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Introduction
Abnormal energy metabolism may lead to a 
series of physical disorders and predispose post-
menopausal women to obesity, type 2 diabetes 
mellitus, Alzheimer’s disease (AD), and cardio-
vascular disease.1 The incidence of metabolic 
diseases shows a gender-specific character, with 
females being particularly at risk of age-corre-
lated metabolic pathology.2,3 Premenopausal 
women exhibit a healthier metabolic pattern 
compared to age-matched men. However, in the 
postmenopausal state, with the absence of estro-
gen, women experience general variations in glu-
cose and lipid profiles, as well as the redistribution 
of body fat, triggering a significant increase in 
metabolic-related diseases and all-cause mortal-
ity.4 These findings verify that estrogen is a fun-
damental regulator in maintaining female energy 
homeostasis.

Estrogens, as a category of steroid hormones, 
include estradiol (E2), estriol (E3), and estrone 
(E1). In humans, estradiol is the primary circulat-
ing estrogen hormone that mediates signals 
through the intracellular nucleus, plasma, and 
membrane-associated estrogen receptors (ERs).5 
Estrogen is among the most essential hormones 
in women and gets involved in the initiation, 
development, and maintenance of reproductive 
and physiological functions across the body tis-
sues.6 With the improved life expectancy and the 
high prevalence of postmenopausal metabolic 
dysfunction, the beneficial effect of estrogen 
(mainly referred to estradiol) on central and 
peripheral energy balance has gained extensive 
attention. In this study, we review how estrogen 
contributes to bioenergetic systems in the  
brain and whole body through ERs signaling in 
women. Besides, the choice of a particular 
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regimen, dosage, and timing of estrogen therapy 
have been discussed, with a special emphasis  
on its regulation of metabolism and clinical 
implications.

Estrogen and ERs
Estrogens refer to C18 steroids that are derived 
from cholesterol, catalyzed by the enzyme aro-
matase, and converted from the C19 precursor, 
androgen. The aromatase is detected in various 
human tissues, such as ovarian granulosa cells, adi-
pose and skin fibroblasts, placental syncytiotroph-
oblast, brain, and bone.7 With the highest affinity 
to ERs, E2 is primarily secreted by ovarian granu-
losa cells in premenopausal women. E1 and E3 are 
the metabolites of E2, both of which are much less 
potent than E2.8 E1, as the main estrogen after 
menopause, is synthesized in peripheral adipose 
and skin tissue with precursor androstenedione 
produced by the adrenal cortex. E3 is mainly pro-
duced by the placenta in pregnant women (Figure 
1). Orally ingested exogenous estrogen first passes 
from the intestine to the liver and is rapidly 

metabolized into less potent E1 before reaching 
the specific tissue.9 The first pass decreases the 
estrogen level in circulation and affects other liver 
metabolic functions (i.e. coagulation and lipid 
metabolism).10 Later, metabolized estrogen in the 
gut is reabsorbed into circulation through entero-
hepatic circulation with the help of enteral bacte-
rial flora. Coadministration with drugs that disrupt 
the gut microbiota, such as antibiotics, may inhibit 
the effectiveness of estrogen replacement ther-
apy.11,12 Therefore, it is essential to individually 
design the route of administration of estrogen 
replacement therapy and evaluate specific com-
bined medication to avoid drug–drug interaction.

Estrogen signaling is mediated by ERs, which 
belong to the superfamily of nuclear receptors and 
act as ligand-activated transcription factors 
(TFs).13 ERs have two subtypes: ERα and ERβ. 
The human ERα is located on chromosome 6 and 
composed of 595 amino acids, whereas ERβ  
is located on chromosome 14 with 530 amino 
acids. Both of them share similar structural and 
functional features, with six distinct domains. 

