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Motivational signals influence a wide variety of cognitive processes and components of behavioral performance.
Cognitive dysfunction in patients with childhood chronic fatigue syndrome (CCFS) may be closely associated
with a lowmotivation to learn induced by impaired neural reward processing. However, the extent to which re-
ward processing is impaired in CCFS patients is unclear. The aim of the present functional magnetic resonance
imaging (fMRI) studywas to determinewhether brain activity in regions related to reward sensitivity is impaired
in CCFS patients. fMRI data were collected from 13 CCFS patients (mean age, 13.6 ± 1.0 years) and 13 healthy
children and adolescents (HCA) (mean age, 13.7±1.3 years) performing amonetary reward task. Neural activity
in high- and low-monetary-reward conditions was compared between CCFS and HCA groups. Severity of fatigue
and the reward obtained from learning in daily life were evaluated by questionnaires. Activity of the putamen
was lower in the CCFS group than in theHCA group in the low-reward condition, but not in the high-reward con-
dition. Activity of the putamen in the low-reward condition in CCFS patients was negatively and positively cor-
related with severity of fatigue and the reward from learning in daily life, respectively. We previously revealed
that motivation to learn was correlated with striatal activity, particularly the neural activity in the putamen.
This suggests that in CCFS patients low putamen activity, associated with altered dopaminergic function,
decreases reward sensitivity and lowers motivation to learn.
© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Fatigue causes difficulty initiating or sustaining voluntary activities
(Chaudhuri and Behan, 2004a). Fatigued children and adolescents and
patients with childhood chronic fatigue syndrome (CCFS), which is
characterized by profound and disabling fatigue for at least 3 months
(Jason et al., 2006), show poor performance on cognitive tasks related
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to memory and attention (Tomoda et al., 2007; Haig-Ferguson et al.,
2009; Kawatani et al., 2011; Mizuno and Watanabe, 2013a; Mizuno et
al., 2015a). In addition to cognitive dysfunction, CCFS patients also
exhibit severe emotional dysfunction such as reduced motivation
to learn (Miike and Bell, 2008). Motivational signals influence a wide
variety of cognitive processes and components of behavioral perfor-
mance (Botvinick and Braver, 2015); therefore, cognitive dysfunction
in CCFS patients may be closely associated with a low motivation to
learn which derives from impaired neural reward processing.

Using functional magnetic resonance imaging (fMRI), we previously
revealed that motivation to learn was correlated with striatal activity,
particularly the neural activity in the putamen (Mizuno et al., 2008).
An fMRI study of adult patients with chronic fatigue syndrome (CFS)
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Table 1
Physical and psychological characteristics.

HCA CCFS P value

Sex (female/male) 9/4 6/7 0.428
Age (years) 13.7 ± 1.3 13.6 ± 1.0 0.862
BMI (kg/m2) 19.8 ± 2.4 18.4 ± 2.3 0.141
Disease duration (months) – 25.5 ± 25.4 –
FIQ score 100.0 ± 12.4 100.5 ± 9.6 0.903
Chalder FS score 8.8 ± 6.2 17.8 ± 6.2 0.001
LERI

Effort score 4.5 ± 1.0 4.3 ± 0.9 0.671
Reward score 6.4 ± 1.1 5.5 ± 1.2 0.075
OC score 3.5 ± 0.5 3.5 ± 0.7 0.744
LERI ratio 0.96 ± 0.25 1.09 ± 0.34 0.268

HCA, Healthy children and adolescents; CCFS, childhood chronic fatigue syndrome; BMI,
Body mass index; FIQ, Full scale intelligence quotient; Chalder FS, Chalder fatigue scale;
LERI, Effort-reward imbalance for learning model questionnaire; OC, over commitment.
Values are presented as number or mean ± SD. P values were obtained using Fisher's
exact test or Student's t-test.
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showed impaired striatal activity duringperception ofmonetary reward
(Miller et al., 2014). However, it is unclear whether neural reward pro-
cessing is impaired in CCFS patients.

