrast. Sur-
prisingly, although PSMA-11 showed a two-fold higher binding affinity in vitro, tumor
accumulation was similar to the SA.KuE-conjugates. Furthermore, the kidney uptake
of [68Ga]Ga-PSMA-11 was significantly higher than the SA.KuE-conjugated compounds.
[68Ga]Ga-DATA5m.SA.KuE, [44Sc]Sc-AAZTA5.SA.KuE and [177Lu]Lu-AAZTA5.SA.KuE.
Thus, these compounds seem to display a rapid renal clearance along with a good tumor
accumulation. However, the tumor uptake of the SA.KuE conjugates was lower than that
of the gallium-68 and lutetium-177 labeled PSMA-617 radioligands [10,11]. Ghiani et al.
recently described a novel scandium-44 labeled PSMA radioligand with even higher tumor
accumulation than the PSMA-617 counterpart [41]. Nevertheless, a direct comparison
between the presented results and those reported by other groups is not possible because
of the differences in xenograft models and experimental setups.

4. Materials and Methods
4.1. General

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA), Merck
(Kenilworth, NJ, USA), Fluka (Buchs, Switzerland), AlfaAesar (Haverhill, MA, USA), VWR
(Radnor, PA, USA), AcrosOrganics (Geel, Belgium), TCI (Portland, OR, USA), Iris Biotech
(Marktredwitz, Germany) and Fisher Scientific (Hampton, NH, USA) and used without
purification. Dry solvents were obtained from Merck and VWR, deuterated solvents for
NMR spectra from Deutero. Thin layer chromatography was performed with silica gel
60 F254 coated aluminum plates from Merck. Evaluation was carried out by fluorescence
extinction at λ = 254 nm and staining with potassium permanganate. The radio TLCs
were evaluated using a CR-35 Bio test imager (Elysia-Raytest, Angleur, Belgium) from
Raytest and the AIDA software (Elysia-Raytest, Angleur, Belgium). The 1H and 13C
NMR measurements were performed on an Avance III HD 300 spectrometer (Bruker
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Corporation, Billerica, MA, USA) (300 MHz, 5mm BBFO sample head with z-gradient and
ATM and BACS 60 sample changer), an Avance II 400 (Bruker Corporation, Billerica, MA,
USA) (400 MHz, 5 mm BBFO sample head with z-Gradient and ATM and SampleXPress
60 sample changer), and an Avance III 600 spectrometer (Bruker Corporation, Billerica,
MA, USA) (600 MHz, 5mm TCI CryoProbe sample head with z-Gradient and ATM and
SampleXPress Lite 16 sample changer). The LC/MS measurements were performed on an
Agilent Technologies 1220 Infinity LC system coupled to an Agilent Technologies 6130B
Single Quadrupole LC/MS system. Semi-preparative HPLC purification was performed
on a 7000 series Hitachi LaChrom (Hitachi, Chiyoda, Japan).

4.2. Organic Synthesis

DATA5m was synthesized according to the procedure described by Farkas et al. and
Greifenstein et al. [17].

N,N′-Dibenzyl-N,N′-di-(tert-butylacetate)-ethylendiamine (1)
N,N′-dibenzylethylendiamine (2.90 mL, 3.00 g, 12.50 mmol) and sodium carbonate

(5.10 g, 48.70 mmol) were dissolved in acetonitrile (50 mL) and stirred for 30 min at room
temperature. Tert-butyl bromoacetate (3.60 mL, 4.60 g, 23.70 mmol) in acetonitrile (10 mL)
was added dropwise at room temperature. The reaction mixture was stirred overnight at
90 ◦C and filtered. The solvent was evaporated under reduced pressure. The product was
purified by column chromatography (hexane/ethyl acetate; 6:1, Rf = 0.37) and obtained as
a colorless solid (5.73 g, 12.2 mmol, 96%).

1H-NMR (400 MHz, CDCl3): δ [ppm] = 7.34–7.21 (m, 10H), 3.78 (s, 4H), 3.26 (s, 4H),
2.82 (s, 4H), 1.44 (s, 18H).

13C-NMR (400 MHz, CDCl3): δ [ppm] = 171.03, 139.18, 129.05, 128.30, 127.10, 80.86,
58.39, 55.27, 51.73, 28.24.

