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Abstract

Understanding the mechanism of SARS-CoV-2 infection and identi-
fying potential therapeutics are global imperatives. Using a quanti-
tative systems pharmacology approach, we identified a set of
repurposable and investigational drugs as potential therapeutics
against COVID-19. These were deduced from the gene expression
signature of SARS-CoV-2-infected A549 cells screened against
Connectivity Map and prioritized by network proximity analysis
with respect to disease modules in the viral–host interactome. We
also identified immuno-modulating compounds aiming at
suppressing hyperinflammatory responses in severe COVID-19
patients, based on the transcriptome of ACE2-overexpressing A549
cells. Experiments with Vero-E6 cells infected by SARS-CoV-2, as
well as independent syncytia formation assays for probing ACE2/
SARS-CoV-2 spike protein-mediated cell fusion using HEK293T and
Calu-3 cells, showed that several predicted compounds had inhibi-
tory activities. Among them, salmeterol, rottlerin, and mTOR inhi-
bitors exhibited antiviral activities in Vero-E6 cells; imipramine,
linsitinib, hexylresorcinol, ezetimibe, and brompheniramine
impaired viral entry. These novel findings provide new paths for
broadening the repertoire of compounds pursued as therapeutics
against COVID-19.
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Introduction

Coronavirus disease-2019 (COVID-19) caused by severe acute respi-

ratory syndrome coronavirus (CoV) type 2 virus (SARS-CoV-2) has

led to over 3 million deaths as of April 2021, and there is an urgent

need to better understand the mechanisms of infection and the host

cell response and to develop new therapeutics. Identification of

repurposable drugs became a widespread approach for addressing

current pharmacological challenges, including those faced by the

current pandemic. Many compounds under clinical trials against

SARS-CoV-2 are potentially repurposable drugs (Esposito et al,

2020; Tu et al, 2020) that target viral proteins. While such efforts

are worth pursuing, an alternative strategy is to discover host-

targeted therapies. We focus here on the identification of repurpos-

able compounds that modulate host cell responses, using a compre-

hensive, mechanism unbiased, and highly integrated systems-level

approach.

The current quantitative systems pharmacology (Stern et al,

2016) approach leverages recent progress in the field in an inte-

grated computational/experimental framework: One is the rigorous

evaluation of the differentially expressed genes (DEGs) in SARS-

CoV-2-infected cells, and the use of these DEG patterns for extract-

ing from the Connectivity Map (CMap) database (Lamb et al, 2006;

Subramanian et al, 2017) candidate compounds/drugs that would

reverse the infected cells’ transcriptional program. Recent study

showed, for example, the success of a CMap-based drug signature

refinement approach for improving drug repositioning predictions

(Iorio et al, 2015). Here, we use the transcriptome data from SARS-

CoV-2-infected A549 (human adenocarcinomic alveolar basal

epithelial) cells (preprint: Blanco-Melo et al, 2020a) from lung

tissue, as well as those of A549 cells overexpressing the host cell
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receptor angiotensin-converting enzyme 2 (ACE2) (Blanco-Melo

et al, 2020b). The latter ensures high multiplicity of infection and

allows for observing the DEGs under severe infection.

Another important advance is the characterization of virus–host
cell interactome for SARS-CoV-2 (Gordon et al, 2020b) and knowl-

edge of cell-specific protein–protein interaction (PPI) networks.

These data, combined with network-based proximity analysis

(Guney et al, 2016), may help quantify the extent of interaction

between the targets of each compound and the host cell proteins

participating in the interactome with the virus. For example, Zhou

et al (2020b) recently proposed 16 repurposable drugs using a

network proximity analysis between drug targets in the human PPIs

and host cell proteins associated with four human CoVs (SARS-CoV,

MERS-CoV, HCoV-229E, and HCoV-NL63), the mouse MHV, and

avian IBV, but not SARS-CoV-2.

We also have access to increasingly larger databases on protein-

target interactions and target-pathway mappings, and interfaces

such as our QuartataWeb webserver (Li et al, 2020) that permit to

identify and/or predict drug-target associations and to bridge targets

to cellular pathways completing chemical-target-pathway mappings.

We report the identification of 15 compounds, including repur-

posable and investigational drugs, that are proposed to act against

SARS-CoV-2 upon targeting the host cell machinery. In vitro assays

conducted in Vero-E6 cells, HEK293T cells, and Calu-3 lung cancer

cells for 10 of these prioritized compounds—six repurposable FDA-

approved drugs (imipramine, salmeterol, hexylresorcinol,

brompheniramine, ezetimibe, and temsirolimus) and four under

development (linsitinib, torin-1, rottlerin, semaxanib)—demon-

strated that several of them inhibited SARS-CoV-2 viral entry in a

dose-dependent manner, with linsitinib being particularly effective.

Additionally, we propose 23 compounds for possible anti-

hyperinflammatory (adjuvant) actions. These findings expand the

repertoire of drugs/compounds that could be repurposed/developed

for possible COVID-19 treatment.

Results

Overall workflow

Figure 1 schematically describes the computational workflow

adopted in the present study. As input, we used the RNA-seq data

from SARS-CoV-2-infected A549 cells (preprint: Blanco-Melo et al,

2020a) (referred to as Dataset 1), and those from SARS-CoV-2-

infected A549 cells overexpressing ACE2 (shortly designated as

A549-ACE2 cells) (Blanco-Melo et al, 2020b, Data ref: tenOever &

Blanco-Melo, 2020, referred to as Dataset 2). We analyzed the corre-

sponding DEGs to construct antiviral and immuno-modulating (anti-

inflammatory) gene signatures respectively, which were then used

to predict optimal compounds/drugs that match those signatures

using CMap (Fig 1A–D). Of note, the simple signature reversal

approach, as utilized in many CMap studies and a recent study of

SARS-CoV-2 (preprint: Duarte et al, 2020) is not applicable here,

because part of the infection-induced signature promotes viral life

cycle while another part reflects antiviral responses which should

be promoted rather than suppressed. To address this point, we have

selected 36 and 17 DEGs from the two respective datasets, whose

actions should be either reversed or promoted by CMap-deduced

drugs/compounds, depending on their role in the host proteome, as

will be presented in the next subsection.

Following the identification of the compounds or repurposable

drugs expected to reverse the SARS-CoV-2 pathogenic (and not the

host cell immunoprotective) effects (Fig 1D), we prioritized a subset

following the network proximity analysis introduced by Guney et al

(2016) (Fig 1E–G). To this aim, we used the SARS-CoV-2-host inter-

actome (Gordon et al, 2020b) and the lung PPI network in the

BioSNAP dataset (Zitnik et al, 2018) (Fig 1F). We first identified

four disease modules—viral entry, viral replication and translation,

cell signaling and regulation, and immune response modules in the

viral–host interactome; and then, we evaluated the “distance” of

each compound from each disease module based on the proximity

of the compounds’ targets to the proteins belonging to the module

using the lung PPI network in BioSNAP (Fig 1G).

The compounds “closest” to each module, called the prioritized

compounds, were then analyzed and clustered based on their inter-

action patterns with targets using QuartataWeb (Li et al, 2020), to

select representatives from each cluster (Fig 1H). Additional criteria,

such as drug development status, side effects, mechanism of action

(MOA), and antiviral activities from databases and/or literature,

were considered in making the final selections from among the clus-

ter representatives for experimental tests and possible validation

(Fig 1I). We provide below more specifics on the successive steps

and outputs.

Antiviral and anti-inflammatory signatures derived from
post-SARS-CoV-2 infection transcriptomics

We identified 120 DEGs composed of 100 upregulated and 20

downregulated genes by DESeq2 analysis (Love et al, 2014) of

the transcriptome of SARS-CoV-2-infected A549 cells (Dataset 1),

using false-discovery rate (FDR) default upper value of 0.05 (Fig 2

A and Appendix Table S1). Gene Ontology (GO) (Ashburner et al,

2000; UniProt Consortium, 2019) enrichment analysis of the 100

upregulated genes showed that they were mainly involved in viral

life cycle and some in early defensive immune responses medi-

ated by interferons (IFNs; Fig 2B). Such early responses include

viral translation inhibition, RNA degradation, RNA editing, or

nitric oxide synthesis (Samuel, 2001). Nevertheless, the induction

of interferon types I and III was relatively more “muted” in

SARS-CoV-2-infected A549 cells compared to those of other respi-

ratory viruses such as influenza A and respiratory syncytial virus

(Blanco-Melo et al, 2020b).

As to downregulated genes, they mainly comprised vesicle-

related structures or endosomal events, including autophagosome

formation for autophagic elimination of the virus (Kudchodkar &

Levine, 2009). Promoting autophagy showed potential in reducing

MERS infection (Gassen et al, 2019) and thus down-regulation of

this process might contribute to viral escape. In CMap applications

to diabetes (Zhang et al, 2015) and obesity (Liu et al, 2015),

compounds that reverse the gene signature induced by the disease

were selected. However, in SARS-CoV-2 infection, it is important to

promote the adaptive immune response mediated by IFNs at early

stage rather than blindly reversing the complete gene signature.

Therefore, after overrepresentation analysis, and evaluation of the

GO annotations associated with these genes as described in the

Materials and Methods, we selected 36 genes to be upregulated
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Figure 1. Workflow of the quantitative systems pharmacology approach for selecting compounds for experimental evaluation.

A We use as input the RNA-seq data from SARS-CoV-2 infected A549 cells (preprint: Blanco-Melo et al, 2020a) and ACE2-overexpressing A549 cells (Blanco-Melo et al,
2020b).

B Up- and downregulated differentially expressed genes (DEGs) were identified from these data using Wald test with false-discovery rate (FDR) default upper value of
0.05.

C The antiviral gene signature (top) and anti-cytokine gene signature (bottom) were identified upon manual curation of GO enrichment results corresponding to the
DEGs, using the QuickGO (Binns et al, 2009) hierarchical annotation (see Fig 2 for details).

D Two sets of compounds or repurposable drugs that best reproduced the antiviral and anti-cytokine signatures were extracted from CMap (Lamb et al, 2006;
Subramanian et al, 2017).

E Known and predicted targets of these compounds were identified using QuartataWeb (Li et al, 2020).
F A host response network composed of four modules related to SARS-CoV-2 infection (called disease modules) was constructed.
G The target of the compounds identified in (E) and the disease modules in (F) were subjected to network proximity analysis (Guney et al, 2016) using BioSNAP lung

PPI network, to prioritize 25 repurposable or investigational drugs for each module. This step has been performed for antiviral compounds only.
H, I The compounds were clustered based on the interaction patterns with their targets, using QuartataWeb. Representatives from each cluster (H) and additional

compounds identified by manual curation were selected for experimental testing (I).
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(Fig 2C). These genes are comprised of (i) 26 genes upregulated in

SARS-CoV-2 infected A549 cells, which are associated with viral

defense and should be upregulated for antiviral activity, and (ii) 10

genes downregulated in A549 cells, associated with endocytic or

vesicular processes, which should be reverted. Table 1 lists the

corresponding gene products/proteins (left two columns).

Appendix Table S2A provides information on their GO biological

processes.

The A549-ACE2 cells (Dataset 2) repeatedly exhibited a more

pronounced cytokine upregulation, along with IFN response

insufficiency, compared to A549 cells. Based on this observation,

immune-modulating therapies have been suggested (Blanco-Melo

et al, 2020b). We selected the most strongly upregulated 17 genes

(log2fold change of 3.5 or higher; see Materials and Methods),

toward identifying compounds that would suppress the excessive

inflammatory cytokine response in severe COVID-19 patients. This

led to the anti-inflammatory (or anti-cytokine) signature shown in

Fig 2D composed of 17 genes to be downregulated (Table 1 right

two columns). Appendix Table S2B list the corresponding proteins

and their GO annotations.

A

B

C D

Figure 2. Antiviral and anti-cytokine signature derived from the post-SARS-CoV-2-infection transcriptome the respective A549 and A549-ACE2.

A Illustration of the 4-step pipeline for identifying the intrinsic antiviral signature in A549 cells 24 h after SARS-CoV-2 infection: (1) Identification of 100 upregulated
and 20 downregulated genes; (2) GO enrichment analysis for up- and downregulated genes, respectively. The hierarchy of enriched GO terms was generated using
QuickGO; (3) Classification of pro- or antiviral GO terms. Upregulated GO terms are classified as either proviral, antiviral or ambiguous. Downregulated GO terms are
all considered as anti-viral; (4) Gene selection for antiviral signature from the classified GO terms. Genes were included if they were antiviral or unknown.

B GO enrichment of up (left) and down (right) regulated genes. GO terms were filtered by size and overlapping genes as described in Materials and Methods. A total of
17 upregulated (Biological Process) and 13 downregulated (Cellular Component) genes are illustrated. P-values were derived from Fisher’s one-tailed test and
adjusted by Benjamini–Hochberg for multiple test correction.

C Change in the expression levels of 36 genes defining the host-targeted antiviral signature. log2 fold change at 24-h post-SARS-CoV-2 infection from A549 cells are
shown.

D Change in the expression levels of 17 genes defining anti-cytokine signature; log2 fold change at 24 h post-high SARS-CoV-2 infection from A549-ACE2 cells are
shown.
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Table 1. Antiviral and anti-inflammatory signature genes derived from SARS-CoV-2-infected cells.