Children and adolescents with attention deficit hyperactivity disor-
ders (ADHD) have impaired reward processing. They require stronger
rewards to modify their behavior and learn faster when using direct re-
inforcement (Kollins et al., 1998). This suggests that neural responses in
ADHD patients are decreased during low-value reward conditions. Our
recent fMRI study revealed that children and adolescents with ADHD
had decreased responses to reward (decreased reward sensitivity), as-
sociated with abnormally low activity in the striatum and thalamus,
from small rewards (Mizuno et al., 2013b). After 3 months treatment
with a dopaminergic agent (osmotic release oral system-methylpheni-
date), the striatal and thalamic activities improved to the same level
as observed in healthy controls (Mizuno et al., 2013b), suggesting that
the decrease in reward sensitivity involves decreased dopaminergic ac-
tivity in the striatum and thalamus, which are regions rich in dopami-
nergic neurons. In adults with CFS, methylphenidate treatment for
4weeks reduced the severity of fatigue (Blockmans et al., 2006), sug-
gesting that neural reward processing based on dopaminergic function
was also impaired in these patients. Therefore, in this study we focused
on dopaminergic dysfunction in CCFS patients. The aim of the present
fMRI study was to determine brain activity in regions related to reward
sensitivity in CCFS patients.

2. Materials and methods

2.1. Participants

Healthy children and adolescents (HCA) and CCFS patients, all of
whom fulfilled the diagnostic criteria for CCFS (Jason et al., 2006),
were recruited from Kumamoto University Hospital. CCFS patients
with a diagnosis of neurological illness, migraine, obstructive sleep
apnea, below average intelligence, or severe psychopathology were ex-
cluded from the study. Serious psychopathology was defined as referral
to at least one pediatric psychiatrist if the patient presented with indic-
ative symptoms. No patients or healthy participants had any history of
Diagnostic and Statistical Manual of Mental Disorders Fourth Edition,
Text Revision (DSM-IVTR) Axis I Disorder (based on Structured Clinical
Interview for DSM-IV Axis I Disorders), drug abuse, head injury, or fetal
drug exposure that may have influenced brain development.

Fourteen patients with CCFS and 13 HCA participated in the fMRI
experiments. All participants were right-handed according to the
Edinburgh handedness inventory (Oldfield, 1971) and scored N80 on
the full-scale intelligence quotient derived from the Wechsler Intelli-
gence Scale for Children (Wechsler, 1991). All patients with CCFS
were undergoing treatments such as medication with antidepressants,
and all medications were discontinued for four weeks before the fMRI
experiments. One patient was excluded from analysis because the qual-
ity of theMRI data was low due to noise caused by dental corrective de-
vices. Therefore, we analyzed data obtained from 13 CCFS patients and
13 HCA. The physical and neuropsychological characteristics of the
participants are shown in Table 1. Age, body mass index, and full-scale
intelligence quotient score were well matched between the CCFS and
HCA groups.

The protocol was approved by the Ethics Committee of Kumamoto
University, and all participants and their parents gave written informed
consent for participation in the study. The experiments were undertak-
en in compliance with national legislation and the Code of Ethical
Principles for Medical Research Involving Human Subjects of the
World Medical Association (Declaration of Helsinki).

2.2. Questionnaires

The severity of fatiguewas evaluated using the Chalder Fatigue Scale
(Chalder et al., 1993; Tanaka et al., 2008). This fatigue scale consists of
11 items, each scored on a four-point scale (range, 0–3) that allows
the following responses: 0 = less than usual; 1 = no more than
usual; 2 = more than usual; and 3 = much more than usual during
the past several weeks. The total score for the 11-item fatigue scale
ranges from 0 to 33, with higher scores indicating greater fatigue.

The balance between effort and reward was evaluated using the
effort-reward imbalance for learning model questionnaire (LERI)
(Fukuda et al., 2010). The LERI consists of 10 items (three items on effort
for learning, four items on reward from learning, and three items on
over commitment), each scored on a two-point scale (1, no or 2, yes)
for learning in the past few weeks. Higher scores for effort for learning
and reward from learning indicate greater degrees of effort and reward,
respectively. The LERI ratio was calculated as follows: (effort-for-learn-
ing score × 4) / (reward-from-learning score × 4). Higher scores
indicate a greater degree of effort than reward. The Chalder Fatigue
Scale and LERI questionnaires were distributed to participants before
the fMRI experiments.