MS (ESI+): 469.4 [M + H]+, calculated for C28H40N2O4: 468.30 [M]+.
N,N′-di-(tert-butylacetate)-ethylendiamine (2)
Product 1 (2.3 g; 5.60 mmol) was dissolved in abs ethanol (15 mL) and formic acid

(0.43 mL, 0.52 g, 11.0 mmol). To this solution palladium on activated carbon (416 mg,
16% wt) was added and the solution was saturated, kept and stirred overnight with
hydrogen. Pd/C was filtered over celite and the solvent was evaporated under reduced
pressure. The product (1.58 mg, 5.5 mmol, 98%) was used without further purification.

MS (ESI+): 289.3 [M + H]+, calculated for C14H28N2O4: 288.36 [M]+.
1,4-Di(tert-butylacetate)-6-methyl-6-nitroperhydro-1,4-diazepane (3)
2-Nitrocyclohexanone (1.70 g, 12 mmol) and Amberlyst® A21 (2 mass equivalents)

were dissolved in methanol (30 ml) and stirred at 90 ◦C for 1 h. Paraformaldehyde (1.30 g,
42.3 mmol) and Product (2) (3.50 g, 12 mmol) were added. The solution was heated
overnight under reflux. The solvent was evaporated under reduced pressure. The product
was purified by column chromatography (hexane/ethyl acetate; 2:1, Rf = 0.33) and obtained
as a yellowish oil (4.52 g, 9.28 mmol, 77%).

1H-NMR (400 MHz, CDCl3): δ [ppm] = 3.65 (s, 3H), 3.60 (d, J = 14,6 Hz, 2H), 3.45 (d,
J = 17.3 Hz, 2H), 3.30 (d, J = 17.3 Hz, 2H), 3.12 (d, J = 14.6 Hz, 2H), 2.84 (m, 4H), 2.27 (t, 2H),
1.83 (m, 2H), 1.57 (m, 2H), 1.46 (s, 18H), 1.18 (m, 2H).

13C-NMR (400 MHz, CDCl3): δ [ppm] = 173.73, 170.92, 95.12, 81.31, 61.57, 61.18, 56.87,
51.68, 37.27, 33.71, 28.35, 24.82, 22.99.

MS (ESI+): 488.3 [M + H]+, calculated for C23H41N3O8: 487.29 [M]+.
1,4-Di(tert-butylacetate)-6-methylpentanoate-6-amino-perhydro-1,4-diazepane (4)
Compound 3 (4.50 g, 9.30 mmol) was dissolved in abs. ethanol (40 mL). Raney® nickel

was added and the solution was saturated, kept and stirred for four days with hydrogen at
40 ◦C. The nickel was filtered over celite and the solvent was evaporated under reduced
pressure. Compound 4 (3.92 g, 8.60 mmol, 72%), was obtained as a greenish oil and used
without further purification.

MS (ESI+): 458.3 [M + H]+, calculated for C23H43N3O6: 457.32 [M]+.
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1,4-Di(tert-butylacetate)-6-methylpentonate-6-amino-tert-butylacetate-perhydro-1,4-
diazepane (5)

Compound 4 (1.30 g, 2.84 mmol) and N,N-diisopropylethylamine (483 µL, 367 mg,
2.84 mmol) were dissolved in dry acetonitrile (20 mL) and stirred for 20 min at room
temperature. Tert-butyl bromoacetate (538 µL, 720 mg, 3.69 mmol) was added dropwise
and stirred overnight at room temperature. The solvent was evaporated under reduced
pressure. The product was purified by column chromatography (cyclohexane/ethyl acetate;
3:1 + 3% trimethylamine, Rf = 0.34) and obtained as a yellowish oil (1.01 g, 1.77 mmol, 62%).

1H-NMR (400 MHz, CDCl3): δ [ppm] = 3.65 (s, 3H), 3.29 (s, 4H), 3.21 (s, 2H),
2.83–2.60 (m, 8H), 2.30 (dd, J = 8.9, 6.3 Hz, 2H), 1.90 (s br, 1H), 1.62–1.54 (m, 2H), 1.46 (s, 9H),
1.44 (s, 18H), 1.32–1.23 (m, 4H).