Antiviral signature (based on A549 Cells) Anti-inflammatory signature (A549-ACE2 cells)

Genea Proteinb Genec Proteinb

To-be-upregulated To-be-downregulated

IFI6 IFNα-inducible protein 6 EGR1 Early growth response protein

IRF7 IFN regulatory factor 7, isoform CRA_a IFNB1 Interferon beta

DDX60 ATP-dependent RNA helicase DDX60 CXCL2 C-X-C motif chemokine

PARP9 Protein mono-ADP-ribosyltransferase PARP9 NFKBIA NFκB inhibitor α

IRF9 IFN regulatory factor 9 SELE E-selectin

IFIT3 IFN-induced protein with tetratricopeptide repeats 3 (Retinoic acid-induced gene G protein)
(RIG-G)

IL8 Interleukin-8

DDX58 Antiviral innate immune response receptor RIG-I IRF7 IFN regulatory factor 7

IFIH1 IFN-induced helicase C domain-containing protein 1 IFITM1 IFN-induced transmembrane protein 1

TRIM34 Tripartite motif-containing protein 34 (IFN-responsive finger protein 1) (RING finger protein
21)

NFIL3 Nuclear factor interleukin-3-regulated
prot

DTX3L E3 ubiquitin-protein ligase DTX3L (EC 2.3.2.27) TNF Tumor necrosis factor α

STAT1 Signal transducer and activator of transcription 1 CXCL3 C-X-C motif chemokine 3

IFIT2 IFN-induced protein with tetratricopeptide repeats 2 SOCS1 Suppressor of cytokine signaling 1

CCL20 C-C motif chemokine 20 (Fragment) CD274 Programmed cell death 1 ligand 1

TRIM14 Tripartite motif-containing 14, isoform CRA_c IL20RB Interleukin-20 receptor subunit β

SAMHD1 Deoxynucleoside triphosphate triphosphohydrolase CCL20 C-C motif chemokine 20

IFI35 IFN-induced 35 kDa protein (IFP 35) (Ifi-35) CCR6 C-C chemokine receptor type 6

PARP14 Protein mono-ADP-ribosyltransferase PARP14 HLA-F Human leukocyte antigen F

HERC5 E3 ISG15--protein ligase HERC5 (Fragment)

SP100 Nuclear autoantigen Sp-100 (Fragment)

GBP3 Guanylate-binding protein 3

USP18 Ubl carboxyl-terminal hydrolase 18

B2M β2-microglobulin

KYNU Kynureninase (Fragment)

STAT2 Signal transducer and activator of transcription 2

TRIM25 E3 ubiquitin/ISG15 ligase TRIM25

EDN1 Endothelin-1 (Preproendothelin-1) (PPET1)

Gened Proteinb

To-be-upregulated

SQSTM1 Sequestosome-1

AHNAK2 Protein AHNAK2

NPTX1 Neuronal pentraxin-1 (NP1)

NEU1 Sialidase-1

WDR81 WD repeat-containing protein 81

KLHL21 Kelch-like protein 21

SYNE1 Nesprin-1

COL1A1 Collagen, type I, α1, isoform CRA_a

RAP1GAP Rap1 GTPase-activating protein 1

KRT4 Keratin, type II cytoskeletal 4

aGenes observed to be upregulated in the transcriptome of A549 cells (Dataset 1).
bProtein: gene product from UniProt Consortium (2019).
cGenes observed to be upregulated in the transcriptome of ACE2-overexpressing A549 cells (Dataset 2); All genes are ordered by log2fold change in descending
order. See Appendix Tables S1A and B and S2A and B for the log2foldchange values and associated GO biological processes or cellular components. See also Fig 2C
and D for the respective log2fold change profiles observed in SARS-CoV-2-infected-A549 and SARS-CoV-2-infected-A549-ACE2 cells.
dgenes observed to be downregulated in the transcriptome of A549 cells (Dataset 1).
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Identification of antiviral and anti-cytokine compounds and
corresponding targets

The compounds that best matched the antiviral and anti-cytokine

signatures determined above were identified by screening each signa-

ture against the CMap database. Briefly, the Touchstone collection of

perturbagen signatures from 3,000 compounds on six cell lines was

searched to assign a CMap connectivity score to each compound. The

score is based on the similarity between the compound-induced gene

signature in CMap and the query/input signature, repeated sepa-

rately for the antiviral and anti-cytokine signatures. This led to a set

of 263 potentially antiviral compounds, and another of 275 poten-

tially anti-cytokine compounds, using default thresholds in CMap

(see Materials and Methods), listed in Appendix Table S3A and B,

respectively. The compounds included twelve (chlorpromazine,

apicidin, ribavirin, mycophenolate, entacapone, equilin, metformin,

mercaptopurine, gemcitabine, mepacrine/quinacrine, daunorubicin,

and valproic acid) listed in the COVID-19 drug repurposing database

compiled by Excelra (Excelra, 2020).

Of these two respective sets, 168 and 163 compounds were anno-

tated in QuartataWeb (Li et al, 2020), which provided us with infor-

mation on the targets of these compounds using DrugBank-all

(Wishart et al, 2018) and STITCH-experimental (Szklarczyk et al,

2016) data as input. The remaining compounds were “manually”

analyzed based on existing literature, as schematically described in

the Appendix Fig S1 for Dataset 1. Appendix Fig S2 shows that the

most frequently targeted proteins by the candidate antiviral

compounds were adrenergic receptor α1A (gene ADRA1A), sero-

tonin receptor 2A (HTR2A), and histamine H1 receptor (HRH1).

Incidentally, ADRA1A and HRH1 were also among the most upregu-

lated genes in SARS-CoV-2 infected A549 cells (preprint: Emanuel

et al, 2020). Elevated HRH1 can be associated with hyperinflamma-

tion (Thurmond et al, 2008). Serotonin receptor 2A was maximally

targeted by potential anti-cytokine compounds drawing attention to

the impact on neurotransmission.

Classification of host proteins implicated in SARS-CoV-2 infection
in four modules

We considered a set of 348 SARS-CoV-2-related host cell proteins

composed of 332 proteins identified by Gordon et al (2020b), plus

16 reportedly involved in SARS-CoV-2 life cycle (de Lartigue et al,

2009; Li et al, 2019b; Hoffmann et al, 2020a; Ou et al, 2020).

The 332 host cell proteins were identified (Gordon et al, 2020b)

by mass spectrometry upon expressing 26 of 29 SARS-CoV-2

proteins (non-structural proteins Nsp1–16, spike [S], envelop [E],

membrane [M], nucleocapsid [N], and nine open reading frames

[Orfs]), individually in HEK293T cells. Comparison of the viral–
human interactomes for SARS-CoV-2, SARS-CoV, and MERS-CoV

(Gordon et al, 2020a) revealed that 14.7% of the SARS-CoV-2 host

proteins were not among those detected in SARS-CoV-1 or MERS-

CoV interactomes underscoring the significance of utilizing the

viral/host interactome specific to SARS-CoV-2.

The additional 16 proteins are the receptor ACE2, the proteases

transmembrane protease serine 2 (TMPRSS2), cathepsin B, and cathep-

sin L, as well as several cell signaling and regulation proteins (inter-

leukin 6 [IL6] receptor, myeloid differentiation primary response 88

[MyD88], MAP kinase 1, protein kinase B [AKT1], mammalian target

of rapamycin [mTOR], nuclear factor of activated T cells cytoplasmic 1

[NFATC1], nuclear factor κB subunit 1 [NFκB1], STAT3, ADAMmetal-

lopeptidase domain 17 [ADAM17], phosphatidylinositol 3-kinase cata-

lytic subunit α [PIK3CA], phosphatidylinositol 3-phosphate 5-kinase

[PIKfyve], and the two-pore channel 2 [TPC2]).

In order to better assess the involvement of these 348 host cell

proteins in different phases of SARS-CoV-2 infection, we mapped

them onto their KEGG pathways (243 pathways) and identified four

functional modules: viral entry, viral replication and translation,

host cell regulation and signaling, and immune response, based on

their KEGG annotations. This led to 27, 45, 27, and 32 proteins in

the respective modules (see Table 2 and Appendix Table S4).

Several proteins were shared between these modules, such that their

union contained 103 host proteins. For example, MAPK and PI3K-

AKT-mTOR signaling pathways regulate CoV replication and trans-

lation (Zumla et al, 2016), in addition to mediating the immune

response (Prompetchara et al, 2020). We also note in Table 2 some

proteins distinguished in a recent CRISPR screen (Daniloski et al,

2021), including the Ras-related protein Rab-7A (RAB7A), and subu-

nits of the ATPase vacuolar pump (ATP6AP1 and ATP6VIA) and

intracellular cholesterol transporter (NPC2).

Prioritization of candidate compounds proposed to have
antiviral effects

As a measure of the potential antiviral effect of the compounds

deduced from our computational analysis, we calculated the proxim-

ity of their targets to each disease module. Specifically, we evaluated

the distance between the targets of each compound, and the proteins

belonging to each module using the lung-specific PPI network from

BioSNAP (Zitnik et al, 2018) and network proximity analysis (Guney

et al, 2016) (see Materials and Methods). Top-ranking 25 compounds

were selected for each module (Fig 3A and Appendix Table S5) lead-

ing to a set of 64 distinct compounds in the union of four modules

(Fig 3B). Clustering of these based on their interaction patterns with

target proteins (using QuartataWeb) led to 12 clusters (Appendix Fig

S3A and Table S6A) containing 48 of the compounds; the remaining

16 exhibited unique interaction patterns. Up to two representatives

were selected from each cluster and further evaluated (manually)

with literature-based evidence including their MOAs, side effects,

availability, and antiviral evidence if any, to generate a reduced set

of 13 high-priority compounds, listed in Table 3. In addition, after

manual evaluation of 95 compounds that lack data in DrugBank and

STITCH, two investigational compounds, rottlerin, and QL-XII-47,

with respective CMap scores of 97.11 and 99.03, were added to our

high-priority list (see Appendix Fig S1).

The final set of 15 compounds that are proposed to have antiviral

activities (Table 3) contains eight FDA-approved (repurposable)

drugs and seven under investigation. Ten of these have been tested

in in vitro assays (indicated by asterisks in Table 3; and labeled in

red in Fig 3B). Appendix Fig S4 displays the corresponding chemical

structures.

Prioritization of candidate compounds proposed to have anti-
inflammatory effects

A similar interaction pattern-based clustering of the 163 compounds

predicted to potentially have anti-cytokine effect (among the high
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CMap-scoring 275; see Appendix Table S3B) led to 20 clusters of

two or more compounds based on compound–protein interaction

patterns, while 35 compounds were left as singletons (Appendix Fig

S3B and Table S6B). We selected 19 high-priority compounds repre-

sentative of these clusters in addition to 5 singletons. Furthermore,

literature search of the remaining 112 potentially anti-inflammatory

compounds for which no target data were available in DrugBank

and STITCH, led to three additional candidate compounds. The

resulting set of 27 potentially anti-inflammatory/cytokine compounds

is presented in Table 4.

Table 4 contains 15 FDA-approved drugs and 12 compounds

under investigation. Of note, two of the compounds under investiga-

tion (JAK3-Inhibitor-II and AZD-8055; in boldface) also belong to

the 64 top-ranking compounds based on Dataset 1; and one, mepa-

crine/quinacrine, is listed in the Excelra COVID-19 drug repurposing

database (Excelra, 2020). Another investigational drug in the list,

PCA4248, is a platelet-activating factor (PAF) receptor antagonist

(Fernandez-Gallardo et al, 1990), and its utility against COVID-19

(e.g., for preventing coagulation or blood clots) is to be explored, as

well as those of the two His receptor antagonists azelastine and

chlorphenamine, identified here. Recent study draws attention to

the possible repurposing of PAF receptor antagonists and His recep-

tor antagonists against hyperinflammation and microthromboses in

COVID-19 patients (Demopoulos et al, 2020).

Among approved drugs, pirfenidone is known to inhibit furin

(Burghardt et al, 2007), a human protease involved in the cleavage

of the viral spike glycoprotein into S1 and S2 subunits (like

TMPRSS2). Spike cleavage is essential to activate the S1 fusion

trimer for viral entry. Pirfenidone combined with melatonin has

been pointed out to be a promising therapy for reducing cytokine

storm in COVID-19 patients (Artigas et al, 2020). Finally, Table 4

also contains two approved cyclooxygenase inhibitors, oxaprozin

and dexketoprofen, known as non-steroidal anti-inflammatory drugs

(NSAIDs) (Miller, 1992; Moore & Barden, 2008).

Testing the SARS-CoV-2 inhibitory properties of prioritized
compounds in in vitro assays

We first selected five compounds (salmeterol, rottlerin, temsiro-

limus, torin-1, and ezetimibe) from the list of 15 prioritized

compounds described in Table 3 for a proof of concept in vitro eval-

uation of their anti-SARS-CoV-2 potential. We used a SARS-CoV-2

infectious cell culture system (Figs 4A and EV1) where host Vero-E6

cells were pretreated with compounds for 1 h prior to SARS-CoV-2

inoculation. After 48-h post-infection, we performed immunofluo-

rescence to assess viral infection (SARS-CoV-2 S protein; Figs 4A

and EV1). Images were analyzed for spike-positive cells using the

Multiwavelength Cell Scoring algorithm in MetaXpress. Representa-

tive mock and vehicle control images and their segmentation are

shown in Fig 4A. Violin plots describing the distribution of the log

integrated spike for each cell in the untreated and treated samples

are shown in Fig 4B along with complementary pie charts indicating

the percent of cells positive for spike protein (Fig 4C). In the

untreated controls, a bimodal distribution of spike-positive cells was

evident, indicating the presence of two infected cell populations

with one expressing more spike protein per cell than the other (Fig 4

B). Salmeterol at 0.1 and 1 μM reduced the median of the spike-

expressing population and showed a preferential antiviral effect for

the lower spike-expressing subpopulation (Fig 4B). At 10 μM,

salmeterol exhibited a greater antiviral effect on the entire popula-

tion, although some (~ 14%) spike-positive cells were evident (Fig 4

B). Qualitatively similar results to salmeterol were obtained with

rottlerin and the mTOR inhibitors, Temsirolimus, and Torin-1,

although dose-limiting toxicity as evidenced by reduced cell count

prevented a determination of a more complete antiviral effect on the

higher-spike protein-expressing subpopulation in torin-1- and RO77-

treated cells (Fig 4B). Ezetimibe reduced spike protein-expressing

populations only at the highest concentration studied (25 µM),

where a reduction in cell numbers was also observed.