Figure 1. Schematic representation of biosynthesis of estradiol (E2), estriol (E3), and estrone (E1). E2, with the 
highest affinity to ERs, is primarily secreted by ovarian granulosa cells in premenopausal women. E1 and E3 
are the metabolites of E2, both of which are much less potent than E2. Besides, E1 is the main estrogen after 
menopause synthesized in peripheral adipose and skin tissue, while E3 is mainly produced by the placenta in 
pregnant women.
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There are two highly conserved regions, in which 
one is the DNA-binding domain (region C) with 
97% amino acid homology between the ERs, and 
the other is the ligand-binding domain (region E 
with 56% identity) harboring a hormone-binding 
site with a dimerization interface and ligand-
dependent transactivation function (AF-2).14 The 
distribution of ERs is tissue biased and cell spe-
cific. Although both ERs are widely expressed in 
the brain and nearly all tissues of the body, ERα is 
predominate in the uterus, hypothalamus/pitui-
tary gland, breast, liver, skeletal muscle, bone, and 
adipose tissue (AT) where ERβ plays a subordi-
nate role, whereas ERβ is considered to be critical 
in ovary, gastrointestinal, cardiovascular and cen-
tral nervous systems (CNSs), etc.15 Even in a sin-
gle tissue (e.g. in the ovary), ERα is predominant 
in theca cells and ERβ is found in granulosa cells.16 
Thus, the differential expression of the ERs is also 
the foundation for exploring selective estrogen 
receptor modulators (SERMs), which bind to a 

certain subtype of ERs to induce either agonist or 
antagonist effects.17 Monomeric ER is activated 
by E2 to form homo- or heterodimer regulating 
followed transcription. In heterodimer, ERα is 
reported as the dominant partner.18

Estrogens are lipid-soluble and easily diffuse 
through the cell and nuclear membrane, attaching 
to dimerized ERs at the nuclear, mitochondria, 
and the peri-membrane (Figure 2).19 ER-mediated 
nuclear signaling, as the classic cellular response 
to E2, includes two different models occurring 
within hours. Estrogen response element (ERE)-
dependent signaling pathway is that E2-activated 
dimerized ERs directly bind to ERE on the pro-
motor of target protein regulating transcriptional 
responses. The other ERE-independent signaling 
pathway is that E2-activated ERs modulate spe-
cific TFs (such as Fos/Jun) or activator protein 1 
(AP-1) and bind to the TF/AP-1 response ele-
ment of the target protein indirectly regulating 

Figure 2. Overview of intracellular 17β-estradiol (E2) signaling. E2 signaling is mediated by ERs, which 
include two typical isoforms, ERα and ERβ. (a) Genomic signaling involves two different models occurring 
within hours. E2-activated dimerized ERs directly bind to nuclear ERE on the promotor of target protein 
regulating transcriptional responses, or modulating specific transcription factors or activator protein 1 
indirectly regulating transcriptional responses. (b) Nongenomic ERs rapid signaling occurs within minutes or 
seconds across the plasma membrane. Member-embedded ERs or G protein-coupled ER (GPR30) are initiated 
by E2 and subsequently activate multiple signaling pathways, such as Src, MAPK, and AKT signaling cascades, 
to induce downstream ion fluxes and protein kinases activation. Mitochondria is also the target organelle of 
E2, where both ERα and ERβ are localized for maintaining cellular bioenergetics. Mitochondrial DNA contains 
ERE-like sequences, which is activated by E2-ER to regulate mitochondrial function.
ER, estrogen receptor; ERE, estrogen response element.
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transcriptional responses.20 In comparison to 
ERα, ERβ has a lower affinity to ERE.21 Except 
for the above genomic signaling, extranuclear 
events are mediated by nongenomic ERs rapid 
signaling that occurs within minutes or seconds 
across the plasma membrane. With the exposure 
of E2, member-embedded ERs or G protein-cou-
pled ER (also called GPR30) are initiated and 
subsequently activate multiple signaling pathways, 
such as Src/ phosphatidylinositol-3-kinase (PI3K), 
Ras/Raf/MEKK/ extracellular signal-regulated 
kinase (ERK), mitogen-activated protein kinase 
(MAPK)/ERK, PI3K/protein kinase B (AKT), 
cAMP/ Protein kinase A (PKA), and JNK signal-
ing cascades, to induce downstream ion fluxes and 
proteins kinases activation.22–24 Here, whether 
GPR 30 is a kind of member ER or a kind of G 
protein coupled with the original ER remains con-
troversial.25,26 In recent years, other types of mem-
brane estrogen receptors (mERs) have been 
reported. ER-X is reported as a new plasma mem-
brane-associated estrogen-binding protein that 
participates in estrogen-activated MAPK cascades 
to alleviate brain injury.27 Gαq-coupled mER 
(Gαq-mER) activated by E2 or selectively tar-
geted by STX, a diphenylacrylamide compound 
that does not bind to either ERα or ERβ, modu-
lates the gamma-aminobutyric acid type B signal-
ing and induces both opposite effects on 
hypothalamic orexigenic and anorexigenic neu-
rons.28,29 Recent evidence shows that mitochon-
dria are also the target organelles of E2 where both 
ERα and ERβ are localized for maintaining cellu-
lar bioenergetics.19 Meanwhile, mitochondria 
DNA (mtDNA) contains ERE-like sequences, 
indicating the regulation of E2 on mtDNA tran-
scription via ERs signaling. Despite a large num-
ber of studies, the molecular mechanism of E2 
signaling and the role of ERα or ERβ in regulating 
cellular events of phosphorylation, acetylation, 
glycosylation, and ubiquitination is still a develop-
ing area of investigation.