MS (ESI+): 572.4 [M + H]+, calculated for C29H53N3O8: 571.38 [M]+.
1,4-Di(tert-butylacetate)-6-methylpentonate-6-(amino(methyl)-tert-butylacetate)-perhydro-

1,4 diazepane (6)
Compound 5 (1.00 g, 1.75 mmol), formalin solution (482 µL, 526 mg, 6.47 mmol), and

acetic acid (300 µL, 315 mg, 5.25 mmol) were dissolved in dry acetonitrile (20 mL) and
stirred at room temperature for 30 min. Sodium borhydride (200 mg, 5.29 mmol) was
added portion-wise over 30 min. The reaction solution was stirred for 2 hours at room
temperature. Water (25 mL) was added and extracted with chloroform (4 × 50 mL). The
organic phase was separated and dried over sodium sulfate and evaporated under reduced
pressure. The product was purified by column chromatography (cyclohexane/ethyl acetate;
5:1 + 2% trimethylamine, Rf = 0.28) and obtained as colorless oil (0.76 g, 1.39 mmol, 74%).

1H-NMR (400 MHz, CDCl3): δ [ppm] = 3.65 (s, 3H), 3.42 (s, 2H), 3.32–3.18 (m, 4H),
2.93 (d, J = 14.0 Hz, 2H), 2.83–2.73 (m, 2H), 2.70–2.58 (m, 4H), 2.35−2.24 (m, 5H), 1.63–1.48 (m,
4H), 1.45 (s, 9H), 1.44 (s, 18H), 1.41–1.22 (m, 2H).

MS (ESI+): 586.4 [M + H]+, calculated for C30H55N3O8: 585.40 [M]+.
1,4-Di(tert-butylacetate)-6-pentanoicacid-6-(amino(methyl)-tert-butylacetate)-perhydro-

1,4-diazepane (7)
Compound 6 (0.75 g, 1.28 mmol) was dissolved in a 1,4-dioxane/water (2:1) mixture.

Then, 1 M lithium hydroxide solution (1.92 mL, 1.92 mmol) was added and stirred for
7 days. After 2, 4, and 6 days 1 M lithium hydroxide solution (0.32 mL, 0.32 mmol) was
added. 1,4-dioxane was evaporated under reduced pressure. The remaining water phase
was extracted with chloroform (5 × 50 mL). The organic phase was washed with 1 M
sodium hydrogen carbonate solution (25 mL) and brine (2× 25 mL) and dried over sodium
sulfate and evaporated under reduced pressure. The product (615 mg, 1.07 mmol, 84%)
was obtained as a yellowish oil.

1H-NMR (400 MHz, CDCl3): δ [ppm] = 3.44 (s, 2H), 3.25 (d, J = 2.2 Hz, 4H), 2.93 (d,
J = 14.0 Hz, 2H), 2.82–2.73 (m, 2H), 2.71–2.61 (m, 4H), 2.34 (t, J = 7.7 Hz, 2H), 2.27 (s, 3H),
1.65–1.51 (m, 4H), 1.45 (s, 18H), 1.44 (s, 9H), 1.43–1.21 (m, 2H).

13C-NMR (400 MHz, CDCl3): δ [ppm] = 178.46, 172.53, 170.98, 81.02, 80.44, 77.36, 62.86,
62.59, 62.48, 59.02, 54.21, 37.49, 36.92, 34.17, 28.37, 28.27, 25.71, 21.97.

MS (ESI+): 572.4 [M + H]+, calculated for C29H53N3O8: 571.38 [M]+.
1,4-Di(tert-butylacetate)-6-((5-(2-((2-ethoxy-3,4-dioxocyclobut-1-en-1yl)amino-ethyl)amino)-

5-oxopentyl)-6-(amino(methyl)-tert-butylacetate)-perhydro-1,4-diazepane (8)
Compound 7 (100 mg, 0.175 mmol), HATU (66.5 mg, 0.175 mmol), and DIPEA (90 µl,

69 mg, 0.525 mmol) were dissolved in dry acetonitrile (2 mL) and stirred for 15 min
at room temperature. Tert-butyl(2-aminoethyl) carbamate (45 µL, 46 mg, 0.280 mmol)
was added to the solution and stirred over night at room temperature. The solvent was
evaporated under reduced pressure. The product was purified by column chromatography
(dichloromethane/methanol; 20:1, Rf = 0.22) and obtained as a colorless oil (118.4 mg,
0.166 mmol, 94%).

