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ABSTRACT The molecular mechanisms of tolerance and persistence associated with
several compounds in Acinetobacter baumannii clinical isolates are unknown. Using
transcriptomic and phenotypic studies, we found a link between mechanisms of
bacterial tolerance to chlorhexidine and the development of persistence in the pres-
ence of imipenem in an A. baumannii strain belonging to clinical clone ST-2 (OXA-24
�-lactamase and AbkAB toxin-antitoxin [TA] system carried in a plasmid). Interest-
ingly, the strain A. baumannii ATCC 17978 (AbkAB TA system from plasmid) showed
persistence in the presence of imipenem and chlorhexidine.
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The importance of preventing the development of tolerance and/or persistence has
recently been highlighted as a new strategy for delaying the emergence of resis-

tance (1–4). In this context, it is essential to distinguish between bacterial resistance,
tolerance, and persistence (5). Resistance refers to the ability of bacterial populations to
grow at the same rate in the presence of antibiotic-induced or environmental stress.
Tolerance is the ability of a bacterial population to grow slowly in response to stress.
Finally, persistence is the latent state of a bacterial subpopulation, which is activated
under certain conditions (5).

Several bacterial tolerance mechanisms develop during stress and antibiotic expo-
sure (6). These mechanisms include (p)ppGpp signaling accumulation, reactive oxygen
species (ROS) and SOS responses, bacterial communication (quorum sensing), efflux
pumps, and energy metabolism (6).

Carbapenem-resistant Acinetobacter baumannii (CRAb) is currently a major source of
nosocomial infections and is considered a highly successful human pathogen (7).
Among the different mechanisms associated with carbapenem resistance in A. bau-
mannii, the production of acquired carbapenem-hydrolyzing class D �-lactamases
(CHDLs) and class B metallo-�-lactamases (MBLs) has been widely studied (8). On the
other hand, the main mechanisms of development of persister cells in the presence of
antibiotics (such as imipenem [IMP]) involve toxin-antitoxin (TA) modules (6, 9).

Studies about molecular mechanisms of tolerance and persistence from A. bauman-
nii strains in response to several compounds are scarce. In this study, we used
transcriptomic and phenotypic assays to analyze the tolerance and persistence mech-
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anisms of A. baumannii isolates in response to chlorhexidine and imipenem (resistance
and susceptibility to carbapenems).

In a previous work of the REIPI-GEIH Ab-2010 project (10), we worked with the A.
baumannii clinical strains Ab-2_clon_2010 (belonging to clone ST-2) and Ab-
2_clon_2010-CHLX, which showed the absence of an increase of MICs to antibiotics
after exposure to subinhibitory concentrations of chlorhexidine digluconate (CHLX)
(0.25� MIC) during 4 weeks (see Table S1 in the supplemental material). The genome
of this Ab-2_clon_2010 strain, together with 17 other clinical strains from this ST-2
clone, were sequenced by Lopez et al. (11) in the Umbrella GenBank BioProject number
PRJNA422585. All strains from this ST-2 clone belonged to the REIPI-GEIH Ab-2010
project and had a plasmid with the blaOXA24/40 �-lactamase gene (conferring resis-
tance to carbapenems), as well as the abkAB genes from a toxin-antitoxin system (12).
RNA assays by transcriptomics had a number of reads assigned to the different genes
and were analyzed using the EdgeR and DESeq2 packages and reverse transcription
PCR (RT-PCR) techniques using UPLs Probe (see Table S3 in the supplemental material;
Roche, Germany) of both clinical isolates (DNase-treated RNA of Ab-2_clon_2010 and
Ab-2_clon_2010-CHLX) (GenBank BioProject number PRJNA433173 and GEO series
number GSE110207), the results of which are shown in Table S2 and Fig. S1 and S2 in
the supplemental material.