Estrogen and central energy homeostasis
Many different cell types in the human brain, 
including astrocytes and neurons, may express aro-
matase.30 Thus, E2, as an important modulator of 
central bioenergetics, may exert its effect by cross-
ing the blood–brain barrier (BBB) into the brain 
from the peripheral circulation, or being made from 
cholesterol within the brain.31 ERα and ERβ, which 
serve different roles in the brain, are widely 
expressed in the hypothalamus, hippocampus, 

neocortex, preoptic area, septum, amygdala, and 
the periaquaductal central gray.32 The central bio-
energetics system is modulated by E2 signaling 
mainly via (1) regulating glucose metabolism (the 
predominant preference in the brain) and provid-
ing adenosine triphosphate (ATP) and precursors 
for sustaining physiological brain function and (2) 
controlling the energy balance between energy 
expenditure and energy intake.33

Estrogen regulation of central glucose 
metabolism
As revealed by recent clinical studies, heightened 
estrogen levels are correlated with increased cere-
bral glucose utilization, thereby affecting cognitive 
and behavioral functions.34–37 Estrogen induces a 
series of nongenomic signaling pathways includ-
ing MAPK, PI3K/AKT, c-Fos, Protein kinase C 
(PKC), and Ca2+ influx in the brain to sustain 
mitochondria function and regulate the glucose 
transports (GLUTs) into the cell, aerobic glycoly-
sis (glycolysis coupled to the citric acid cycle) 
derived oxidative phosphorylation and ATP 
generation.24,38,39

Glucose enters into the brain from the blood by 
utilizing its concentration gradient, which propels 
glucose-facilitated transport across the plasma 
membrane via GLUTs. GLUTs consist of three 
subfamilies with a total of 13 family members 
(GLUT1-12 and H+/myo-inositol transporter), 
among which GLUT1 and GLUT3 are found 
most popular in the brain, while other isoforms, 
such as GLUTs 4, 6, 8 have also been detected in 
brain with minor expression.40 Neuronal energy 
deficit brought on by GLUTs may play an impor-
tant role in AD development.41 Meanwhile, sci-
entific evidence from animal studies suggests a 
potential protective mechanism of estrogen asso-
ciated with GLUTs. Ovariectomy (OVX) may 
directly decrease the GLUT1 and GLUT3 
expression in the rat’s brain and cause impaired 
insulin sensitivity and oxidative stress.42,43 In vivo 
treatment with E2 demonstrates a notable aug-
mentation in the uptake of 2-deoxy-[14C]glucose 
into the BBB endothelial cells of ovariectomized 
female rates, implying that the observed effect of 
E2 is attributable to its regulatory influence on 
GLUT-1 mRNA and protein expression.44 Given 
that GLUT is insulin sensitive, so the neuropro-
tective estrogen upregulates insulin growth fac-
tor-1 (IGF-1) signaling via the synergistic effect 
of ERs and IGF-1 receptor, activates MARK and 
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PI3K cascades, and increases the GLUT3,4 
expression in cerebral cortical neurons of ovariec-
tomized rhesus monkeys.45

It has been reported in wild-type mice with an 
age-dependent decline of aerobic glycolysis 
enzymes and a concomitant decrease in lactate. 
Lactate is the metabolite of aerobic glycolysis and 
the substrate fuel for aerobic respiration that is 
associated with memory consolidation in the 
frontal cortex.46 E2 promotes neuronal aerobic 
glycolysis by activating hexokinase (HK), phos-
phofructokinase, and pyruvate kinase within 4 h 
in rat brains.47 While HK is considered to bind to 
voltage-dependent anion channel directly cou-
pling intramitochondrial ATP synthesis, E2 has 
been announced to activate Akt, increase HK 
activity and herein, and trigger enhanced glucose 
metabolism in vitro study.2,48,49 As shown by addi-
tional evidence, E2 enhances glycolytic activity by 
increasing aconitase, decreasing malate dehydro-
genase, and increasing glutamate dehydrogenase 
and glutamate oxaloacetate transaminase-2 in 
ovariectomized female rat.50