1H-NMR (400 MHz, CDCl3): δ [ppm] = 6.34 (br, 1H), 5.26 (br, 1H), 3.60 (s, 4H),
3.38–3.34 (m, 2H), 3.26-3.24 (m, 2H), 3.21 (s, 4H), 2.96 (d, J = 14,1 Hz, 2H), 2.75–2.63 (m,
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2H), 2.66-2.63 (m, 2H), 2.59 (d, J = 14,1 Hz, 2H), 2.19 (t, 2H), 1.62-1.53 (m, 4H), 1.43 (s, 18H),
1.42 (s, 27H), 1.28-1.20 (m, 2H).

13C-NMR (400 MHz, CDCl3): δ [ppm] = 174.38, 173.31, 172.80, 165.88, 82.85, 82.77,
63.44, 62.48, 62.05, 55.48, 54.47, 47.11, 40.81, 39.87, 35.55, 29.82, 28.53, 28.32, 28.14, 27.91,
26,17, 23.41.

MS (ESI+): 714.5 [M + H]+, calculated for C36H67N5O9: 713.49 [M]+.
1,4-Di(acetate)-6-((5-(2-(aminoethyl)amino)-5-oxopentyl)-6-(amino(methyl)-acetate)-

perhydro-1,4-diazepane (9)
Compound 8 (20 mg, 0.028 mmol) was dissolved in a solution of dichloromethane

and triflouroacetic acid (2 mL, 1:1) and stirred over night at room temperature. The solvent
was evaporated under reduced pressure and used without further purification.

MS (ESI+): 446.2 [M + H]+, calculated for C19H35N5O7: 445.25 [M]+.
2-[3-(5-benzyloxycarbonylamino-1-tert-butoxycarbonyl-pentyl)-ureido]-pentanedioic

acid di-tert-butyl ester (10)
Triphosgene (420 mg, 1.40 mmol) was dissolved in dichloromethane (5 mL) and cooled

to 0 ◦C. A solution of N(ε)-benzoyloxycarbonyl-L-lysine (1.42 g, 3.80 mmol) and triethy-
lamine (1.05 mL, 765 mg, 7.60 mmol) in dichloromethane (25 mL) was added dropwise
over a period of 3 hours at 0 ◦C. The reaction mixture was stirred for 40 minutes and
L-glutamic acid di-tert-butyl ester hydrochloride (1.13 g, 3.80 mmol) and triethylamine
(1.05 mL, 765 mg, 7.60 mmol) in dichloromethane (20 mL) was added. The solution was
stirred over night at room temperature. The solution was evaporated under reduced
pressure. Ethyl acetate (25 mL) was added. The organic layer was washed with saturated
NaHCO3-solution (2 × 10 mL) and brine (2 × 10 ml), dried over sodium sulfate and evap-
orated under reduced pressure. The residue was purified by column chromatography
(hexane/ethyl acetate; 20:1, Rf = 0.26) and the product was obtained as a colorless oil
(357.6 mg, 0.58 mmol, 41%).

1H-NMR (300 MHz, CDCl3): δ [ppm] = 7.38–7.22 (m, 5H), 5.16 (d, J = 13.5 Hz, 1H),
5.09 (d, J = 3.2 Hz, 2H), 4.32 (dt, J = 7.5, 5.2 Hz, 2H), 3.16 (s, 2H), 2.40–2.15 (m, 2H), 1.93–1.68
(m, 2H), 1.43 (m, 29H).

13C-NMR (300 MHz, CDCl3): δ [ppm] = 172.54, 172.25, 172.15, 157.09, 156.61, 136.67,
128.47, 128.04, 128.01, 82.29, 81.84, 80.65, 77.24, 66.56, 53.38, 53.03, 40.63, 32.53, 31.52, 29.36,
28.28, 28.07, 28.00, 22.26.

MS (ESI+): 622.4 [M + H]+, 644.4 [M + Na]+, calculated for C32H51N3O9: 621.36 [M]+.
2-[3-(amino-1-tert-butoxycarbonyl-pentyl)-ureido]-pentanedioic acid di-tert-butyl

ester (11)
Compound 10 (337.6 mg, 0.55 mmol) was dissolved in methanol (3 mL). To this,

solution palladium on activated carbon (22 mg) was added and the solution was saturated,
kept and stirred overnight with hydrogen. Pd/C was filtered over celite and the solvent
was evaporated under reduced pressure. The product (260 mg, 0.53 mmol, 96%) was used
without further purification.