The results showed the activation of tolerance molecular mechanisms (known as
“tolerome”) in response to chlorhexidine in strain Ab-2_clon_2010-CHLX (Table 1). In
relation with the tolerome, in the strain Ab-2_clon_2010-CHLX, we observed overex-
pression (1.5- to 6-fold change [FC]) of genes encoding the AdeABC, arsenite, and AceI
chlorhexidine efflux pumps (10, 13–16). Some of these additional protective mecha-
nisms, such as the production of efflux pumps, may also reduce the effective concen-
tration of the antibiotic, which increases the MIC and results in a mixed phenotype of
resistance and tolerance (5). We also observed an increase in the expression of genes
involved in tetracycline and aminoglycoside resistance (FC, 3.4 to 6). The genes with the
highest level of overexpression in this study were those carried by the AbATCC329
plasmid (PMMCU3p), such as OXA24/40 �-lactamase, DNA replication protein, and OriV
(FC, 5.2 to 12) (12) (Table 1). Interestingly, the gene expression FCs of abkA (antitoxin
gene) and abkB (toxin gene) from this plasmid were 0. 63 and 1.25, respectively. In
addition, we observed the overexpression of genes associated with molecular mecha-
nisms of bacterial tolerance (FC, 3.5 to 10), namely, the CsuA/BABCDE operon (17, 18),
the CydAB operon (cytochrome d ubiquinol oxidase complex) (19, 20, 21), the taurine
operon complex (taurine metabolism/electron carrier activity) (22, 23), and finally,
regulatory genes involved in the quorum-sensing (QS) system, i.e., abaR and abaI (Table
1) (22–25).

We used the Kyoto Encyclopedia of Genes and Genomes (KEGG) tool to analyze
those genes that were downregulated (FC, �0.5-fold) in Ab-2_clon_2010-CHLX. We
studied two metabolic pathways. The first one was the ppGpp network (KEGG accession
numbers ec00230 2.7.7.6 and ec00230 2.7.7.7) involving RNA polymerases, DNA poly-
merases, and finally, 50S ribosomal protein. The ppGpp network is mediated by a
variety of RelA/SpoT homologue (RSH) proteins with a nucleotidyl transferase domain,
with some displaying only synthetic or hydrolytic activities, and others displaying both
(Rel) (26, 27). Accumulation of (p)ppGpp affects resource-consuming cell processes,
such as replication, transcription, and translation. Furthermore, (p)ppGpp is thought to
bind RNA polymerase and alter the transcriptional profile, decreasing the synthesis of
translational machinery (such as rRNA and tRNA) and increasing transcription of the
biosynthetic gene (28). Additionally, initiation of new rounds of replication is inhibited,
and the cell cycle arrests until nutrient conditions improve (29). Translational GTPases
involved in protein biosynthesis are also affected by ppGpp, with initiation factor 2 (IF2)
being the main target (30). Although these proteins are scarcely known in A. baumannii,
in this study we describe RelA-SpoT-homologous (RSH) proteins associated with
these functions that show repression in Ab-2_clon_2010-CHLX isolate. The second
metabolic pathway studied was that of oxidative phosphorylation (KEGG accession
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no. ec00190 3.6.3.14, ATP phosphohydrolases), in which the alpha/beta ATP synthase
subunit and transcription termination factor rho were downregulated. Finally, energy
production by ATP metabolism has been associated with the development of tolerant
cells in Escherichia coli (31). Moreover, Wang et al., described how genes mapped in this
pathway have an important role in the survival of clinical strains of Staphylococcus
aureus (32).

The time-kill curves for strains Ab-2_clon_2010 and Ab-2_clon_2010-CHLX were
performed following the indications of Hofsteenge and colleagues (33) in low-nutrient
Luria-Bertani broth (LN-LB; 2 g/liter tryptone, 1 g/liter yeast extract, and 5 g/liter NaCl)
(13, 16). The cultures were incubated for 4 h to ensure logarithmic growth, and CHLX
(0.25� MIC) and IMP (10� MIC) were then added alone or in combination to the
cultures. We observed a lower growth rate of the Ab-2_clon_2010 strain in the presence
of CHLX than in its absence (Fig. 1), as well as faster growth rate in the presence of IMP.
Interestingly, the time-kill curves for isolate Ab-2_clon_2010-CHLX showed a massive
killing in the presence of IMP (Fig. 1). The results of RT-PCR analysis confirmed a lower
expression of OXA24/40 �-lactamase and abkA antitoxin genes (FC, 0.06 and 0.04,
respectively) in Ab-2_clon_2010-CHLX, as well as overexpression of the abkB toxin gene
(FC, 2.77) relative to that in Ab-2_clon_2010 (known as the persistome) (34–36). This

TABLE 1 Mechanisms of bacterial tolerance to chlorhexidine in strain Ab-2_clon_2010-CHLX, revealed by transcriptomic studiesa

GenBankb

protein
accession no.