Next, we proceeded to cell fusion assays as a proxy for ACE2/

SARS-CoV-2-mediated viral entry. We focused on prioritized

Table 2. Four modules mediating host cell response during SARS-CoV-
2 infection, corresponding pathways, and proteins.a

Module (#
of
proteins) KEGG pathways

Gene names of the host cell
proteins involved in the
module

Viral Entry
(27 proteins)

Endocytosis, lysosome
pathway

SCARB1; ATP6AP1; AP3B1;
NPC2; ITGB1; RAB8A; AP2A2;
PIKFYVE; RHOA; RAB10; ACE2;
AP2M1; ATP6V1A; RNF41;
CHMP2A; CTSB; WASHC4;
TMPRSS2; RAB7A; GLA; SPART;
CTSL; PPT1; ARF6; RAB5C;
NEU1; TPC2

Viral
replication &
translation
(45 proteins)

DNA replication, RNA
transport, RNA
degradation, protein
processing in ER and
protein export

NUP62; ERLEC1; NUP214;
EIF4E2; RPL36; LMAN2; EXOSC3;
NUP54; WFS1; PRIM2; SRP72;
SIL1; UPF1; SELENOS; POLA1;
NUP88; OS9; HYOU1; RAE1;
RBX1; EXOSC2; MRPS2; NUP98;
PSMD8; NGLY1; NUP58; ERO1B;
EDEM3; MRPS5; PRIM1;
NUP210; ELOC; SRP54; ELOB;
UGGT2; EXOSC5; IMPDH2;
PABPC4; EXOSC8; POLA2; SRP19;
SLU7; CUL2; MOGS; PABPC1

Regulation
and
signaling (27
proteins)

Ras signaling,
autophagy, AMPK
signaling, mTOR
signaling, PI3K-AKT
signaling, and insulin
signaling

IL6R; PIK3CA; RAB8A; RALA;
MTOR; TBK1; AKT1; NFKB1;
GNG5; EIF4E2; PRKAR2A;
RAB2A; MYD88; ATP6V1A;
COL6A1; RAB14; MAPK1; RHOA;
RAB10; PRKAR2B; ITGB1; GNB1;
ARF6; RAB5C; ECSIT; PRKACA;
NFATC1

Immune
response (32
proteins)

Toll-like receptor-,
chemokine-, RIG-like
receptor-, B cell
receptor-, NF-kB-, TCR-
, and HIF-1-signaling
pathways

MYD88; MAPK1; STAT3; CUL2;
HMOX1; ELOB; RIPK1; IL17RA;
CSNK2B; MTOR; INHBE;
PRKACA; GNB1; NLRX1; ERC1;
RHOA; GDF15; TBK1; IL6R;
AKT1; CSNK2A2; GNG5; NFATC1;
TBKBP1; PIK3CA; CTSB; RBX1;
NFKB1; ELOC; EIF4E2; PLAT;
ARF6

aSee Appendix Table S4 for the full names of the proteins whose gene codes
are listed in column 3. Genes corresponding to some key proteins targeted by
the proposed compounds/drug and/or mentioned in the text are written in
bold face, including: ARF6 (ADP ribosylation factor 6); ATP6AV1A (ATPase H+
transporting V1 subunit A); TBK1 (TANK-binding kinase 1); PRKACA (protein
kinase CAMP-activated catalytic subunit α, or the catalytic subunit α of
protein kinase A (PKA); RAB7A (Ras-related protein Rab-7A; RHOA
(recombinant human RhoA); CTSL and CTSB (cathepsin L and B).
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Figure 3. Identification and classification of prioritized potentially antiviral compounds.

A Prioritized compounds proposed to have potential antiviral activities and their involvement in different modules in the viral–host PPI network. 25 compounds/drugs
were identified for each of the four modules, resulting in a total of 64 distinct repurposable drugs or investigational compounds, some participating in multiple
modules. The entries in the heat map display the ranking, color-coded from red (highest) to blue (lowest). The ranking was based on the proximity of their targets to
proteins belonging to the modules.

B Distribution of the same compounds/drugs in the four studied modules. Compounds belonging to selected intersections and to the viral entry module are listed.
Those colored red have been experimentally tested. See the complete list in panel (A) and Appendix Table S5.
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compounds predicted to potentially act as viral entry blockers, i.e.,

imipramine, brompheniramine, linsitinib, semaxanib, and hexylre-

sorcinol, in addition to salmeterol and ezetimibe from the above set

(see Table 3). Our cell fusion assay, first described by Simmons

et al (2004), detects host-cell-spike interactions on a shorter time

scale than the viral infection assay and has been used by several

groups to investigate the mechanisms of cell entry of SARS-CoV-1,

such as endosomal and protease involvement including TMPRSS2

(Matsuyama et al, 2005; Matsuyama et al, 2010). More recently, the

assay has also been used to investigate SARS-CoV-2-mediated cell

entry (Ou et al, 2020). The assay is based on the principle that

susceptible host cells (“acceptors”) fuse with spike-expressing

“donor” cells, forming large cell fusion constructs (syncytia), which

can be quantified by fluorescence imaging.

We implemented this assay in a high-content, 384-well micro-

plate format using HEK293T cells, which are not susceptible to viral

infection unless transfected with ACE2 and TMPRSS2, and Calu-3

lung cancer cells, which possess the replete machinery for spike-

mediated viral infection (Hoffmann et al, 2020a). HEK293T cells

transfected with ACE2 and TMPRSS2 or native Calu-3 cells were

incubated with donor cells co-expressing green fluorescent protein

(GFP) and SARS-CoV-2 spike, and syncytia formation monitored by

following GFP over time by fluorescence microscopy. After a 4-h

incubation, syncytia were quantified by high-content analysis. Cell

fusion was dependent on the presence of SARS-CoV-2 spike as

donor cells expressing only GFP did not form syncytia. In a prelimi-

nary screen of seven computationally predicted compounds and two

serine protease inhibitor positive controls (dec-RVKR-CMK and

Table 3. High-priority compounds with potential antiviral effects based on Dataset 1 (*)

Prioritized compounds based on CMap scores and Network Proximity Ranks

Drug/compounda Status Disease module Rankb Description/MOAs Ref

Brompheniramine* FDA-approved Viral entry 23 Histamine receptor antagonist Gwaltney and Druce (1997)

Ipratropium FDA-approved Viral replication and
translation

21 Acetylcholine receptor
antagonist

Barnes (2004)

Imipramine* FDA-approved Viral entry 8 Norepinephrine and serotonin
reuptake inhibitor, autophagy
enhancer

Shchors et al (2015), Wichit et al
(2017), Plenge et al (2020)

Temsirolimus* FDA-approved Immune response 16 mTOR inhibitor, autophagy
enhancer

Di Benedetto et al (2010), Soliman
et al (2013), Bergmann et al
(2014), Kindrachuk et al (2015)

Regulation and signaling 19

Torin-1* Investigational Immune response 22 mTOR inhibitor, PI3K inhibitor,
autophagy enhancer

Clippinger et al (2011), Bergmann
et al (2014)

Regulation and signaling 21

AS-605240 Investigational Regulation and signaling 15 PI3K inhibitor, autophagy
enhancer

Azzi et al (2012)

Viral replication and
translation

9

Immune response 14

Linsitinib* Investigational Viral entry 4 IGF-1- and insulin receptor
inhibitor, TBK1 activator through
ARF1

Mulvihill et al (2009), Sparrer et al
(2017)

Salmeterol* FDA-approved Viral entry 12 β2 Adrenergic receptor agonist,
autophagy enhancer

Medigeshi et al (2016)

Semaxanib* Investigational Viral entry 6 VEGFR inhibitor O’Donnell et al (2005)

Regulation and signaling 22

Immune response 13

Hexylresorcinol* FDA-approved Viral entry 2 Local anesthetic Wilson et al (1966)

Mefenamic acid FDA-approved Viral repl and translation 2 Cyclooxygenase inhibitor Rothan et al (2016)

JNJ16259685 Investigational Viral entry 19 Glutamate receptor antagonist Lavreysen et al (2004)

Ezetimibe* FDA-approved Viral entry 22 Niemann-Pick C1-like 1 protein
antagonist, cholesterol inhibitor,
autophagy enhancer

Osuna-Ramos et al (2018)

Regulation and signaling 9

Additional prioritized compounds (based on CMap scores and literature)

Drug/Compound Status Description/MOAs Ref

QL-XII-47 Investigational Cytoplasmic tyrosine protein kinase BMX inhibitor de Wispelaere et al (2020)

Rottlerin* Investigational MAPK and protein kinase inhibitor, autophagy enhancer Lama et al (2019)

aThose tested in experiments are indicated by asterisks in the first column.
bRank refers to the proximity to the module in the third column, the lower the better.
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nafamostat), pretreatment with dec-RVKR-CMK and nafamostat

prevented syncytia formation (Appendix Figs S5 and S6), consistent

with the involvement of those enzymes in spike-mediated viral

entry (Ozden et al, 2008; Matsuyama et al, 2018; Hoffmann et al,

2020a). Notably, nafamostat, a potent wide spectrum serine

protease inhibitor, has recently been found to inhibit the membrane

fusion of SARS-CoV-2 at 15-fold higher efficiency than camostat

mesylate (Hoffmann et al, 2020b). Dec-RVKR-CMK inhibits not only

the enzymatic activity of furin but also those of cathepsin L, cathep-

sin B, trypsin, papain, and TMPRSS2 (Matsuyama et al, 2018). With

the exception of semaxanib, all predicted compounds/drugs inhib-

ited cell fusion to some extent, although some did so only at high

concentrations (Appendix Figs S5 and S6).

Both agents that prevented viral infection in the experiments with

Vero-E6 cells (salmeterol and ezetimibe), also had inhibitory activity

in the cell fusion assay, although salmeterol was at least two orders of

magnitude less potent in the cell fusion assay, and ezetimibewas inac-

tive at the highest concentration tested in the viral infection assay,

suggesting that their antiviral activity might not originate from an

interference in viral entry, but other effects such as enhancement of

autophagy, as discussed below. The most potent agent was the

insulin-like growth factor 1 receptor (IGF1R) inhibitor, linsitinib. Inhi-

bitor effects were qualitatively conserved in Calu-3 cells but generally

more pronounced in transfected HEK293T cells (Appendix Figs S5

and S6). The one exception was the furin inhibitor dec-RVKR-CMK,

which was similarly potent in both cell types but with a seemingly

larger maximal magnitude of inhibition in Calu-3 cells, suggesting it

inhibited other cellular pathways in addition to viral entry.

We then performed full dose–response curves in HEK293

cells with selected compounds (linsitinib, brompheniramine,

Table 4. Compounds proposed to help attenuate hyperinflammation based on Dataset 2.

Drug/Compound Status Description/MOAs Ref

Compounds extracted from CMap and prioritized after QuartataWeb cluster analysis

Midodrine FDA-approved Adrenergic receptor agonist Josset et al (2010)

Olanzapine Dopamine receptor antagonist, autophagy enhancer Altschuler and Kast (2020)

Trifluoperazine Dopamine receptor antagonist, autophagy dual-modulator Ochiai et al (1991)

Fluphenazine Dopamine receptor antagonist, autophagy enhancer Otreba et al (2020)

Azelastine Dopamine receptor antagonist, His receptor antagonist Preprint: Konrat et al (2020)

Chlorphenamine Histamine receptor antagonist Xu et al (2018)

Clarithromycin Bacterial 50S ribosomal subunit inhibitor autophagy inhibitor Yamaya et al (2012), Pani et al (2020)

Saracatinib Investigational SRC inhibitor Shin et al (2018)

JAK3-Inhibitor-II JAK inhibitor Schwartz et al (2017)

AZD-8055 mTOR inhibitor, autophagy enhancer Jiang et al (2011)

CGP-60474 CDK inhibitor He and Garmire (2020)

Mepacrine/
Quinacrine

Cytokine production inhibitor, NFκB inhibitor Dermawan et al (2014)

Hexamethylene Sodium/hydrogen antiport inhibitor Wilson et al (2006)

Loperamide FDA-approved Opioid receptor agonist, autophagy enhancer Shen et al (2019)

Nifedipine Calcium channel blocker, autophagy enhancer Liu et al (2009), preprint: Straus et al
(2020)

Liothyronine Thyroid hormone stimulant Chen and An (2013)

Atorvastatin HMGCR inhibitor, autophagy enhancer Episcopio et al (2019)

Triptolide Investigational RNA polymerase inhibitor, TNF-α inhibitor preprint: Chaparala et al (2020)

Pirfenidone FDA-approved TGFβ receptor inhibitor, furin inhibitor, anti-fibrotic, autophagy
enhancer

Ferrara et al (2020)

Oxaprozin Cyclooxygenase inhibitor, NSAID (non-steroidal anti-inflammatory
drug)

Miller (1992)

Dexketoprofen Cyclooxygenase inhibitor, NSAID Moore and Barden (2008)

Isoliquiritigenin Investigational Guanylate cyclase activator, autophagy enhancer Traboulsi et al (2015)

PCA-4248 Platelet activating factor (PAF) receptor antagonist Fernandez-Gallardo et al (1990)

Rucaparib FDA-approved PARP inhibitor, autophagy enhancer Guo et al (2019)

Compounds extracted from CMap and prioritized by literature search

Berbamine Investigational Calmodulin antagonist, autophagy inhibitor preprint: Huang et al (2020)

Darinaparsin Apoptosis stimulant Chowdhury et al (2020)

Taurodeoxycholic acid Bile acid Li et al (2019a)

The three drugs/compounds in boldface are also predicted as antiviral drugs based on Dataset 1, listed in Table 3.
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hexylresorcinol, and salmeterol), together with cytotoxicity assess-

ments to test whether inhibition of syncytia formation could merely

be a result of cell loss. Nafamostat, dec-RVKR-CMK, linsitinib, and

to a lesser extent, brompheniramine, showed dose-responsive inhi-

bition of syncytia formation that did not mirror cell loss (Fig 5).