1H-NMR (300 MHz, CDCl3): δ [ppm] = 5.48 (dd, J = 10.3, 8.1 Hz, 2H), 4.31 (dd, J = 5.7,
2.4 Hz, 2H), 2.77 (t, J = 6.6 Hz, 2H), 2.36–2.25 (m, 2H), 2.05 (ddd, J = 7.1, 5.9, 2.1 Hz, 1H),
1.92–1.68 (m, 2H), 1.44 (d, J = 7.1 Hz, 33H).

13C-NMR (300 MHz, CDCl3): δ [ppm] = 172.61, 172.47, 157.05, 82.07, 81.67, 80.55, 53.39,
52.99, 41.12, 32.40, 31.66, 31.43, 28.28, 28.08, 28.02, 22.20.

MS (ESI+): 488.3 [M + H]+, calculated for C24H45N3O7: 487.33 [M]+.
2-[3-(2-(2-ethoxy-3,4-dioxo-cyclobut-1-en-1yl)amino-1-tert-butoxycarbonyl-pentyl)-

ureido]-pentanedioic acid di-tert-butyl ester (12)
Compound 11 (260 mg, 0.53 mmol) was dissolved in 0.5 M phosphate buffer (pH 7,

2 mL), 3,4-dibutoxycyclobut-3-en-1,2-dione (82 µL, 95 mg, 0.53 mmol) was added and the
pH was adjusted to 7. Ethyl acetate (1 mL) was added and stirred overnight. The solvent
was then removed via lyophilization and ethyl acetate (2 mL) was added. The solution was
then filtered and the solvent was removed under reduced pressure. The product (248 mg,
0.41 mmol, 77%) was obtained as a colorless oil and used without further purification.
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1H-NMR (300 MHz, CDCl3): δ [ppm] = 4.78–4.73 (m, 2H), 4.13 (q, J = 7,1 Hz, 2H), 3.45
(d, J = 5,7 Hz, 2H), 2.36–2.32 (m, 2H), 2.06 (s, 4H), 1.74–1.55 (m, 2H), 1.52–1.43 (m, 27H),
1.27 (t, J = 7,1 Hz, 2H).

13C-NMR (300 MHz, CDCl3): δ [ppm] = 189.09, 172.22, 157.27, 124.41, 125.10, 77.35,
77.03, 76.71, 70.07, 53.20, 44.39, 31.59, 28.00, 21.93, 21.07, 14.20.

MS (ESI+): 612,4 [M + H]+, calculated for C30H49N3O10: 611,34 [M].
2-[3-(2-(2-ethoxy-3,4-dioxo-cyclobut-1-en-1yl)amino-1-carboxy-pentyl)-ureido]-pentanedioic

acid (13)
Compound 12 (50 mg, 0.082 mmol) was stirred with a mixture of dichloromethane and

trifluoracetic acid (2 mL, 1:1) at room temperature for 2 hours. The solvent was evaporated
under reduced pressure. The product was obtained as a colorless oil (30.2 mg, 0.068 mmol,
83%) and used without further purification.

1H-NMR (300 MHz, D2O): δ [ppm] = 4.75–4.65 (m, 2H), 4.30–4.12 (m, 2H), 3.59 (dt,
J = 23.5 Hz, 6.6 Hz, 1H), 3.48 (t, J = 6.6 Hz, 1H) 2.49 (t, J = 7.3 Hz, 2H), 2.16 (dtd, J = 15.3 Hz,
7.4 Hz, 5.2 Hz, 1H), 2.04–1.90 (m, 1H) 1.86–1.75 (m, 2H), 1.73–1.46 (m, 3H), 1.41 (dt,
J = 7.1 Hz, 3.6 Hz, 5H).

13C-NMR (300 MHz, D2O): δ [ppm] = 188.86, 182.94, 177.13, 176.95, 176.05, 173.15,
159.08, 70.41, 52.91, 52.48, 30.26, 29.91, 28.86, 26.15, 21.59, 14.95.