2.3. Experimental paradigm for fMRI

fMRI studies of the neural substrates associated with reward sensi-
tivity indicate that the activity response of brain regions involved in
the reward system is associated with the magnitude of the reward
(Izumaet al., 2008;Mizuno et al., 2013b, 2015b). The fMRI experimental
design is shown in Fig. 1. In themonetary reward condition, participants
performed a simple gambling task. This was a block-design version of
the taskused in theprevious study (Mizunoet al., 2013b, 2015b). Partic-
ipants were encouraged to try to earn as much money as possible and
were told that one session would be randomly chosen at the end of
the experiment and that their earnings in that session would be given
to them. In each trial (3 s), participants were presented with three
cards labeled “A”, “B”, and “C” andwere asked to choose one cardwithin
2 s by pressing a button with the right index, middle, or ring finger,
which spatially corresponded to the location of the cards. Immediately
after the button press, the chosen card was highlighted with a thick
white border, and the outcome was displayed for 1 s. If the participants
did not press any button within the choice period (2 s), the card they
had chosen in the previous trial was automatically chosen, and its out-
come was displayed.

When the letters on the cards were written in red, the trial was a
monetary reward trial, in which each card was randomly associated
with 0, 30, or 60 yen. Each condition consisted of eight trials (24 s).
However, unknown to the participants, the total reward that they
could earn in each condition was predetermined. In the high-mone-
tary-reward (HMR) condition, in which they chose one card for each
of 8 trials, they earned an average of 330 yen (range = 270–390 yen)
which was higher than the expected value of 240 yen. In the low-



Fig. 1.Monetary reward task. Stimulus display sequence for the high- and low-monetary-reward trials (top) and the no-monetary-reward trial (bottom). In each trial, participants were
asked to choose one cardwithin 2 s. In eachmonetary reward trial, the outcome of the chosen card (0, 30, or 60 yen)was shown for 1 s. In each no-monetary reward trial, the outcomewas
always “×××”, indicating no monetary reward. Each block consisted of eight monetary-reward or no-monetary-reward trials (24 s).
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monetary-reward (LMR) condition, they earned an average of 150 yen
(range=90–210 yen),which is lower than the expected value. The par-
ticipants knew that the expected value of the eight reward trials was
240 yen; however, they were not informed of the presence of the
HMR and LMR conditions. They also participated in a no-monetary-re-
ward (NMR) condition, indicated by blue letters, in which they chose
one card, but the outcome presented was always “×××”, indicating
that there was no monetary reward. The NMR condition, or a rest con-
dition of fixation with a blank screen (24 s), was always inserted be-
tween two reward conditions, so that the start and end of the reward
manipulations could be clearly defined. For a half of the participants,
the colors (red and blue) used for the monetary reward and NMR con-
ditions were switched to control for differences in activity related to vi-
sual processing of colors.

All participants completed a practice task for 2 min before scanning
to ensure that they understood the task. During the practice task we
confirmed that all participants chose one card within the choice period
(2 s) with 100% accuracy (moving average of eight trials). During scan-
ning, participants performed four repeats of each of the four conditions
HMR, LMR, NMR, and fixation rest (24 s per condition of 8 × 3 s trials)
for a total of 6 min 24 s. In each session, the HMR and LMR conditions
were ordered differently, and the order of the four sessions was
counterbalanced across participants. All participants were paid a fixed
amount for their participation at the end of the experiment.

2.4. fMRI acquisition and analysis

All images were obtained using a 3-T MR scanner (TRIO A Tim; Sie-
mens, Erlangen, Germany) located at the Graduate School of Medical
Sciences, Kumamoto University. For functional imaging, a series of 528
volumes (132 volumes per session) were acquired using interleaved
T2-weighted, gradient echo, echo planar imaging (EPI) sequences.
Each volume consisted of 44 transaxial slices that included the entire ce-
rebrum and cerebellum, with a slice thickness of 3.0 mm [repetition
time (TR), 3000 ms; echo time (TE), 30 ms; flip angle (FA), 90°; field
of view (FOV), 192 mm; in-plane matrix size, 64 × 64 pixels, voxel
dimensions, 3.0 × 3.0 × 3.0 mm; slice gap, 0 mm]. Comfortable foam
padding was tightly placed around the participant's head to minimize
head movement. To acquire a fine structural whole-brain image, mag-
netization-prepared rapid-acquisition gradient-echo (MP-RAGE) im-
ages were obtained [TR, 1900 ms; TE, 4.62 ms; flip angle, 15°; FOV,
256 mm; one slab; number of slices per slab, 176; voxel dimensions,
1.0 × 1.0 × 1.0 mm].