Gene expression fold change
determined by:

Functional description
Defense mechanism
(reference no.)

Tolerome type
(reference no.)DESeq2 EdgeR

ODA53993.1 6.933753475 6.982635042 AdeA protein AdeABC system (RND-
type) (10)

Transporter/efflux
pump (5)ODA53994.1 6.149907892 6.175526694 AdeB protein

ODA53995.1 4.257153566 4.270842036 AdeC protein
ODA55718.1 6.119321647 6.133494454 Tetracycline resistance protein MFS system
ODA54617.1 5.377292457 7.227172031 Arsenite efflux pump ACR3 system (13)
ODA56577.1 3.498098186 3.528728206 Aminoglycoside phosphotransferase APT family
ODA54814.1 3.605781331 3.649808635 Chlorexidine efflux pump AceI system (16)
ODA56167.1 5.265550668 7.054151044 MFS transporter MFS system
ODA53764.1 12.16763575 14.92175121 OXA 24/40 �-lactamase AbATCC329p/pMMCU3 Plasmid (5)
ODA53763.1 8.975633873 11.30715263 DNA replication protein A
ODA53762.1 5.273985066 5.329333593 RepB family plasmid replication initiator
ODA54084.1 3.511019975 3.547062538 CsuA protein CsuABCDE (17, 18) Biofilm (14)
ODA54083.1 3.199749378 3.259685195 CsuB protein
ODA54082.1 2.575094974 2.584527435 CsuC protein
ODA54081.1 2.810613341 2.819199271 CsuD protein
ODA54080.1 2.782552791 2.791313686 CsuE protein
ODA53940.1 2.037734523 2.053934504 Cytochrome b Cytochrome operon

(19–21)
Stress oxidative

(ROS) (21)ODA57053.1 2.173049691 2.184371809 Cytochrome bd biosynthesis protein
ODA56663.1 2.405101873 2.428897655 Sodium/proline symporter
ODA56171.1 10.75708444 13.32903693 Cytochrome bd biosynthesis protein
ODA56172.1 10.35093438 12.86380541 Cytochrome d ubiquinol oxidase subunit
ODA54604.1 10.07652823 12.56398102 Taurine ABC transporter substrate-binding Taurine transporter

(22, 23)
Electron transport

ODA54605.1 9.758316312 12.21616998 Taurine transporter-binding subunit (TauB)
ODA54606.1 8.966908008 11.30350134 Taurine ABC transporter permease (TauC)
ODA54607.1 10.85324686 13.44475271 Taurine dioxygenase (TauD)
ODA55153.1 �6.486154998 �6.530626555 Hypothetical protein Replication ppGpp network

(28)cODA54592.1 0.932475218 0.929842277 DNA polymerase I
ODA54625.1 0.931688577 0.929428817 DNA polymerase III subunit alpha
ODA54730.1 �1.77207536 �1.816317901 Response regulator
ODA55878.1 0.500078184 0.506140675 50S ribosomal protein L17
ODA55763.1 0.438241011 0.436148678 RNA polymerase subunit omega
ODA55654.1 0.582523178 0.580921263 50S ribosomal protein L7/L12
ODA55933.1 �0.523115918 �0.531876133 ATP synthase subunit beta ATP metabolism Energy production

(31, 32)cODA55935.1 �0.570647356 �0.579254835 ATP synthase subunit alpha
ODA54585.1 0.422390483 0.418615357 Transcription termination factor rho
aThe relative expression (expressed as fold change [FC]) of abaI (3.05) and abaR (2.88) genes, determined by RT-PCR, indicated activation of the quorum-sensing
system.