MS (ESI+): 444,2 [M + H]+, calculated for C18H25N3O10: 443,15 [M]+.
DATA5m.SA.KuE (14)
Compound 9 (30 mg, 0.067 mmol) and compound 13 (42 mg, 0.095 mmol) were

dissolved in 0.5 M phosphate buffer (pH 9, 1 mL). The pH was adjusted to 9 and stirred
for two days at room temperature. The crude product was purified by HPLC (column:
LiChrospher 100 RP18 EC (250× 10 mm) 5 µ, flow rate: 5 mL/min, H2O/MeCN + 0.1% TFA,
9 to 15% MeCN in 20 min, Rt = 10.1 min) to obtain DATA5m.SA.KuE as a white powder
(5.26 mg, 0.0062 mmol, 10%).

MS (ESI+): 843.3 [M + H]+, 422.2 [M + 2H]2+, 441.2 [M + K + H]2+, calculated for
C35H54N8O16: 842.37 [M]+.

4.3. Radiolabeling

For radiochemical evaluation, gallium-68 was eluted from a 68Ge/68Ga-generator (ITG
Graching, Munich, Germany) and purified manually with ethanol-based post-processing
to separate iron, zinc, and germanium impurities [44].

Radiolabeling was performed in 0.4 mL 1 M ammonium acetate buffer at pH 5.5.
Reactions were carried out with different amounts of precursor (5, 10, 15, 60 nmol) and
at different temperatures (RT, 50 ◦C, and 70 ◦C) with 30–50 MBq gallium-68. The pH
was controlled at the start and after the labeling. For reaction control, radio-TLC (TLC
Silica gel 60 F254 Merck) and citrate buffer pH 4 as mobile phase and radio-HPLC using an
analytical HPLC 7000 series Hitachi LaChrom (Column: Merck Chromolith® RP-18e, linear
gradient of 5–95% MeCN (+0.1% TFA)/95–5% Water (+0.1% TFA) in 10 min). TLCs were
measured in a TLC imager CR-35 Bio Test-Imager (Elysia-Raytest, Angleur, Belgium) with
the analysis software AIDA (Elysia-Raytest, Angleur, Belgium).

Radiolabeling of AAZTA5.SA.KuE with scandium-44 and lutetium-177 was performed
according to the literature [17].

4.4. In Vitro Stability Studies

Complex stability studies were performed in human serum (HS, human male AB
plasma, USA origin, Sigma Aldrich) and phosphate buffered saline (Sigma Aldrich). First,
8–10 MBq of the labeled compound were added to 0.5 mL of the media. Afterwards, 30, 60,
and 120 min aliquots were taken to evaluate the radiochemical stability. The percentage
of complexed gallium-68, which corresponds to the percentage of in vitro radiochemical
stability, was determined via radio-TLC. The studies were carried out in triplicate.
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4.5. In Vitro Binding Affinity

PSMA binding affinity was determined according to the literature [39]. LNCaP-cells
(purchased from Sigma-Aldrich) were cultured in RPMI 1640 (Thermo Fisher Scientific)
supplemented with 10% fetal bovine serum (Thermo Fisher Scientific), 100 µg/ml strep-
tomycin, and 100 units/mL penicillin at 37 ◦C in 5% CO2 in a humidified atmosphere.
The medium was changed approximately every 3 days. Cells in exponential phase of
growth were harvested by a 5 min treatment with a 0.05% trypsin–0.02% EDTA solution
and neutralized with serum-containing medium prior to counting.

105 LNCaP cells per well were applied in MultiScreenHTS DV Filter Plates (Merck
Millipore) and incubated with 0.75 nM [68Ga]Ga-PSMA-10 in the presence of 12 increasing
concentrations of the non-labeled SA-conjugated compounds. After incubation at room
temperature for 45 min, cells bound on the filter plates were washed several times with
ice-cold PBS to remove free radioactivity. The cell-bound activity was determined by
punching out the filters and transferring them into individual tubes for measurement in a
γ-counter (2480 WIZARD2 Automatic Gamma Counter, PerkinElmer, Waltham, MA, USA).
Data were analyzed in GraphPad Prism 9 using nonlinear regression. Experiments were
replicated 4-times.