The first four volumes acquired in each MRI session were discarded
due to unsteadymagnetization, and the remaining128volumes per ses-
sion were used for analyses. Data were analyzed using the Statistical
Parametric Mapping 8 package (The Wellcome Trust Centre for Neuro-
imaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm) implemented
in MATLAB 7.13.0.564 (Mathworks, Natick, MA). All images in the EPI
time series were realigned and amean image was created. High-resolu-
tion whole-brain T1-weighted images were then co-registered with the
mean image. This structural imagewas then normalized to theMontréal
Neurological Institute (MNI) T1 image template (Evans et al., 1994),
with the same parameters applied to all EPI images. The EPI images
were spatially smoothed in three dimensions using an 8-mm full-
width half-maximum Gaussian kernel.

Statistical analyses were performed at two levels. First, individual
task-related activation was evaluated. The task performed was a simple
gambling task, and was a block-design version of the task used in a pre-
vious study (Izuma et al., 2008; Mizuno et al., 2013b, 2015b). A block
consisted of eight trials (8 trials × 3 s = 24 s) in each condition (i.e.
HMR, LMR and NMR). Therefore, the duration of each event (one
block) was 24 s. Each task conditionwas repeated four times in one ses-
sion. We modeled three regressors (HMR, LMR, and NMR), which were
convolved with a canonical hemodynamic response function to obtain
the expected signal changes caused by the tasks. Regressors that were
of no interest, such as the six realignment parameters that account for
motion-related variance, were also included in the design model. The
data were high-pass filtered with a cut-off period of 128 s to remove
low-frequency signal drifts. An autoregressivemodelwas used forwhit-
ening the residuals so as to meet the assumptions for application of a
general linear model. The effect of each condition was evaluated with
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a general linear model. The weighted sum of the parameters estimated
in the individual analyses consisted of “contrast” images. Specifically,
for each participant, the following first-level contrast images were
generated: [HMR minus NMR] and [LMR minus NMR].

Second, the contrast images corresponding to each condition for
each participant were used for group analyses with a random-effects
model to obtain population inferences (Friston et al., 1999). A flexible
factorial design, which can compare the activities of reward-level con-
trasts within [HMR minus NMR] and [LMR minus NMR], and between
HCA and CCFS patients, was used. The resulting set of voxel values for
each comparison constituted a statistical parametric map of t statistics
[SPM(t)]. Significant signal changes for each contrast were assessed by
means of t statistics on a voxel-by-voxel basis. Regions of interest for
the caudate, putamen, and thalamus were defined based on the results
of reward sensitivity analyses and the outcome of our previous study
(Mizuno et al., 2013b, 2015b) and were constructed using the Wake
Forest University Pick-Atlas (Maldjian et al., 2003) as one mask image.
The threshold for the SPM(t) for group analyses was set at P b 0.05
with a family-wise error correction for multiple comparisons both at
the voxel level and at the cluster level for clusters larger than five voxels
(Mizuno et al., 2015b).

The effect of task condition (HMR, LMR, NMR) and study group
(HCA, CCFS) on task performance (reaction time) was analyzed using
a two-way analysis of variance. When statistically significant effects
were found, intergroup differences were evaluated using Student's
t-test. All P valueswere two-tailed, and P values b 0.05were considered
significant. These analyseswere performedwith the IBM SPSS 20.0 soft-
ware package (SPSS Inc., Chicago, IL).

3. Results

3.1. Questionnaire results

The results for the questionnaires are summarized in Table 1. The
Chalder Fatigue Scale score in the CCFS group was much higher than
that in the HCA group. The LERI effort-for-learning score and over-
commitment score were not different between the HCA and CCFS
groups, but the LERI reward-from-learning score tended to be lower in
the CCFS group than in the HCA group.

3.2. Behavioral results

The reaction times are summarized in Table 2. A two-way analysis
of variance revealed no significant main effect of task condition [F(2,
72) = 0.71, P = 0.497] or study group [F(1, 72) = 1.84, P = 0.180] on
reaction time, and no interaction between task condition and study
group [F(2, 72) = 0.25, P = 0.975].

3.3. Imaging results

Imaging results for the HMR and LMR conditions (HMR or LMR
minus NMR) are shown in Fig. 2. In the HMR condition, activation of
the bilateral caudate, putamen, and thalamus was commonly observed
in both the HCA group and the CCFS group. In the LMR condition, activa-
tion of the bilateral caudate and thalamus was commonly observed in
Table 2
Performance on monetary reward tasks.