Furthermore, the E2 signal has been identified as 
one of the major signals that converge upon mito-
chondria to exert its neuroprotective effect. 
Mitochondria malfunction may cause many neu-
rocognitive and neurodegenerative disorders, 
such as AD, depression, and anxiety, which show 
a sex-specific prevalence.51–54 Proteomic analysis 
of brain mitochondria of female rats indicates that 
E2 regulates the expression of pyruvate dehydro-
genase (PDH), a pivotal enzyme that transforms 
the pyruvate to acetyl CoA, provides substrate in 
the citric acid cycle, concomitantly increases oxi-
dative phosphorylation and ATP synthase, and 
decreases β-oxidation.50 According to another  
in vivo data, E2- and progesterone-treated rats 
brain mitochondria display enhanced respiratory 
function coupled with increased expression of the 
electron transport chain complex IV (cytochrome 
C oxidase).55 Notably, the research by Irwin 
et  al.56 demonstrates that medroxyprogesterone 
acetate (MPA) inhibits the upregulation of brain 
mitochondrial activity by E2 and induces a 
decrease in the mitochondrial expression of PDH, 
cytochrome oxidase, ATP synthase, manganese-
superoxide dismutase, and peroxiredoxin V in 
ovariectomized female rats, suggesting that differ-
ent hormone regimens may exert opposing effects 
on mitochondria function.56 Moreover, animal 
data show that E2 has a protective effect on the 

mitochondria against the accumulation of amy-
loid beta and hyperphosphorylation of tau, which 
is involved in increased mitochondrial calcium 
uptake and decreased ATP production.57 
Excessive intracellular calcium rise of hippocam-
pal neurons in rat fetuses may promote glutamate 
excitotoxicity, which is attenuated by E2 treat-
ment via improvement of the mitochondrial 
sequestration of cytosolic Ca (2+) coupled with 
an increased expression of anti-apoptotic protein 
Bcl-2 to sustain the Ca(2+) load tolerance.58

Both ERα and ERβ were examined with SERMs 
in animal experiments, each of which displayed 
an independent capability in upregulating the 
mitochondria proteins. Targeting ERβ exhibits 
greater efficacy in mitochondrial respiration.59,60 
Recent studies have also highlighted the role of 
ERβ in triggering more sensitive mitochondrial 
calcium permeability in females than in males.61

Due to the pivotal function of mitochondria in 
central bioenergetics, many studies have been 
conducted to develop pharmaceuticals targeting 
the complex mechanism of mitochondria.62 
Currently, the treatment of neurodegenerative 
disorders by mitochondrial transplantation is also 
a hot topic.63 However, it is noteworthy that many 
discoveries are based on animal research, raising 
questions about whether they can actually be 
applied to humans.

Estrogen regulation of central appetite and 
energy expenditure
Energy homeostasis, a delicate balance between 
energy expenditure and energy intake, is regu-
lated by two coordinated networks, namely home-
ostatic and hedonic neural circuits.64 Homeostatic 
regulation of energy balance is mainly reliant on 
hypothalamic and brainstem-associated neuronal 
populations, including those in the arcuate 
nucleus (ARC), lateral hypothalamus (LH), ven-
tromedial nucleus (VMN), dorsomedial nucleus, 
and paraventricular nucleus, which are modu-
lated by E2 signaling, activate ER, and Gαq-mER 
to trigger later signaling cascades involving PI3K, 
PKC, PKA, and neuronal nitric oxide synthase, 
deliver orexigenic or anorexigenic signals to stim-
ulate, or suppress the energy intake and the energy 
expenditure65 (Figure 3). ERα is dominant in 
hypothalamic metabolic regulation.66 The ERα 
mutant mice that only signal via nonclassical 
pathways are shown to be sufficient for restoring 
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metabolic deficit to normal or near-normal  
values, indicating that the membrane-based  
signaling pathway also plays a pivotal role in 
maintaining energy homeostasis.28,67