For example, linsitinib induced complete inhibition of cell fusion,

whereas only partial cell loss was observed with a flattening of its

dose–response curve. This quantitative and qualitative difference

between the two dose–response curves suggests that the observed

cell loss is likely to be an epiphenomenon, and not causing the

inhibition of syncytia formation. In contrast, hexylresorcinol and

salmeterol showed partial and full responses, respectively, on

syncytia formation that were mirrored by cell loss (Fig 5). Further

studies are required to determine in this assay with these particular

drugs if cell loss (i) precedes inhibition of cell fusion thereby repre-

senting a nonspecific mechanism for preventing syncytia formation

or (ii) is a specific result of inhibition of syncytia formation.

Discussion

Utility of the computational pipeline for identifying
repurposable drugs

We presented here the results from a computation-driven approach

for identifying repurposable drugs or new compounds that comply

with the antiviral or anti-cytokine signatures derived from SARS-

CoV-2-infected cells. The overall analysis was driven by the RNA-

seq data from SARS-CoV-2-infected A549 cells and A549-ACE2 cells,

as well as a SARS-CoV-2-host PPI network, toward gaining a

system-level understanding of the key players in the host cell that

are involved in SARS-CoV-2 infection and identifying potential

modulators of these key players. Our extensive study led to 15

potentially antiviral and 23 potentially immune-modulatory

compounds (Tables 3 and 4). The assays conducted to test ten of

the proposed antiviral compounds pointed to several repurposable

drugs or investigational compounds that could be pursued for lead

development against SARS-CoV-2 infection. Among them, salme-

terol exhibited particularly strong inhibitory activities in Vero-E6

cells infected by SARS-CoV-2 and linsitinib substantially reduced

spike-protein-dependent syncytia formation (viral entry) in engi-

neered HEK293T cells.

Recent studies point to the utility of computational systems phar-

macology approaches for identifying repurposable drugs against

SARS-CoV-2 (Beck et al, 2020; Gordon et al, 2020b; Riva et al, 2020;

Singh et al, 2020; Zhou et al, 2020b,c,d). Of note is the work of

Zhou et al (2020b) where repurposable drugs against SARS-CoV-2

were identified by evaluating the proximity of targets of known

drugs to human proteins engaged in the human-CoV-host cell inter-

actome. This type of network proximity analysis, originally intro-

duced by Guney et al (2016), is also used here, but in a different

context, mainly for prioritizing the candidate compounds/drugs that

have been already identified from the DEG patterns of SARS-CoV-2

infected cells and corresponding CMap signatures. In contrast, Zhou

et al (2020b) used gene set enrichment data (from MERS-CoV and

SARS-CoV-infected cells) and CMap gene-drug signatures for vali-

dating their predicted drugs. Another important component unique

to our analysis is the use of our interface QuartataWeb that allows

for identifying drug-target associations, and for evaluating and clas-

sifying the pathways implicated in the disease modules deduced

from the SARS-CoV-2-specific virus–host interactome (Gordon et al,

2020a,b) and assessing the mechanisms of action. QuartataWeb was

further used to cluster the selected compounds based on their mech-

anisms of action and select representatives from each cluster to

obtain a sufficiently diverse set for experimental testing. Thus, our

study differs from that of Zhou et al (2020b) in the overall design of

the computational protocol, the types of data used as input, as well

as the output analyses for compound selection, prioritization, and

validation, while both studies utilize state-of-the-art methods (net-

work proximity analysis) and resources (e.g., CMap library) at dif-

ferent steps of the workflow.

Unlike influenza A and respiratory syncytial virus, the host

immune defensive reactions of SARS-CoV-2 were significantly

muted unless ACE2 was overexpressed (preprint: Blanco-Melo et al,

2020a). Cross-examination of the expression levels of the 17 anti-

cytokine signature genes in A549 cells showed that most of these

genes could not be clearly distinguished in those cells, i.e., their

upregulation was specific to A549-ACE2 cells (compare panels (C)

and (D) in Appendix Fig S7), whereas the 36 genes that define the

antiviral signature exhibited a comparable expression pattern in

A549-ACE2 cells (see panels (A) and (B) in Appendix Fig S7). These

observations support the robustness of the antiviral signature on the

one hand, and the utility of A549-ACE2 cells for detecting genes

implicated in hyperinflammatory responses, on the other.

▸Figure 4. Suppression of SARS-CoV-2 infection by identified compounds.

Vero-E6 cells were pretreated with compounds (salmeterol, rottlerin (R077), temsirolimus, torin-1, or ezetimibe) for 1 h prior to SARS-CoV-2 inoculation. 48-h post-
infection cells were fixed and fluorescently labeled for SARS-CoV-2 S protein.

A Representative fluorescence images of Mock, SARS-CoV-2 infected (Ctrl), and Salmeterol-treated wells analyzed with the Multiwavelength Cell Scoring application in
MetaXpress. Grayscales of the images were adjusted to enable direct comparison of the relative levels of fluorescence among the treatments: Segmentation images
show how cells were segmented and identified as spike positive. Purple, nuclei; cyan, spike. Scale bar, 100 μm.

B Violin plots of Vero-E6 cells labeled for Spike protein. The Multiwavelength Cell Scoring algorithm in MetaXpress was used to determine the integrated fluorescent
signal in individual cells as a measure of the amount of Spike protein within each cell. The plots show the population distribution of the integrated signal for all of
the treatments. The Boxes in the plot show the interquartile range (IQR) with the top and bottom edges marking the 75th and 25th percentiles, respectively. The
horizontal line in the box is the median value, and the whiskers are defined to be 1.5 IQR. The ordinate is a log scale. The effect of the treatment is assessed
quantitatively by changes in the median signal level, and qualitatively by observing changes in the modes. The dashed line is 3 standard deviations above the mean
signal in the Mock samples and is used as a cutoff to quantify the number of cells that are positive or negative for the Spike signal. The statistics table below the
plots shows the number of cells counted in each treatment group and the median of the population.

C Pie charts showing the effect of treatment on preventing infection of Vero-E6 cells. The number of cells above and below the cutoffs for being positive for Spike were
counted and the percent cells in each category were determined. All analyses were done in Tibco Spotfire.
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Potential mechanisms of action of drug candidates

We performed two types of in vitro assays with ten predicted

repurposable or investigational drug candidates most of which

are proposed to be implicated in viral entry: linsitinib, imipra-

mine, ezetimibe, hexylresorcinol, brompheniramine, salmeterol,

semaxanib, rottlerin, temsirolimus, and torin-1. Viral entry is

used here in a broad sense including (i) the fusion between viral

and host cell membrane (involving ACE2 and B0AT1 on the host

cell membrane, and facilitated by host cell proteases such as

TMPRSS2 and furin) and (ii) endosomal processes mediating the

endocytosis of the virus and its release from the vesicles. The

latter involves many signaling and regulatory proteins including

those activated by the immune response, in addition to proteases

such as cathepsins, as schematically depicted in Fig 6A. The two

experimental assays were chosen to complement each other: the

viral infection assay recapitulates the entire virus infection

process, whereas the syncytia assay addresses a specific, defined

mechanism in viral entry, namely fusion of the virus with the

host cell, which is mediated by interaction of viral spike protein

with the host cell receptor (ACE2), and facilitated by host cell

proteases.

Below we discuss the experimental results for the tested

compounds in the light of their CMap scores, the similarities

between their interaction patterns (as indicated by the clusters in

Appendix Fig S2), the involvement of their targets in the host cell

PPI network or disease modules (Fig 3) with reference to lung–
tissue interactome (Fig 6B), and relevant findings from previous

Figure 5. Dose–response curves for selected compounds in the syncytia assay.

HEK293 acceptor cells transfected with or without ACE2 and TMPRSS2 were seeded in 384-well plates, pretreated with 7-point gradients of test compounds for 1–2 h,
and co-cultured for 4 h with HEK293 donor cells expressing SARS-CoV-2 spike and GFP, or donor cells expressing GFP only (no spike). Images of GFP-positive objects were
acquired on a confocal high-content imager and analyzed for syncytia formation and integrated GFP area (total GFP) as a measure of cytotoxicity, using a CNT
algorithm as described in the Materials and Methods. Data are the aggregate of 8 independent biological repeats; where errors are shown they represent SD from
matching concentrations in at least three experiments.
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work. We begin with compounds/drugs implicated in viral entry, as

the focus of current tests (Fig 6C).

Linsitinib
Linsitinib showed the highest inhibitory activity without overt

cytotoxicity in the spike-induced syncytia formation assay that

specifically measures viral entry. It is interesting to note that its

proximity rank to the viral entry module (rank 4) was one of the

highest among all tested compounds. Linsitinib is an IGF-1R and

insulin receptor inhibitor (Mulvihill et al, 2009) currently under

investigation for various types of cancer due to its ability to

prevent tumor cell proliferation and induce tumor cell apoptosis

(Fassnacht et al, 2015). Our analysis also indicated that it targets

the insulin receptor, which interacts with ADP ribosylation factor

6 (ARF6), a binding partner of SARS-CoV-2 endonuclease nsp15

(Gordon et al, 2020b). As listed in Table 2, ARF is involved in

multiple modules. Notably, the ubiquitination of the ARF domain

of TRIM23 is essential for mediating virus-induced autophagy, an

antiviral defense mechanism, via activation of TANK-binding

kinase 1 (TBK1) (Sparrer et al, 2017). Therefore, we propose that

its possible MOA is activation of TBK1 that promotes autophagy

(see Fig 6A). We also note that while linsitinib was selected as a

potential antiviral compound, it was also identified as an anti-

inflammatory compound with a very high (−99.37) CMap score

(Appendix Table S3B), in strong support of its selection as a high

priority compound. In this context, the EC50 for linsitinib was

25 µM in the cell fusion assay that may not be disparate from the

reported Cmax of 5–10 µM in patients (Macaulay et al, 2016). Since

several IGF1/InsR inhibitors are available, this class of compounds

is well suited for structure-activity studies. Such a study is particu-

larly relevant, since CMap can implicitly account for structure-

dependent non-canonical modes of antiviral activity that can differ

among members of a particular drug class.

Imipramine
Imipramine, an FDA-approved tricyclic antidepressant (Gillman,

2007), has been also reported to inhibit Chikungunya virus fusion

(entry) (Wichit et al, 2017). It was distinguished by a high network

proximity ranking (8th) in viral entry module (Table 3). Notably,

imipramine is a high-affinity allosteric inhibitor of serotonin trans-

porter (SLC6A4) (Plenge et al, 2020). Importantly, ACE2 is anchored

into the host membrane through close association with the amino

acid transporter, B0AT1 (see Fig 6A). B0AT1 is structurally homolo-

gous to serotonin transporter, sharing the LeuT fold typical of this

family of sodium-coupled neurotransmitter transporters (Cheng &

Bahar, 2019). Thus, imipramine is likely to also target B0AT1, which

may impair the ACE2-spike interaction, hence the observed inhibi-

tory effect. In addition, imipramine has been reported to promote

autophagy (Shchors et al, 2015), and this could be another (indirect)

mechanism for alleviating SARS-CoV-2 infection.

Brompheniramine
Brompheniramine is an FDA-approved drug known as a first-

generation antihistamine drug, for treating common colds and aller-

gic rhinitis (Simons et al, 1982). It shares a similar mode of action

with imipramine, also targeting serotonin transporter. In our study,

brompheniramine was indicated to be highly related to SARS-CoV-2

entry (ranked 23rd im the viral entry module). Both imipramine and

brompheniramine inhibited syncytia formation, consistent with

their hypothesized interaction with membrane-anchored ACE2.

Salmeterol
Salmeterol had the highest CMap score for inducing the antiviral

signature, and very high (network) proximity to the viral entry

module. It is canonically used as a bronchial smooth muscle relax-

ant in asthma and COPD, as a long-acting β2-adrenergic receptor

(β2-AR) agonist. COPD has been shown to be associated with

increased expression of ACE2 (Leung et al, 2020), and a recent

study on the effects of inhaled corticosteroids (ICS) on the bronchial

epithelial cell expression of SARS-CoV-2-related genes in COPD

patients demonstrated that a treatment with ICS in combination

with salmeterol/fluticasone propionate decreased the expression of

ACE2 and ADAM17 (preprint: Milne et al, 2020). We also note that

β2-AR interacts with the PKA catalytic subunit α (Cα; encoded by

PRKACA), which promotes autophagy-mediated degradation (Lizaso

et al, 2013). Salmeterol has been reported to induce autophagy as a

potential mechanism of inhibiting Dengue virus in vitro (Medigeshi

et al, 2016). The observed inhibitory effect in Vero-E6 cells (Fig 4),

which were not borne out by syncytia formation experiments with

either HEK293T or Calu-3 cells, except at high concentration (Fig 5),

is consistent with activities unrelated to viral entry, such as an

innate immune response stimulation or autophagy enhancement.

◀ Figure 6. Schematic representation of various stages of SARS-CoV-2 infection and selected compounds targeting various components of the viral–host
interactome.