HCA CCFS P value

RT in HMR condition (ms) 592 ± 247 681 ± 221 0.344
RT in LMR condition (ms) 588 ± 268 650 ± 208 0.512
RT in NMR condition (ms) 530 ± 223 595 ± 234 0.476

HCA, Healthy children and adolescents; CCFS, childhood chronic fatigue syndrome; RT,
Reaction time; HMR, High monetary reward; LMR, Lowmonetary reward; NMR, Nomon-
etary reward. Values are presented asmean± SD. P values were obtained using Student's
t-test.
both the HCA group and the CCFS group, but activation of the bilateral
putamen was only observed in the HCA group. The subtraction contrast
between groups (HCA minus CCFS) in the LMR condition showed that
activity of the left putamen (x = −20, y = 4, z = 10, z value = 3.54,
cluster size = 672 mm3) and the right putamen (x = 22, y = 4, z =
14, z value = 3.21, cluster size = 616 mm3) was lower in the CCFS
group than in the HCA group. In the HMR condition, there was no
difference in bilateral putamen activity between the HCA and CCFS
groups.

As presented above, the severity of fatigue (Chalder Fatigue Scale
score), LERI reward-from-learning score, and bilateral putamen activi-
ties in the LMR conditionwere different between CCFS andHCA groups.
Correlation analyses were performed to clarify the relation between
neural activity in reward-sensitivity-related regions and severity of
fatigue symptoms or reward value in a learning situation. Activity of
the left putamen (x=−20, y=4, z=10)was negatively and positive-
ly correlated with the Chalder Fatigue Scale score (Fig. 3A) and the LERI
reward-from-learning score (Fig. 3B), respectively. In addition, there
was a trend for the disease duration of CCFS patients to be negatively
associated with activity of the left putamen (r = −0.538, P = 0.058;
Fig. 3C) but not the right putamen (r = −0.449, P = 0.123). Activity
of the right putamen (x= 22, y= 4, z = 14) was negatively correlated
with the Chalder Fatigue Scale score (Fig. 3D) and there was a trend to-
ward a positive correlation between activity of the right putamen and
the LERI reward-from-learning score (Fig. 3E).

4. Discussion

In this studywe demonstrated that neural activity of the putamen in
CCFS patients was decreased during perception of low-value rewards,
but not during perception of high-value rewards, indicating that neural
processing in the putamen related to reward sensitivity is impaired in
CCFS patients. In addition, putamen activity was correlatedwith reward
from learning in CCFS patients.

The putamen is associated with reward-related learning. Putamen
activity has been related to prediction error during reward learning
(Schultz et al., 1997). In the context of sequential motor learning,
the putamen was more active when a monkey was performing an al-
ready-learned motor sequence than when the monkey was learning a
new motor sequence (Miyachi et al., 1997, 2002; Hikosaka et al., 1999,
2002). In addition, motivation to learn was correlated with striatal
activity, particularly putamen activity (Mizuno et al., 2008). Miike and
Bell (2008) reported that low motivation to learn was one of the social
disabilities in CCFS patients. Our results suggest that impaired reward
processing may decrease reward-related learning and motivation to
learn in CCFS patients.

The putamen is part of the brain's reward system. It is innervated
by dopaminergic neurons and mediates reward response (Wise,
1985). In adult patients with CFS, 4 weeks of treatment with methyl-
phenidate, a dopamine reuptake inhibitor, reduced the severity of
fatigue, suggesting that the dopaminergic function was decreased in
these patients (Blockmans et al., 2006). In patients with post-traumatic
brain injury, 4 weeks of treatment with methylphenidate also reduced
mental fatigue (Johansson et al., 2014). In addition, in children and
adolescents with ADHD, 3 months of treatment with osmotic release
oral system-methylphenidate improved striatal activity during a low
reward condition to the same level as that observed in HCA (Mizuno
et al., 2013b), suggesting that decreased dopaminergic activity in
the striatum was involved in the decreased reward sensitivity in these
patients.