bSanger sequencing of these genes from the Ab-2_clon_2010-CHLX strain, as well as of the regulatory genes adeR and adeS, did not show mutations with respect to
the sequence of strain Ab-2_clon_2010.

cGenes that belonged to the ppGpp network and energy production categories showed downregulation (FC, �1).
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toxin protein belongs to the AbkAB toxin-antitoxin module in the AbATCC329p/
pMMCU3 plasmid (12). Mosqueda et al. located the AbkB/AbkA TA system (the so-called
SplTA) in the most prevalent plasmids (GenBank KJ534568 and KJ534569) found in
clinical isolates of A. baumannii (12, 37). Finally, we observed regrowth of persister cells
in the Ab-2_clon_2010-CHLX isolate grown in the presence of IMP�CHLX for 28 h (Fig.
1). Moreover, we used two A. baumannii ATCC isolates as controls (both susceptible to
carbapenems) whose complete genomes have been sequenced, A. baumannii strain
ATCC 17978 (which harbors the AbkAB toxin-antitoxin system encoded by plasmid
pAB2, GenBank number CP000523.1) and A. baumannii strain ATCC 19606 (which does
not have this AbkAB toxin-antitoxin system). In Fig. 2, we observed that in the A.
baumannii strain ATCC 17978, there was a reactivation of growth in the presence of
IMP�CHLX for 28 h, in contrast to the lack of growth of the A. baumannii ATCC 19606
under the same conditions. These results of regrowth in the A. baumannii strain ATCC
17978 and in Ab-2_clon_2010-CHLX with IMP (10� MIC) and CHLX (0.25� MIC) at 48
h were confirmed by enzymatic analysis using the cell proliferation reagent WST-1
protocol (Roche, Germany) and calculating the serial dilutions of each culture (CFU/ml;
Fig. 3).

In conclusion, this is the first study describing the important link between mecha-
nisms of bacterial tolerance and persistence under chlorhexidine and imipenem pres-
sure in a clinical isolate of A. baumannii ST-2 harboring the blaOXA 24/40 �-lactamase
gene and abKA/abkB genes (toxin-antitoxin system) in a plasmid. The study of these
mechanisms (bacterial tolerance and persistence) is key to the development of new
anti-infective treatments which will allow for the eradication of multidrug resistant
pathogens.

Accession number(s). The whole-genome sequence (WGS) studies of GEIH-2010
isolate Ab-2_clon_2010 comprise part of the II Spanish Multicenter Study. GEIH-
REIPI A. baumannii 2000 to 2010 project (umbrella GenBank BioProject number
PRJNA422585), as well as the transcriptomic results shown in GenBank BioProject

FIG 1 Time-kill curves in the presence of biocides (CHLX) and antibiotics (IMP) in Ab-2_clon_2010 (carbapenem-resistant) and Ab-2_clon_2010-CHLX isolates.
Box in panel b.3, regrowth is due to putative reactivation of persister cells.
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number PRJNA433173 (GEO series number GSE110207). The WGSs of the A. baumannii
strain ATCC 17978 complete genome and A. baumannii strain ATCC 19606 comp-
lete genome are deposited under GenBank accession numbers CP018664.1 and
GG704575.1, respectively.

FIG 2 Time-kill curves in the presence of antibiotics (IMP) and biocides (CHLX) in susceptible A. baumannii ATCC strains. (a) A. baumannii strain ATCC 17978,
which harbors the plasmid with the AbKA/AbkB toxin-antitoxin system (positive control); (b) A. baumannii ATCC 19606 strain without this AbKA/AbkB
toxin-antitoxin system (negative control). Box in panel a.3, regrowth is due to putative reactivation of persister cells.

FIG 3 Enzymatic activity by colorimetric assay (WST-1-based) of the isolates A. baumannii ATCC 17978,
A. baumannii ATCC 19606, and A. baumannii Ab-2_clon_2010-CHLX in the presence of IMP and CHLX. The
x axis represents absorbance (optical density at 450 nm [OD450]), and the y axis represents time (h). *, P �
0.05 (Student’s t test).
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