A Schematic description of viral entry, endosomal maturation, replication, translation, and accompanying cell signaling and regulation or immune responses, described
in the main text. Mainly, SARS-CoV-2 spike binds the host receptor ACE2 (Hoffmann et al, 2020a) complexed with the amino acid transporter B0AT1 (Yan et al, 2020)
Proteolytic cleavages (e.g., by TMPRSS2) are essential to viral entry, including spike priming and membrane fusion, or lysosomal escape after endocytosis. PIKfyve is
the main enzyme synthesizing PI(3,5)P2 in early endosome (de Lartigue et al, 2009), and PI(3,5)P2 regulates early-to-late endosome events. TPC2 is a major
downstream effector of PI(3,5)P2 (Li et al, 2019b). Dominant pathways in four modules involved in SARS-CoV-2 infection are listed in the upper right boxes (see also
Table 2). The diagram also shows selected drugs that have been identified and experimentally validated to inhibit or reduce SARS-2-CoV-2 infection (mainly viral
entry) in highlighted in boxes (with red fonts).

B Subnet of PPIs between host cell proteins implicated in SARS-CoV-2 infection and those targeted by selected compounds. The sandy brown nodes and edges
represent the proteins and interactions in the SARS-CoV-2 host response network; and in the background (transparent light blue nodes and edges) is the lung tissue-
specific protein interactome. The relative size of each protein node is consistent with its degree (number of connections) in the PPI network. Thirteen compounds we
identified as candidate repurposable or investigational drugs for host-targeted antiviral therapy (based on Dataset 1) and their connections to targets in host
response network (as reported in DrugBank or STITCH) are shown by color-coded labels and connectors. Magenta nodes represent the compounds that
predominantly inhibit viral entry; light green and red represent those against viral translation, replication, and immune response; and cyan nodes represent
multifunctional compounds.

C Chemical structures of selected drugs displayed in panels (A) and (B); see all tested drugs in Appendix Fig S4.
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Ezetimibe
Ezetimibe, an FDA-approved lipid-lowering drug (Kosoglou et al,

2005), has a distinct MOA via the sterol transporter Niemann-Pick

C1-Like 1(Nutescu & Shapiro, 2003). It targets sterol O-acyltransferase

1 (SOAT1) in the ER, which, in turn, interacts with the Ras proteins

encoded by RAB5C, RAB2A, and RAB7A, implicated in early-to-late

endosomal maturation. These proteins bind SARS-CoV-2 nsp7 (Gor-

don et al, 2020b). Loss of RAB7A (see Fig 6A and B) has been shown

to reduce viral entry by altering endosomal trafficking and sequester-

ing ACE2 inside cells (Daniloski et al, 2021). Finally, ezetimibe was

also reported to interfere with the entry and replication of Dengue

virus (Osuna-Ramos et al, 2018). In our hands, ezetimibe inhibited

both viral infection and cell fusion. Its lower potency in the cell fusion

assay is consistent with multiple mechanisms in addition to the domi-

nant effect on viral entry, as described above.

Hexylresorcinol
Hexylresorcinol ranked 2nd in the viral entry module. It is a FDA-

approved over-the-counter product with anesthetic, antiseptic,

and anthelmintic properties (Wilson et al, 1966) often used for

upper respiratory irritations such as sore throat. It has sodium

channel blocking effects and interacts with transglutaminase 2, a

substrate of two SARS-CoV-2-related host proteins RhoA and

PKA Cα. It also showed potential action against respiratory virus

parainfluenza type 3 and cytomegalovirus (Shephard & Zybeshari,

2015). Yet, our in vitro cell fusion assay suggests that virus–host
cell interactions may not be major contributors to its reported

antiviral activities.

Rottlerin
Rottlerin (R077), a natural polyphenolic compound, has been

reported to inhibit influenza replication as an inhibitor of PKC (Hoff-

mann et al, 2008), and the translation of rabies virus circle by reduc-

ing intracellular ATP contents (Lama et al, 2019). It may have

neuroprotective effects by its anti-oxidative and anti-inflammatory

action in the central nervous system (Lee et al, 2020). Rottlerin

inhibited viral infection but dose-limiting toxicity prevented a

detailed analysis of viral entry vs. infection.

Temsirolimus and torin-1
Temsirolimus and torin-1 are indicated to inhibit the protein kinase

mTOR (Bergmann et al, 2014). The temsirolimus metabolite, siro-

limus, as well as mTOR inhibitor rapamycin, are among the 128

approved drugs listed in the Excelra COVID-19 Drug Repurposing

Database (Excelra, 2020). The PI3K-AKT-mTOR signaling pathway

provides a cross-protective immunity against viral infection, espe-

cially against the influenza viruses (Lehrer, 2020), and has been

recognized to regulate the translation and replication of coron-

aviruses (Zumla et al, 2016). mTOR inhibitors induce autophagy,

which has been attributed to the inhibition of MERS-CoV (Gassen

et al, 2019). Temsirolimus is currently FDA-approved for treating

renal cell carcinoma (Miao et al, 2010). It has been reported to

inhibit MERS-CoV infection (Kindrachuk et al, 2015). Torin-1 inhi-

bits both mTORC1/2 complexes with IC50 values between 2 and

10 nM and therefore was used at 1–10 and 100 nM levels and was

toxic at 100 nM. Further studies will be required to determine the

relative antiviral effects of these mTOR inhibitors in the context of

their intrinsic dose-limiting toxicity.

Semaxanib
Semaxanib a tyrosine kinase inhibitor, under development as a

cancer therapeutic (O’Donnell et al, 2005), did not exhibit any inhi-

bitory activity, despite its involvement in multiple modules.

Compounds targeting immune response
Immunopathology of COVID-19 is longitudinally dynamic, individu-

ally diverse, more unique than other respiratory viral infections,

and potentially detrimental when uncontrolled. It is featured with

lack of interferon response, lymphopenia, and overwhelming

inflammatory activation—especially in severe stage or patients with

poor prognosis (Blanco-Melo et al, 2020b; Liu et al, 2020; Ong et al,

2020; Zhou et al, 2020a). Anti-cytokine therapeutics inhibiting IL-1

(NCT04324021, NCT0436281), IL-6 (NCT04320615, NCT04315298),

TNF-α (Feldmann et al, 2020), or the broad-spectrum immune

response by glucocorticoids (Lu et al, 2020) are currently investi-

gated. Stemming from transcriptomic response following infection

in A549-ACE2, we aimed for inducers that both elevate IFN signal-

ing while suppressing cytokine pathways. The resulting compounds

(Table 4), interestingly, included His receptor antagonists and TNFα
inhibitors as expected, while also contained candidates such as PAF

receptor antagonists, NFκB, SRC, JAK, and mTOR inhibitors, and

neurological drugs blocking ion channels or neurotransmitter recep-

tors. These results reveal the complexity of immune transcriptome

modulation, involving heterogeneous states of multiple components

and their coupled dynamics.

Autophagy enhancement as a possible mechanism to exploit in
combination therapies

The present analysis showed that certain autophagy-related vesicle

pathways were downregulated, especially in the SARS-CoV-2-

infected A549-ACE2 cells, which could be a potential escape mecha-

nism from the immune system, as lysosomal digestion serves as an

intrinsic antiviral program. These observations point to the opportu-

nity of discovering drugs that exploit systems-level host response,

i.e., stimulate autophagic response while suppressing hyperin-

flammatory responses. A recurrent pattern in several candidate

compounds was indeed their involvement in autophagy enhance-

ment. These include antidepressants as well as compounds repur-

posed to eliminate aggregates in the central nervous system, lung,

or liver, such as trifluoperazine, fluphenazine (Table 4), and others

(salmeterol and imipramine) that exhibited inhibitory activity in our

experiments. Microglial autophagy has been recently pointed out to

be essential for recovery from neuroinflammation (Berglund et al,

2020). In general, the role of autophagy in viral infection remains

context-dependent, and both pathogen-destroying or viral-

promoting effects have been reported (Maier & Britton, 2012),

whereas inducing autophagy has markedly reduced MERS-CoV

replication (Gassen et al, 2019). The effectiveness of selected autop-

hagy enhancers observed here support their further investigation, at

least in combination therapy, against COVID-19.

The compounds prioritized here targeted system-level modules,

rather than individual targets. Beyond the urgent need for repurpos-

ing, these drugs can also be exploited as mechanistic probes to

enhance our understanding of SARS-CoV-2 pathogenicity and drug

resistance and provide a systems framework for developing combi-

nation therapies.

16 of 23 Molecular Systems Biology 17: e10239 | 2021 ª 2021 The Authors

Molecular Systems Biology Fangyuan Chen et al



Comparison with earlier work showed that there are only nine

compounds (apicidin, daunorubicin, entacapone, loratadine,

metformin, mycophenolic acid, ribavirin, verapamil, and valproic

acid) shared between our predictions and the recently reported 69

repurposable drugs (Gordon et al, 2020b). Given the little overlap

with the drugs currently under clinical trials against SARS-CoV-2,

the current findings may help complement the global COVID-19

drug discovery pipeline.

While we have adopted a systems-level approach, we also notice

that we focused on the viral–host cell interactions that mediate viral

entry and endosomal transitions, and on accompanying cell signal-

ing and regulation events and immune response, in line with the

assays conducted for probing viral entry. Events at the nucleus rele-

vant to viral replication and translation play an equally important

role, as evidenced by recent genome-wide CRISPR screens in Vero-

E6 cells (Wei et al, 2021), which identified many proviral genes

involved in chromatin regulation, histone modification, or epige-

netic regulation. Compounds that target these specific pathways/

processes, such as those involving the ubiquitous nuclear protein

HMGB1 and the SWI/SNF chromatin remodeling complex (Wei

et al, 2021) or the upregulation of cholesterol biosynthesis (Dani-

loski et al, 2021), are yet to be determined.

Materials and Methods

Evaluation of host-targeted antiviral and anti-
hyperinflammatory signature from post-SARS-CoV-2
infection transcriptomics

The up- and downregulated gene list of A549 cells (human lung

cancer) after 24 h of SARS-CoV-2 infection was obtained from

GSE147507, and the corresponding DEGs were acquired from the

DESeq2 result from the original publication with FDR adjusted

P-value smaller than 0.05. This resulted in 100 upregulated and

20 downregulated genes listed in Appendix Table S1. Over-

representation analysis was performed using gProfiler (Raudvere

et al, 2019) with GO database (Carbon et al, 2019) for up- or down-

regulated genes, respectively, using Benjamini–Hochberg multiple

test correction with a threshold of 0.05. Examination of the GO

Biological Process (GO-BP) and GO cellular components (GO-CC)

data for up- or downregulated genes resulted in 319 GO-BP and 13

GO-CC terms. The number of enriched upregulated terms was

reduced by retaining those associated with no more than 300 genes,

and not fewer than 10 overlapping genes, resulting in 16 GO terms

(see column 6 in Appendix Table S2A). Downregulated terms were

all kept. The enriched GO terms were organized and visualized with

quickGO and classified as antiviral, proviral, or ambiguous. Those

genes that defined the “antiviral signature” were obtained by merg-

ing the up- (innate immune response) or down- (intracellular vesi-

cle) regulated antiviral genes and excluding proviral (viral genome

replication) components. Genes classified as proviral or ambiguous

were not included in the antiviral signature.

The resulting signature (composed of 36 genes) was used to

screen for compounds/drugs in the L1000 database (Subramanian

et al, 2017) which elicit a response that best matches the antiviral

signature, reflected by their sufficiently high CMap connectivity

scores, at https://clue.io/query. CMap scores range from −100 to

100, the two limits representing the least and the most similar

compound-induced gene signatures, compared to our input antiviral

signature. Compounds with top scores (in the suggested default

range of 90–100) were selected for further analysis.

For the construction of anti-hyperinflammation signature, we

focused on cytokine-related events (to be suppressed) by overlap-

ping the GO cytokine response gene set (GO:0034097) with the

upregulated genes (adjusted P-value < 0.05) from A549-ACE2-

infected cells with high MOI of SARS-CoV-2 (GSE147507). We

selected a final candidate set of 17 genes at the 0.05 upper quantile

of log2 fold change (see Appendix Table S2B). This set of 17 genes

was used as the upregulated gene input in CMap screening within

the L1000 database, and the 275 compounds with lowest connectiv-

ity scores (varying from −90 to −100), showing strongest opposing

effect, were selected.

Identification of known compound-target interactions

The compound-target interaction search engine QuartataWeb (Li

et al, 2020), which integrates STITCH (version 5) (Szklarczyk et al,

2016) and DrugBank (version 5.1.7) (Wishart et al, 2018), was used

to identify targets for compounds obtained from CMap prediction.

Specifically, all compound-target interactions recorded in DrugBank

and the compound-target interactions with experimental confidence

score no <0.4 in STITCH were integrated for further analysis. As a

result, we retrieved 1,800 known interactions between 168

compounds and 746 targets, while no targets were identified for the

remaining 95 compounds.

Prioritizing the predicted compounds using their
network proximity

The basic idea of network proximity (Guney et al, 2016) is to

evaluate the significance of the network distance between a

compound and a given disease module in the interactome. The

methodology assumes that a compound is effective if it targets

proteins within or in the immediate vicinity of a disease module.

In our case, we extracted the human lung protein–protein inter-

actome from the Biomedical Network Dataset Collection BioSNAP

(Zitnik et al, 2018). We defined five viral-related modules, each

containing a set (S) of pre-defined proteins derived from the

host proteins implicated in SARS-CoV-2 infection (see the

Results). For each compound, we have determined the set (T) of

targets using QuartataWeb in the human lung PPI network. The

proteins in sets S and T were connected via paths of zero or

more intermediate protein nodes. Then we evaluated the

distance between these targets and the pre-defined proteins from

each viral-related module, in the human lung PPI network, as

the average shortest distance path between the respective nodes

s and t belonging to the sets S and T, as

d S, Tð Þ¼ 1

kTk ∑
t∈T

mins∈Sdðs, tÞ:

Then, a reference distance distribution was constructed, corre-

sponding to the expected distance between the disease module

proteins and a randomly selected groups of proteins in the

network, with the same size and degree of distribution as drug
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targets in the network. This procedure was repeated 1,000 times,

and the mean and standard deviation of the reference distance

distribution were used to calculate a z-score by converting the

observed distance to a normalized distance. Each compound was

assigned a z-score with respect to each disease module, a lower

z-score meaning that its targets were closer to the disease module,

or the compound would be more effective. The z-scores were eval-

uated using the toolbox package developed by Guney et al (2016).