In the present study, activity of the putamen during the low reward
conditionwas associatedwith the severity of fatigue or disease duration
in CCFS patients. As for the alterations of striatal activity, a recent study
reported aberrant resting-state functional connectivity of the striatum
in adolescents with CFS (Wortinger et al., 2016). Chaudhuri and Behan
(2004b) proposed that altered basal ganglia function is a primary
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MNI, Montreal neurological institute.
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mechanism of central fatigue, and that fatigue represents a fundamental
behavioral characteristic of diseases that affect the basal ganglia,
including Parkinson's disease, multiple sclerosis, cortical stroke, and
HIV/AIDS. Treatment studies have reported that dopamine improves
fatigue in adult patients with CFS and post-traumatic brain injury pa-
tients (Blockmans et al., 2006; Johansson et al., 2014). Fatigue is a
symptom of Parkinson's disease, which is a dopaminergic disorder,
and treatment with levodopa, a precursor of dopamine, improves
fatigue in Parkinson's disease (Feigin et al., 2001). A positron emission
tomography imaging study in adult patients with malignant melanoma
revealed that glucose metabolism in the putamen (an index of dopa-
mine neurotransmission) was changed by 4 weeks of interferon-alpha
treatment, and glucosemetabolism in the putamen and nucleus accum-
bens was associated with severity of fatigue (Capuron et al., 2012).
These findings indicate that the severity of fatigue is closely related to
dopaminergic function and the activity of dopaminergic neurons in
the putamen.

Inflammation in the brain may underlie dopaminergic dysfunction
and the decrease in the activity of the putamen during processing of
reward sensitivity in CFS (Morris andMaes, 2013). Levels of proinflam-
matory cytokines in the peripheral blood and cerebral spinal fluid,
whichmight be indicative of neuroinflammation, are higher in adult pa-
tients with CFS than in healthy controls (Natelson et al., 2002, 2005),
and CCSF patients are less able than healthy controls to transform
growth factor-beta1 production, which has an anti-inflammation effect
(Tomoda et al., 2005). In addition, we have demonstrated that there is
neuroinflammation of widespread brain regions in adult patients with
CFS (Nakatomi et al., 2014). In patients with malignant melanoma,
treatment with interferon-alpha, which induces production of proin-
flammatory cytokines, changed dopaminergic activity in the putamen
(Capuron et al., 2012). Not only inflammation but also oxidative stress
is also associated with dopamine dysfunction in the striatum and
substantia nigra (Chung et al., 2010; Villar-Cheda et al., 2010; Juárez
Olguín et al., 2016). A recent study suggested that enhancement of
oxidative stress in adults with CFS is a potential biomarker for CFS
(Fukuda et al., 2016a), and oxidative stress level and symptomswere re-
duced by 12-weeks supplementation with ubiquinol-10, which has an
anti-oxidant effect, in adults with CFS (Fukuda et al., 2016b). Therefore,
although further study is needed to confirm the existence of neuroin-
flammation and oxidative stress and the relation among neuroinflam-
mation, oxidative stress, and neural activity of the putamen in CCFS
patients, these findings suggest that inflammation and oxidative stress
of the putamen and/or midbrain (where dopaminergic fibres to the
putamen originate) may be involved in dopaminergic dysfunction and
alterations in reward sensitivity.

Cognitive behavioral therapy for CFS aims to change behavior and
cognitions thought to perpetuate symptoms (including the severity
of fatigue), and is effective for children and adolescents with CFS
(Kawatani et al., 2011) and adults with CFS (Castell et al., 2011; White
et al., 2011). Graduated exercise therapy is also effective at reducing
the severity of fatigue in adolescents with CFS (Gordon et al., 2010)
and adults with CFS (White et al., 2011). In addition, combination treat-
ments with cognitive behavioral therapy and physical training reduced
mental fatigue, but did not improvemotivation, in patients with cancer-
related fatigue (van Weert et al., 2010). These results suggest that, in
addition to dopaminergic agents, cognitive behavioral therapy, graduat-
ed exercise therapy, or a combination of these may also normalize the
neural processing related to altered reward sensitivity and reward-
based learning in CCFS patients.

In conclusion, neural processing of reward sensitivity in the puta-
men was impaired in CCFS patients. For daily tasks with low perceived
reward, low putamen activity may induce low motivation to learn.
Low putamen activity may be due to dopaminergic dysfunction, and
thus, dopamine agents may be an effective treatment for CCFS patients.
fMRI enables objective quantification of neural activity in the putamen
and can be used to quantify fatigue severity and reward sensitivity. In
the future, we aim to conduct a pharmacological fMRI experiment in
CCFS patients to evaluate the treatment effect on reward sensitivity.
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