4.6. Internalization Ratio

Internalization ratio was determined according to the literature [45,46]. Prior to
seeding cells, 24-well plates were coated with 0.1% poly-L-lysine (Sigma-Aldrich) in PBS
for 20 min at room temperature. Subsequently, 105 LNCaP cells in 1 mL RPMI 1640 Medium
were added in each well and incubated for 24 h at 37 ◦C. Then, 250 µL of the 68Ga-labeled
compounds in Opti-MEM™ I Reduced Serum (ThermoFisher) were added to each well to
a final concentration of 30 nM. The plates were then incubated for 45 min at 4 ◦C and 37 ◦C
respectively either with or without adding PMPA (Sigma-Aldrich) to a final concentration
of 500 µM. The supernatant was removed and the cells were washed several times with
ice-cold PBS. Afterwards, cells were incubated twice with 50 mM glycine buffer pH 2.8 for
5 min to remove the surface-bound radioactivity. In order to determine the internalized
fraction of the compounds, cells were lysed by incubation with 0.3 M NaOH for 10 min.

4.7. Animal Studies

Six- to eight-week-old male BALB/cAnNRj (Janvier Labs) were inoculated subcuta-
neously with 5 × 106 LNCaP cells in 200 µL 1:1 (v/v) Matrigel/PBS (Corning®). In vivo
and ex vivo experiments are conducted after tumors reached a volume of approximately
100 mm3.

LNCaP-xenografts were anesthetized with 2% isoflurane prior to i.v. injection of
0.5 nmol of the radiolabeled compounds. The specific activities of the tracers were approxi-
mately 10 MBq/nmol, 6 MBq/nmol, and 15 MBq/nmol of gallium-68-labeled compounds,
[44Sc]Sc-AAZTA5.SA.KuE and [177Lu]Lu-AAZTA5.SA.KuE, respectively. For blocking
experiments, mice were co-injected with 1.5 µmol PMPA/mouse.

Biodistribution studies. The number of animals used in this study was: [68Ga]Ga-
DATA5m.SA.KuE n = 5; [44Sc]Sc-AAZTA5.SA.KuE n = 2; [177Lu]Lu-AAZTA5.SA.KuE n = 2;
[68Ga]Ga-PSMA-11 n = 2; [44Sc]Sc-AAZTA5.SA.KuE + PMPA n = 1. Animals were sacrificed
1 h p.i. Organs of interest were collected and weighed. The radioactivity was measured
and calculated as a decay-corrected percentage of the injected dose per gram of tissue
mass %ID/g.

MicroPET-imaging. After i.v. injection of the labeled compounds, anesthetized mice
(one mouse for each group) were placed in the prone position in a nanoScan® PET/MR
(Mediso). MRI measurements were performed followed by a static PET scan with the
nanoScan PET/MRI (Mediso, Budapest, Hungary). PET data were reconstructed with
Teratomo 3D (four iterations, six subsets, voxel size 0.4 mm), co-registered to the MR, and
analyzed with Pmod software (version 3.6) (PMOD Technologies LLC, Zürich, Switzerland)
Material Map for co-registration of the PET scan; 3D Gradient Echo External Averaging
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(GRE-EXT), Multi Field of View (FOV); slice thickness, 0.6 mm; TE, 2 ms; TR, 15 ms; flip
angle, 25 deg.

5. Conclusions

In summary, the synthesized hybrid chelator-based PSMAradiopharmaceuticals
DATA5m.SA.KuE and AAZTA5.SA.KuE could be labeled at mild conditions with high
radiochemical yields. The stability of the labeled compounds in PBS and human serum was
demonstrated. Both SA.KuE conjugates displayed good PSMA binding affinities in LNCaP
cells along with good internalization ratios. Additionally, [68Ga]Ga-DATA5m.SA.KuE,
[44Sc]Sc-AAZTA5.SA.KuE, and [177Lu]Lu-AAZTA5.SA.KuE showed similar in vivo be-
havior, suggesting that the exchange of either the chelator or the nuclide does not im-
pact the pharmacokinetic of the investigated compounds. This finding renders [44Sc]Sc-
AAZTA5.SA.KuE and [177Lu]Lu-AAZTA5.SA.KuE an interesting pair for theranostic ap-
plication. Tumor accumulation of the tested PSMA radioligands was similar to that of
[68Ga]Ga-PSMA-11, although lower than the value reported in literature for PSMA-617.
The decreased kidney uptake of the SA.KuE conjugates is noteworthy, which could be a
major benefit in reducing irradiation of the kidneys, resulting in lower nephrotoxicity and
improved tolerability.
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