Note that the network proximity provides a relative measure, the

absolute value of which depends on the disease and application.

In the current application to four disease modules, we refrained

from selecting a uniform cutoff for the z-score. Instead, we

selected the top 25 compounds from each module to include a set

of compounds with diverse MOAs.

Compound clustering by means of
interaction-pattern-based similarities

We clustered top-ranking compounds by evaluating the similarities

between the interaction patterns of these compounds vis-�a-vis their

known targets compiled in DrugBank and STITCH. Specifically, we

assigned each compound i a vector ui the elements of which were

the confidence score for the compound–target interaction (0 if there

is no known interaction). Then, we evaluated the interaction-

pattern-based similarities between compound i and j by calculating

cosine distance between vector ui and vector uj using the similarity

metric s¼ 1�ðui∙u jÞ= uij j u j

�� ��� �
:

In vitro viral inhibition assays

SARS-CoV-2 viral assays were performed in UCLA BSL3 high

containment facility. Vero-E6 [VERO C1008 (ATCC# CRL-1586™)]

cells were obtained from ATCC and cultured at 37°C with 5% CO2

in EMEM growth media with 10% fetal bovine serum and

100 units/ml penicillin. SARS-CoV-2 Isolate USA-WA1/2020 was

obtained from BEI Resources of National Institute of Allergy and

Infectious Diseases (NIAID). Temsirolimus (CAS 162635-04-3),

Ezetimibe (CAS 163222-33-1), Salmeterol (CAS 89365-50-4), and

Torin-1 (CAS 1222998-36-8) were purchased from Selleckchem.

Rottlerin (CAS 82-08-6) was purchased from TOCRIS. Vero-E6 cells

were plated in 96-well plates (5 × 103 cells/well) and pretreated

with compounds (in triplicate, at indicated concentrations) for 1 h

prior to addition of SARS-CoV-2 (MOI 0.1). After 48-h post-infection

(hpi) the cells were fixed with methanol for 30–60 min in −20°C.
Cells were washed three times with PBS and permeabilized using

blocking buffer (0.3% Triton X-100, 2% BSA, 5% Goat Serum, 5%

Donkey Serum in 1 × PBS) for 1 h at room temperature.

Subsequently, cells were incubated with anti-SARS-CoV-2 Spike

antibody (Sino Biological, 40150-R007, 1:200) at 4°C overnight.

Cells were then washed three times with PBS and incubated with

Goat anti-mouse IgG Secondary Antibody, Alexa Fluor 555 (Fisher

Scientific PIA32790, 1:1,000) for 1 h at room temperature. Nuclei

were stained with DAPI (40,6-Diamidino-2-Phenylindole, Dihy-

drochloride; Life Technologies) at a dilution of 1:5,000 in PBS for

10 min. Cells were analyzed by fluorescence microscopy. Five

images per well were quantified for each condition. The Multiwave-

length Cell Scoring module in MetaXpress (Molecular Devices,

Sunnyvale, CA) was used to measure the total integrated

fluorescence spike signal in each cell. Histograms of the log of the

integrated intensities were plotted in Spotfire (Tibco, Palo Alto, CA).

A cutoff value of three standard deviations of the total integrated

signal from the mock samples was established, above which cells

were considered to have a positive spike signal, and thus be

infected. The number of infected cells was divided by the total

number of cells in each treatment group to determine the percent of

infected cells after treatment.

Cell fusion (syncytia) assay

Cell culture
HEK293T cells (ATCC CRL-3216) were maintained at 37°C in a

humidified incubator with a 5% CO2 atmosphere. Cells were

cultured in Dulbecco’s modified Eagle medium (DMEM, Gibco

11965092) supplemented with 10% fetal bovine serum (FBS, Corn-

ing 35010CV), 1% penicillin–streptomycin (Cytiva HyClone

SV30010), and 1% L-glutamine (Cytiva HyClone SH3003401). A cell

bank of defined passage was established, and cells were propagated

for no more than 15 passages in culture. A cell bank of Calu-3 cells

(ATCC HTB-55) from cells maintained in DMEM as recommended

by ATCC was established at early passage. Because Calu-3 cells

grew very slowly in DMEM, for experiments cells were switched to

Roswell Park Memorial Institute (RPMI) 1640 (Cytiva HyClone

SH30027.01), which provided much better growth conditions. All

cell lines were routinely tested for mycoplasma infection and

passaged no more than 10 times from ATCC authenticated stocks.

Reagents
Expression plasmids for human ACE2, TMPRSS2, and HA-tagged

SARS-CoV-2 spike were a gift from Stefan Pöhlmann (Hoffmann

et al, 2020a). Dec-RVKR-CMK (furin inhibitor-1) was from EMD

Millipore (344930). Imipramine hydrochloride, Salmeterol, and

Brompheniramine were from AK Scientific (J10511, K-590, and M-

1266, respectively). Hexylresorcinol, Semaxanib (SU-5416), Ezetim-

ibe, and Linsitinib (OSI-906) were from TargetMol (T0314, T2064,

T1593, and T6017, respectively).

Transfection of cells for syncytia assay
On the day of experiments, acceptor cells were transfected with

mammalian expression plasmids for ACE2 and TMPRSS2 using

FuGene6 (Roche) at a 1:3 DNA-to-reagent ratio with 22 ng DNA per

well (30 µl) of a 384-well plate. 4,000 cells were plated in collagen-

coated microplates (Greiner 781956) and centrifuged at 500 g for

1 min. Donor cells were transfected under the same conditions with

expression plasmids for eGFP or eGFP plus SARS-CoV-2 spike

protein and plated in T-25 flasks (3 ml). Both donor and acceptor

cells were incubated for 3 days at 37°C. Calu-3 cells were left

untransfected and seeding density was 8,000 cells/well in RPMI.

Cell treatment for High Content Screening
On the day of co-culture, acceptor cells were pretreated for 1–2 h

with vehicle or test agents; compounds were dissolved in DMSO

and diluted into complete DMEM to a 3× concentration of the high-

est desired concentration in the assay. The resulting solutions were

serially diluted on a 96-well plate into DMEM containing 3% DMSO.

Fifteen microliter of the resulting gradients were transferred to cells

using a Biomek 2000 liquid handler (Beckman Coulter) in duplicate
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to yield quadruplicate measurements for each concentration of test

agents. The final concentration of DMSO in the assay was 1%. Each

plate contained 80 wells of vehicle controls, 16 wells of mock-

transfected acceptor cells, and 16 wells of ACE2/TMPRSS2 trans-

fected acceptor cells incubated with GFP-only expressing donor cells

(no spike).

Syncytia assay co-culture, imaging, and analysis
Donor cells were dislodged from their flasks with non-enzymatic

cell dissociation buffer (Thermo Fisher 13151014) after two gentle

washes with PBS. GFP-positive cells were counted in a hemocy-

tometer. 2,000 GFP-positive cells in 15 µl DMEM were added to

acceptor cells, plates centrifuged at 500 g for 1 min, and syncytia

formation monitored. After 4 h cells were imaged live in the GFP

channel (Ex485/Em525 nm) on a Molecular Devices ImageXpress

Ultra or a Perkin Elmer OPERA Phenix Plus High Content Screening

(HCS) reader using a 20X objective. Four fields were acquired per

well. Images were uploaded to Definiens Developer (Ver 6, Defi-

niens AG, Germany) and analyzed by a custom Cognition Network

Technology (CNT) ruleset that separated individual cells, cell aggre-

gates, and syncytia based on size, intensity, and texture of GFP

expressing objects. The final parameters used for plotting were the

percentage of GFP-positive area covered by syncytia relative to the

total area covered by GFP-positive objects, and the total GFP-

positive area as a surrogate for cell number. Data were averaged

from the four imaging fields and normalized to vehicle-treated

controls. Data from multiple independent experiments were pooled

and analyzed by one-way ANOVA followed by Dunnett’s multiple

comparisons test. Dose–response data were fitted to a four-

parameter logistic equation in GraphPad Prism (Ver. 7).

Data availability

The data and codes generated during the study are available at:

https://github.com/Hannah-Qingya/Covid19_systems-level_ana

lysis. We also used our QuartataWeb server that is online accessible

at http://quartata.csb.pitt.edu/.

Expanded View for this article is available online.

Acknowledgements
S.Y.C. is supported by the American Heart Association Established Investigator

Award 18EIA33900027 (S.Y.C.) and the American Lung Association Award

ETRA734979 (S.Y.C.). D.L.T. is supported by RO1DK117881, UG3 DK119973, and a

COVID-19 supplement to UG3 DK119973. I.B. is supported by NIH grants P41

GM103712 and PO1 DK096990. This project used shared instrumentation that

was acquired with NIH grant S10 OD028450.

Author contributions
Conceptualization, FC, QS, FP, BL, and IB; Methodology, FC, QS, FP, AV, RAP,

GGJ, ACG, MHC, MS, BL, SYC, VA, AMS, MA, and IB; Validation, FC, QS, FP, AV,

RAP, MS, AMS; Formal Analysis, FC, QS, FP, AV, RAP, GGJ, ACG, MS, BL, SYC, VA,

AMS and IB; Investigation, FC, QS, FP, AV, RAP, GGJ, ACG, MHC, MS, SYC, VA,

AMS, MA, and IB; Resources, AV, SYC, VA, AMS, DLT, MA, and IB; Data curation,

FC, QS, FP, AV, RAP, GGJ, ACG, MHC, MS, SYC, VA, AMS, MA, and IB; Visualization,

FC, QS, FP, AV, RAP, MHC, MS, BL, AMS, and IB; Writing, FC, QS, FP, AV, AMS,

MA, and IB; Supervision, AV, AMS, MA, and IB.

Conflict of interests
S.Y.C. has served as a consultant for United Therapeutics; and S.Y.C. has held

research grants from Actelion and Pfizer. S.Y.C. is a founder, director, and

officer in Synhale Therapeutics. The other authors declare no conflict of inter-

ests regarding the publication of this paper.

References

Altschuler EL, Kast RE (2020) Dapsone, colchicine and olanzapine as

treatment adjuncts to prevent COVID-19 associated adult respiratory

distress syndrome (ARDS). Med Hypotheses 141: 109774

Artigas L, Coma M, Matos-Filipe P, Aguirre-Plans J, Farres J, Valls R,

Fernandez-Fuentes N, de la Haba-Rodriguez J, Olvera A, Barbera J et al

(2020) In-silico drug repurposing study predicts the combination of

pirfenidone and melatonin as a promising candidate therapy to reduce

SARS-CoV-2 infection progression and respiratory distress caused by

cytokine storm. PLoS One 15: e0240149

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,

Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the

unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29
Azzi J, Moore RF, Elyaman W, Mounayar M, El Haddad N, Yang S, Jurewicz M,

Takakura A, Petrelli A, Fiorina P et al (2012) The novel therapeutic effect of

phosphoinositide 3-kinase-gamma inhibitor AS605240 in autoimmune

diabetes. Diabetes 61: 1509–1518
Barnes PJ (2004) The role of anticholinergics in chronic obstructive

pulmonary disease. Am J Med 117(Suppl 12A): 24S–32S
Beck BR, Shin B, Choi Y, Park S, Kang K (2020) Predicting commercially

available antiviral drugs that may act on the novel coronavirus (SARS-

CoV-2) through a drug-target interaction deep learning model. Comput

Struct Biotechnol J 18: 784–790
Berglund R, Guerreiro-Cacais AO, Adzemovic MZ, Zeitelhofer M, Lund H,

Ewing E, Ruhrmann S, Nutma E, Parsa R, Thessen-Hedreul M et al (2020)

Microglial autophagy–associated phagocytosis is essential for recovery

from neuroinflammation. Sci Immunol 5: eabb5077

Bergmann L, Maute L, Guschmann M (2014) Temsirolimus for advanced renal

cell carcinoma. Expert Rev Anticancer Ther 14: 9–21
Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R (2009)

QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics

25: 3045–3046
Blanco-Melo D, Nilsson-Payant BE, Liu WC, Møller R, Panis M, Sachs D,

Albrecht RA, tenOever BR (2020a) SARS-CoV-2 launches a unique

transcriptional signature from in vitro, ex vivo, and in vivo systems.

bioRxiv 10.1101/2020.03.24.004655 [PREPRINT]

Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R,

Jordan TX, Oishi K, Panis M, Sachs D et al (2020b) Imbalanced host

response to SARS-CoV-2 drives development of COVID-19. Cell 181: 1036–
1045.e1039

Burghardt I, Tritschler F, Opitz CA, Frank B, Weller M, Wick W (2007)

Pirfenidone inhibitors TGF-beta expression in malignant glioma cells.

Biochem Biophys Res Commun 354: 542–547
Carbon S, Douglass E, Dunn N, Good B, Harris NL, Lewis SE, Mungall CJ, Basu

S, Chisholm RL, Dodson RJ et al (2019) The Gene ontology resource: 20

years and still GOing strong. Nucleic Acids Res 47: D330–D338
Chaparala S, Iwema CL, Chattopadhyay A (2020) SARS-CoV-2 infections-gene

expression omnibus (GEO) data mining. Pathway enrichment analysis, and

prediction of repurposable drugs/compounds. Preprints https://doi.org/10.

20944/preprints202009.0459.v1 [PREPRINT]

ª 2021 The Authors Molecular Systems Biology 17: e10239 | 2021 19 of 23

Fangyuan Chen et al Molecular Systems Biology

https://github.com/Hannah-Qingya/Covid19_systems-level_analysis
https://github.com/Hannah-Qingya/Covid19_systems-level_analysis
http://quartata.csb.pitt.edu/
https://doi.org/10.15252/msb.202110239
https://doi.org/10.20944/preprints202009.0459.v1
https://doi.org/10.20944/preprints202009.0459.v1


Chen X, An L (2013) Application of liothyronine in preparation of medicine for

treatment or prevention of influenza virus infection. China: C.N.I.P.

Administration

Cheng MH, Bahar I (2019) Monoamine transporters: structure, intrinsic

dynamics and allosteric regulation. Nat Struct Mol Biol 26: 545–556
Chowdhury T, Roymahapatra G, Mandal SM (2020) In silico identification of a

potent arsenic based approved drug darinaparsin against SARS-CoV-2:

inhibitor of RNA dependent RNA polymerase (RdRp) and essential

proteases. Infect Disord Drug Targets 21: 608–618
Clippinger AJ, Maguire TG, Alwine JC (2011) The changing role of mTOR

kinase in the maintenance of protein synthesis during human

cytomegalovirus infection. J Virol 85: 3930–3939
Daniloski Z, Jordan TX, Wessels H-H, Hoagland DA, Kasela S, Legut M,

Maniatis S, Mimitou EP, Lu Lu, Geller E et al (2021) Identification of

required host factors for SARS-CoV-2 infection in human cells. Cell 184:

1–14
Demopoulos C, Antonopoulou S, Theoharides TC (2020) COVID-19,

microthromboses, inflammation, and platelet activating factor. BioFactors

46: 927–933
Dermawan JKT, Gurova K, Pink J, Dowlati A, De S, Narla G, Sharma N, Stark

GR (2014) Quinacrine overcomes resistance to erlotinib by inhibiting FACT,

NF-κB, and cell-cycle progression in non-small cell lung cancer. Mol

Cancer Ther 14: 2203–2214
Di Benedetto F, Di Sandro S, De Ruvo N, Montalti R, Ballarin R, Guerrini GP,

Spaggiari M, Guaraldi G, Gerunda G (2010) First report on a series of HIV

patients undergoing rapamycin monotherapy after liver transplantation.

Transplantation 89: 733–738
Duarte RRR, Copertino Jr DC, I~niguez LP, Marston JL, Nixon DF, Powell TR

(2020) Repurposing FDA-approved drugs for COVID-19 using a data-driven

approach. ChemRxiv https://doi.org/10.26434/chemrxiv.12148764.v12148761

[PREPRINT]

Emanuel W, Kirstin M, Vedran F, Asija D, Theresa GL, Roberto A, Filippos K,

David K, Salah A, Christopher B et al (2020) Bulk and single-cell gene

expression profiling of SARS-CoV-2 infected human cell lines identifies

molecular targets for therapeutic intervention. bioRxiv https://doi.org/10.

1101/2020.05.05.079194 [PREPRINT]

Episcopio D, Aminov S, Benjamin S, Germain G, Datan E, Landazuri J, Lockshin

RA, Zakeri Z (2019) Atorvastatin restricts the ability of influenza virus to

generate lipid droplets and severely suppresses the replication of the

virus. FASEB J 33: 9516–9525
Esposito S, Noviello S, Pagliano P (2020) Update on treatment of COVID-19:

ongoing studies between promising and disappointing results. Infez Med

28: 198–211
Excelra (2020) COVID-19 drug repurposing database. https://wwwexcelracom/

covid-19-drug-repurposing-database/

Fassnacht M, Berruti A, Baudin E, Demeure MJ, Gilbert J, Haak H, Kroiss M,

Quinn DI, Hesseltine E, Ronchi CL et al (2015) Linsitinib (OSI-906) versus

placebo for patients with locally advanced or metastatic adrenocortical

carcinoma: a double-blind, randomised, phase 3 study. Lancet Oncol 16:

426–435
Feldmann M, Maini RN, Woody JN, Holgate ST, Winter G, Rowland M,

Richards D, Hussell T (2020) Trials of anti-tumour necrosis factor therapy

for COVID-19 are urgently needed. Lancet 395: 1407–1409
Fernandez-Gallardo S, Ortega MP, Priego JG, de Casa-Juana MF, Sunkel C,

Sanchez-Crespo M (1990) Pharmacological actions of PCA 4248, a new

platelet-activating factor receptor antagonist. In Vivo Studies. J Pharmacol

Exp Ther 255: 34–39

Ferrara F, Granata G, Pelliccia C, La Porta R, Vitiello A (2020) The added value

of pirfenidone to fight inflammation and fibrotic state induced by SARS-

CoV-2: anti-inflammatory and anti-fibrotic therapy could solve the lung

complications of the infection? Eur J Clin Pharmacol 76: 1615–1618
Gassen NC, Niemeyer D, Muth D, Corman VM, Martinelli S, Gassen A, Hafner

K, Papies J, Mösbauer K, Zellner A et al (2019) SKP2 attenuates autophagy

through Beclin1-ubiquitination and its inhibition reduces MERS-

Coronavirus infection. Nat Commun 10: 5770

Gillman PK (2007) Tricyclic antidepressant pharmacology and therapeutic

drug interactions updated. Br J Pharmacol 151: 737–748
Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, Jureka AS,

Obernier K, Guo JZ, Batra J et al (2020a) Comparative host-coronavirus

protein interaction networks reveal pan-viral disease mechanisms. Science

370: 1181

Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ,

Rezelj VV, Guo JZ, Swaney DL et al (2020b) A SARS-CoV-2 protein

interaction map reveals targets for drug repurposing. Nature 583: 459–468
Guney E, Menche J, Vidal M, Barabasi AL (2016) Network-based in silico drug

efficacy screening. Nat Commun 7: 10331

Guo T, Zuo Y, Qian L, Liu J, Yuan Y, Xu K, Miao Y, Feng Q, Chen X, Jin L et al

(2019) ADP-ribosyltransferase PARP11 modulates the interferon antiviral

response by mono-ADP-ribosylating the ubiquitin E3 ligase beta-TrCP. Nat

Microbiol 4: 1872–1884
Gwaltney Jr JM, Druce HM (1997) Efficacy of brompheniramine maleate for

the treatment of rhinovirus colds. Clin Infect Dis 25: 1188–1194
He B, Garmire L (2020) Prediction of repurposed drugs for treating lung

injury in COVID-19. F1000Research 9: 609

Hoffmann HH, Palese P, Shaw ML (2008) Modulation of influenza virus

replication by alteration of sodium ion transport and protein kinase C

activity. Antiviral Res 80: 124–134
Hoffmann M, Kleine-Weber H, Schroeder S, Kr€uger N, Herrler T, Erichsen S,

Schiergens TS, Herrler G, Wu N-H, Nitsche A et al (2020a) SARS-CoV-2 cell

entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven

protease inhibitor. Cell 181: 271–280
Hoffmann M, Schroeder S, Kleine-Weber H, Muller MA, Drosten C, Pohlmann

S (2020b) Nafamostat mesylate blocks activation of SARS-CoV-2: new

treatment option for COVID-19. Antimicrob Agents Chemother 64: e00754-

00720

Huang L, Li H, Yuen TT, Ye Z, Fu Q, Sun W, Xu Q, Yang Y, Chan JF, Zhang G

(2020) Berbamine inhibits the infection of SARS-CoV-2 and flaviviruses by

compromising TPRMLs-mediated endolysosomal trafficking of viral

receptors. Res Sq https://doi.org/10.21203/rs.3.rs-30922/v1 PREPRINT

Iorio F, Shrestha RL, Levin N, Boilot V, Garnett MJ, Saez-Rodriguez J, Draviam

VM (2015) A semi-supervised approach for refining transcriptional

signatures of drug response and repositioning predictions. PLoS One 10:

e0139446

Jiang Q, Weiss JM, Back T, Chan T, Ortaldo JR, Guichard S, Wiltrout RH (2011)

mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity

of an agonist CD40 antibody in cancer treatment. Cancer Res 71: 4074–
4084

Josset L, Textoris J, Loriod B, Ferraris O, Moules V, Lina B, N’Guyen C, Diaz

JJ, Rosa-Calatrava M (2010) Gene expression signature-based screening

identifies new broadly effective influenza a antivirals. PLoS One 5:

e13169

Kindrachuk J, Ork B, Hart BJ, Mazur S, Holbrook MR, Frieman MB, Traynor D,

Johnson RF, Dyall J, Kuhn JH et al (2015) Antiviral potential of ERK/MAPK

and PI3K/AKT/mTOR signaling modulation for Middle East respiratory

20 of 23 Molecular Systems Biology 17: e10239 | 2021 ª 2021 The Authors

Molecular Systems Biology Fangyuan Chen et al

https://doi.org/10.26434/chemrxiv.12148764.v12148761
https://doi.org/10.1101/2020.05.05.079194
https://doi.org/10.1101/2020.05.05.079194
https://wwwexcelra
http://com/covid-19-drug-repurposing-database/
http://com/covid-19-drug-repurposing-database/
https://doi.org/10.21203/rs.3.rs-30922/v1


syndrome coronavirus infection as identified by temporal kinome analysis.

Antimicrob Agents Chemother 59: 1088–1099
Konrat R, Papp H, Szij�art�o V, Gesell T, Nagy G, Madai M, Zeghbib S, Kuczmog

A, Lanszki Z, Helyes Z et al (2020) The anti-histamine azelastine, identified

by computational drug repurposing, inhibits SARS-CoV-2 infection in

reconstituted human nasal tissue in vitro. bioRxiv https://doi.org/10.1101/

2020.09.15.296228 [Preprint]

Kosoglou T, Statkevich P, Johnson-Levonas AO, Paolini JF, Bergman AJ, Alton

KB (2005) Ezetimibe: a review of its metabolism, pharmacokinetics and

drug interactions. Clin Pharmacokinet 44: 467–494
Kudchodkar SB, Levine B (2009) Viruses and autophagy. Rev Med Virol 19:

359–378
Lama Z, Gaudin Y, Blondel D, Lagaudriere-Gesbert C (2019) Kinase inhibitors

tyrphostin 9 and rottlerin block early steps of rabies virus cycle. Antiviral

Res 168: 51–60
Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet

JP, Subramanian A, Ross KN et al (2006) The Connectivity Map: using

gene-expression signatures to connect small molecules, genes, and

disease. Science 313: 1929–1935
de Lartigue J, Polson H, Feldman M, Shokat K, Tooze SA, Urbe S, Clague MJ

(2009) PIKfyve regulation of endosome-linked pathways. Traffic 10: 883–893
Lavreysen H, Wouters R, Bischoff F, Nobrega Pereira S, Langlois X, Blokland S,

Somers M, Dillen L, Lesage AS (2004) JNJ16259685, a highly potent,

selective and systemically active mGlu1 receptor antagonist.

Neuropharmacology 47: 961–972
Lee TH, Chen JL, Liu PS, Tsai MM, Wang SJ, Hsieh HL (2020) Rottlerin, a

natural polyphenol compound, inhibits upregulation of matrix

metalloproteinase-9 and brain astrocytic migration by reducing PKC-

delta-dependent ROS signal. J Neuroinflammation 17: 177

Lehrer S (2020) Inhaled biguanides and mTOR inhibition for influenza and

coronavirus (Review). World Acad Sci J 2: 1

Leung JM, Yang CX, Tam A, Shaipanich T, Hackett TL, Singhera GK, Dorscheid

DR, Sin DD (2020) ACE-2 expression in the small airway epithelia of

smokers and COPD patients: implications for COVID-19. Eur Respir J 55:

2000688

Li N, Zhang Y, Wu S, Xu R, Li Z, Zhu J, Wang H, Li X, Tian M, Lu H et al

(2019a) Tauroursodeoxycholic acid (TUDCA) inhibits influenza A viral

infection by disrupting viral proton channel M2. Sci Bull (Beijing) 64: 180–
188

Li P, Gu M, Xu H (2019b) Lysosomal ion channels as decoders of cellular

signals. Trends Biochem Sci 44: 110–124
Li H, Pei F, Taylor DL, Bahar I (2020) QuartataWeb: integrated chemical-

protein-pathway mapping for polypharmacology and chemogenomics.

Bioinformatics 36: 3935–3937
Liu W, Shimada M, Xiao J, Hu D, Matsumori A (2009) Nifedipine inhibits the

activation of inflammatory and immune reactions in viral myocarditis. Life

Sci 85: 235–240
Liu J, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U (2015) Treatment

of obesity with celastrol. Cell 161: 999–1011
Liu J, Li S, Liu J, Liang B, Wang X, Wang H, Li W, Tong Q, Yi J, Zhao L et al

(2020) Longitudinal characteristics of lymphocyte responses and cytokine

profiles in the peripheral blood of SARS-CoV-2 infected patients.

EBioMedicine 55: 102763

Lizaso A, Tan KT, Lee YH (2013) β-adrenergic receptor-stimulated lipolysis

requires the RAB7-mediated autolysosomal lipid degradation. Autophagy 9:

1228–1243
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550

Lu S, Zhou Qi, Huang L, Shi Q, Zhao S, Wang Z, Li W, Tang Y, Ma Y, Luo X

et al (2020) Effectiveness and safety of glucocorticoids to treat COVID-19:

a rapid review and meta-analysis. Ann Transl Med 8: 627

Macaulay VM, Middleton MR, Eckhardt SG, Rudin CM, Juergens RA, Gedrich R,

Gogov S, McCarthy S, Poondru S, Stephens AW et al (2016) Phase I dose-

escalation study of linsitinib (OSI-906) and erlotinib in patients with

advanced solid tumors. Clin Cancer Res 22: 2897–2907
Maier HJ, Britton P (2012) Involvement of autophagy in coronavirus

replication. Viruses 4: 3440–3451
Matsuyama S, Ujike M, Morikawa S, Tashiro M, Taguchi F (2005) Protease-

mediated enhancement of severe acute respiratory syndrome coronavirus

infection. Proc Natl Acad Sci USA 102: 12543–12547
Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F (2010)

Efficient activation of the severe acute respiratory syndrome coronavirus

spike protein by the transmembrane protease TMPRSS2. J Virol 84:

12658–12664
Matsuyama S, Shirato K, Kawase M, Terada Y, Kawachi K, Fukushi S, Kamitani

W (2018) Middle east respiratory syndrome coronavirus spike protein is

not activated directly by cellular furin during viral entry into target cells.

J Virol 92: e00683-18

Medigeshi GR, Kumar R, Dhamija E, Agrawal T, Kar M (2016) N-

Desmethylclozapine, fluoxetine, and salmeterol inhibit postentry stages of

the dengue virus life cycle. Antimicrob Agents Chemother 60: 6709–6718
Miao H, Hollenbaugh JA, Zand MS, Holden-Wiltse J, Mosmann TR, Perelson

AS, Wu H, Topham DJ (2010) Quantifying the early immune response and

adaptive immune response kinetics in mice infected with influenza A

virus. J Virol 84: 6687–6698
Miller LG (1992) Oxaprozin: a once-daily nonsteroidal anti-inflammatory drug.

Clin Pharm 11: 591–603
Milne S, Li X, Yang CX, Hernandez Cordero AI, Leitao Filho FS, Yang CWT,

Shaipanich T, van Eeden SF, Leung JM, Lam S et al (2020) Inhaled

corticosteroids downregulate SARS-CoV-2-related gene expression in

COPD: results from a RCT. medRxiv https://doi.org/10.1101/2020.08.19.

20178368 [PREPRINT]

Moore RA, Barden J (2008) Systematic review of dexketoprofen in acute and

chronic pain. Clin Pharm 8: 11

Mulvihill MJ, Cooke A, Rosenfeld-Franklin M, Buck E, Foreman K, Landfair D,

O’Connor M, Pirritt C, Sun Y, Yao Y et al (2009) Discovery of OSI-906: a

selective and orally efficacious dual inhibitor of the IGF-1 receptor and

insulin receptor. Future Med Chem 1: 1153–1171
Nutescu EA, Shapiro NL (2003) Ezetimibe: a selective cholesterol absorption

inhibitor. Pharmacotherapy 23: 1463–1474
Ochiai H, Kurokawa M, Niwayama S (1991) Influence of trifluoperazine on

the late stage of influenza virus infection in MDCK cells. Antiviral Res 15:

149–160
O’Donnell A, Padhani A, Hayes C, Kakkar Aj, Leach M, Trigo Jm, Scurr M,

Raynaud F, Phillips S, Aherne W et al (2005) A Phase I study of the

angiogenesis inhibitor SU5416 (semaxanib) in solid tumours, incorporating

dynamic contrast MR pharmacodynamic end points. Br J Cancer 93:

876–883
Ong EZ, Chan YFZ, Leong WY, Lee NMY, Kalimuddin S, Haja Mohideen SM,

Chan KS, Tan AT, Bertoletti A, Ooi EE et al (2020) A dynamic immune

response shapes COVID-19 progression. Cell Host Microbe 27: 879–882
Osuna-Ramos JF, Reyes-Ruiz JM, Bautista-Carbajal P, Cervantes-Salazar M,

Farfan-Morales CN, De Jesus-Gonzalez LA, Hurtado-Monzon AM, Del Angel

RM (2018) Ezetimibe inhibits dengue virus infection in Huh-7 cells by

blocking the cholesterol transporter Niemann-Pick C1-like 1 receptor.

Antiviral Res 160: 151–164

ª 2021 The Authors Molecular Systems Biology 17: e10239 | 2021 21 of 23

Fangyuan Chen et al Molecular Systems Biology

https://doi.org/10.1101/2020.09.15.296228
https://doi.org/10.1101/2020.09.15.296228
https://doi.org/10.1101/2020.08.19.20178368
https://doi.org/10.1101/2020.08.19.20178368


Otreba M, Kosmider L, Rzepecka-Stojko A (2020) Antiviral activity of

chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and

thioridazine towards RNA-viruses. A review. Eur J Pharmacol 887: 173553

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo Li, Guo R, Chen T, Hu J et al (2020)

Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and

its immune cross-reactivity with SARS-CoV. Nat Commun 11: 1620

Ozden S, Lucas-Hourani M, Ceccaldi P-E, Basak A, Valentine M, Benjannet S,

Hamelin J, Jacob Y, Mamchaoui K, Mouly V et al (2008) Inhibition of

Chikungunya virus infection in cultured human muscle cells by furin

inhibitors: impairment of the maturation of the E2 surface glycoprotein.

J Biol Chem 283: 21899–21908
Pani A, Lauriola M, Romandini A, Scaglione F (2020) Macrolides and viral

infections: focus on azithromycin in COVID-19 pathology. Int J Antimicrob

Agents 56: 106053

Plenge P, Abramyan AM, Sorensen G, Mork A, Weikop P, Gether U, Bang-

Andersen B, Shi L, Loland CJ (2020) The mechanism of a high-affinity

allosteric inhibitor of the serotonin transporter. Nat Commun 11: 1491

Prompetchara E, Ketloy C, Palaga T (2020) Immune responses in COVID-19

and potential vaccines: Lessons learned from SARS and MERS epidemic.

Asian Pac J Allergy Immunol 38: 1–9
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J (2019) g:

Profiler: a web server for functional enrichment analysis and conversions

of gene lists (2019 update). Nucleic Acids Res 47: W191–W198

Riva L, Yuan S, Yin X, Martin-Sancho L, Matsunaga N, Pache L, Burgstaller-

Muehlbacher S, De Jesus PD, Teriete P, Hull MV et al (2020) Discovery of

SARS-CoV-2 antiviral drugs through large-scale compound repurposing.

Nature 586: 113–119
Rothan HA, Bahrani H, Abdulrahman AY, Mohamed Z, Teoh TC, Othman S,

Rashid NN, Rahman NA, Yusof R (2016) Mefenamic acid in combination

with ribavirin shows significant effects in reducing chikungunya virus

infection in vitro and in vivo. Antiviral Res 127: 50–56
Samuel CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14:

778–809
Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ (2017) JAK

inhibition as a therapeutic strategy for immune and inflammatory

diseases. Nat Rev Drug Discov 17: 843–862
Shchors K, Massaras A, Hanahan D (2015) Dual targeting of the autophagic

regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal

autophagy and therapeutic benefit. Cancer Cell 28: 456–471
Shen L, Niu J, Wang C, Huang B, Wang W, Zhu Na, Deng Y, Wang H, Ye F,

Cen S et al (2019) High-throughput screening and identification of potent

broad-spectrum inhibitors of coronaviruses. J Virol 93: e00023–e119
Shephard A, Zybeshari S (2015) Virucidal action of sore throat lozenges

against respiratory viruses parainfluenza type 3 and cytomegalovirus.

Antiviral Res 123: 158–162
Shin JS, Jung E, Kim M, Baric RS, Go YY (2018) Saracatinib inhibits middle

east respiratory syndrome-coronavirus replication in vitro. Viruses 10: 283

Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P (2004)

Characterization of severe acute respiratory syndrome-associated

coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl

Acad Sci USA 101: 4240–4245
Simons FE, Frith EM, Simons KJ (1982) The pharmacokinetics and

antihistaminic effects of brompheniramine. J Allergy Clin Immunol 70:

458–464
Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK (2020) Drug

repurposing approach to fight COVID-19. Pharmacol Rep 72: 1479–1508
Soliman A, Fathy A, Khashab S, Shaheen N, Soliman M (2013)

Sirolimus conversion may suppress viral replication in hepatitis C

virus-positive renal transplant candidates. Exp Clin Transplant 11:

408–411
Sparrer KMJ, Gableske S, Zurenski MA, Parker ZM, Full F, Baumgart GJ, Kato J,

Pacheco-Rodriguez G, Liang C, Pornillos O et al (2017) TRIM23 mediates

virus-induced autophagy via activation of TBK1. Nat Microbiol 2: 1543–
1557

Stern AM, Schurdak ME, Bahar I, Berg JM, Taylor DL (2016) A perspective on

implementing a quantitative systems pharmacology platform for drug

discovery and the advancement of personalized medicine. J Biomol Screen

21: 521–534
Straus MR, Bidon M, Tang T, Whittaker GR, Daniel S (2020) FDA approved

calcium channel blockers inhibit SARS CoV 2 infectivity in epithelial lung

cells. bioRxiv https://doi.org/10.1101/2020.07.21.214577 [PREPRINT]

Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J,

Davis JF, Tubelli AA, Asiedu JK et al (2017) A next generation connectivity

map: L1000 platform and the first 1,000,000 profiles. Cell 171: 1437–
1452.e1417

Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M (2016)

STITCH 5: augmenting protein-chemical interaction networks with tissue

and affinity data. Nucleic Acids Res 44: D380–384
tenOever BR, Blanco-Melo D (2020) Transcriptional response to SARS-CoV-2

infection. GSE147507 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE147507 [DATASET]

Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and

H4 receptors in allergic inflammation: the search for new antihistamines.

Nat Rev Drug Discov 7: 41–53
Traboulsi H, Cloutier A, Boyapelly K, Bonin MA, Marsault E, Cantin AM,

Richter MV (2015) The flavonoid isoliquiritigenin reduces lung

inflammation and mouse morbidity during influenza virus infection.

Antimicrob Agents Chemother 59: 6317–6327
Tu Y-F, Chien C-S, Yarmishyn AA, Lin Y-Y, Luo Y-H, Lin Y-T, Lai W-Y, Yang D-

M, Chou S-J, Yang Y-P et al (2020) A Review of SARS-CoV-2 and the

ongoing clinical trials. Int J Mol Sci 21: 2657

UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge.

Nucleic Acids Res 47: D506–D515
Wei J, Alfajaro MM, DeWeirdt PC, Hanna RE, Lu-Culligan WJ, Cai WL, Strine

MS, Zhang S-M, Graziano VR, Schmitz CO et al (2021) Genome-wide

CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell

184: 1–16
Wichit S, Hamel R, Bernard E, Talignani L, Diop F, Ferraris P, Liegeois F,

Ekchariyawat P, Luplertlop N, Surasombatpattana P et al (2017)

Imipramine inhibits chikungunya virus replication in human skin

fibroblasts through interference with intracellular cholesterol trafficking.

Sci Rep 7: 3145

Wilson CO, Gisvold O, Doerge RF (1966) Textbook of organic medicinal and

pharmaceutical chemistry, 5th edn. Philadelphia, PA: Lippincott

Wilson L, Gage P, Ewart G (2006) Hexamethylene amiloride blocks E

protein ion channels and inhibits coronavirus replication. Virology 353:

294–306
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson

D, Li C, Sayeeda Z et al (2018) DrugBank 5.0: a major update to the

DrugBank database for 2018. Nucleic Acids Res 46: D1074–D1082
de Wispelaere M, Carocci M, Burri DJ, Neidermyer WJ, Olson CM, Roggenbach

I, Liang Y, Wang J, Whelan SPJ, Gray NS et al (2020) A broad-spectrum

antiviral molecule, QL47, selectively inhibits eukaryotic translation. J Biol

Chem 295: 1694–1703
Xu W, Xia S, Pu J, Wang Q, Li P, Lu L, Jiang S (2018) The Antihistamine drugs

carbinoxamine maleate and chlorpheniramine maleate exhibit potent

22 of 23 Molecular Systems Biology 17: e10239 | 2021 ª 2021 The Authors

Molecular Systems Biology Fangyuan Chen et al

https://doi.org/10.1101/2020.07.21.214577
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147507
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147507


antiviral activity against a broad spectrum of influenza viruses. Front

Microbiol 9: 2643

Yamaya M, Hatachi Y, Kubo H, Nishimura H (2012) Clarithromycin inhibits

pandemic A/H1N1/2009 influenza virus infection in human airway

epithelial cells. Eur Respir J 40: P4364

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the

recognition of SARS-CoV-2 by full-length human ACE2. Science 367: 1444–1448
Zhang M, Luo H, Xi Z, Rogaeva E (2015) Drug repositioning for diabetes

based on ’omics’ data mining. PLoS One 10: e0126082

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X et al

(2020a) Clinical course and risk factors for mortality of adult inpatients

with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395:

1054–1062
Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F (2020b) Network-based

drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov

6: 14

Zhou Y, Hou Y, Shen J, Mehra R, Kallianpur A, Culver DA, Gack MU, Farha S,

Zein J, Comhair S et al (2020c) A network medicine approach to

investigation and population-based validation of disease manifestations

and drug repurposing for COVID-19. PLoS Biol 18: e3000970

Zhou Y, Wang F, Tang J, Nussinov R, Cheng F (2020d) Artificial intelligence in

COVID-19 drug repurposing. Lancet Digit Health 2: e667–676
Zitnik M, Sosic R, Leskovec J (2018) BioSNAP datasets: Stanford biomedical

network dataset collection. http://snapstanfordedu/biodata

Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY (2016) Coronaviruses - drug

discovery and therapeutic options. Nat Rev Drug Discov 15: 327–347

License: This is an open access article under the

terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in

any medium, provided the original work is properly

cited.

ª 2021 The Authors Molecular Systems Biology 17: e10239 | 2021 23 of 23

Fangyuan Chen et al Molecular Systems Biology

http://snapstanfordedu/biodata