Evidence shows a gender difference in food crav-
ings, binge eating disorders, and obesity.68 Women 
are 3% more likely to be overweight than men. In 
addition, female food consumption fluctuates 
across the menstrual cycle, as observed by preclini-
cal and clinical studies. Women in the luteal phase 
present an increased food craving and eating behav-
ior with a lower E2 level compared with the follicu-
lar phase.69 As suggested by animal experiments, 
E2 might attenuate the cannabinoid-induced hypo-
thermia, hyperphagia, and the decrease in gluta-
matergic neurotransmission at proopiomelanocortin 
(POMC) neurons in the ARC of ovariectomized 
female guinea pigs.70 POMC neurons, impinged by 
steroidogenic factor-1 neurons in the VMN, are 
critical anorexigenic synapses. From the data on 
mice and rats, it could be observed that the acti-
vated POMC neurons release satiety mediator α-
melanocortin stimulating hormone signaling 

(α-MSH), β-endorphin, as well as co-express 
cocaine- and amphetamine-regulated transcript, 
which are involved in the glucose metabolism.71,72 
Conver sely, together with agouti-related peptide 
(AgRP) co-expressing neurons in ARC, neuropep-
tide Y (NPY) promotes the central orexigenic or 
appetite-stimulating effect, ultimately inducing 
feeding and reducing energy expenditure through 
the inhibition of POMC/α-MSH signaling.73 As 
elucidated by studies, NPY neurons can be modu-
lated by E2. For example, increased NPY expres-
sion induced by OVX can be reversed by E2 
administration in rats.74 Due to its location, the 
ARC is in direct contact with circulating hor-
mones, sustaining energy homeostasis through the 
communication of the energy status between the 
body and brain.65

In addition to ARC neurons, other hypotha-
lamic neurons also participate in E2’s regulation 
of homeo static energy balance. Melanin-
concentrating hormone (MCH) neurons are 
located in the LH area, receive inputs from NPY/
AgRP neurons in ARC, and synergistically induce 

Figure 3. Model of 17β-estradiol (E2)’s homeostatic regulation of energy balance in the brain. Brain regulation 
of energy homeostasis is mainly reliant on hypothalamic and brainstem-associated neuronal populations, 
including those in the arcuate nucleus (ARC), lateral hypothalamus (LH), ventromedial nucleus (VMN), 
dorsomedial nucleus, and the paraventricular nucleus, which are modulated by E2 signaling, and deliver 
orexigenic or anorexigenic signals to stimulate or suppress the energy intake and the energy expenditure. 
Proopiomelanocortin (POMC)/cocaine- and amphetamine-regulated transcript neurons and neuropeptide Y 
(NPY)/agouti-related peptide (AgRP) neurons in ARC may regulate the body energy status through POMC/α-
melanocortin stimulating hormone signaling. POMC neurons are impinged by steroidogenic factor-1 neurons 
in the VMN, while NPY/AgRP neurons project to melanin-concentrating hormone neurons in LH. Nucleus 
tractus solitarius in the brainstem, which receives abdominal vagal afferent projections activated by the 
peptide cholecystokinin, may modulate the feeding inhibition effect via E2 signaling.
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the orexigenic effect. MCH is upregulated when 
E2 is low.75 As claimed by Musatov et al.,76 site-
specific silencing of ERα in the ventromedial hypo-
thalamus (VMH) decreases the E2-induced energy 
expenditure and leads to weight gain and visceral 
fat accumulation in female mice and rats.76 
Another animal study indicates that the feeding 
inhibition effect may also be mediated by ERα 
signaling in nucleus tractus solitarius, an area of 
the brain that receives abdominal vagal afferent 
projections, which may be activated by the peptide 
cholecystokinin, released by duodenal I cells.77

Alongside the homeostatic neural circuits, energy 
homeostasis is also modulated by hedonic feeding 
behavior, namely reward-based food intake. 
Multiple evidence suggest that reward and drug 
addiction converge upon a common pathway to 
mediate motivated behavior within the limbic sys-
tem.78,79 The hedonic regulation of feeding is reli-
ant on the mesolimbic dopamine (A10) neurons 
that emanate from the ventral tegmental area 
(VTA) and project onto other regions, including 
the nucleus accumbens, prefrontal cortex, hip-
pocampus, and amygdala. ERs are expressed in 
VTA. Activation of ERα enhances the ethanol-
induced VTA sensitivity and causes binge-like 
alcohol drinking by female mice, not males.80 
Women present more rapid drug addiction and 
greater withdrawal response, due to increased 
dopamine release by E2 stimulation in the dorso-
lateral striatum, but not in nucleus accumbens.81 
Interestingly, intra-VTA microinjection of E2 
conversely shows a significant decrease in food-
motivated behavior of female rats.82 Therefore, 
these variable results between the drug versus 
food rewards in women, as well as the sex differ-
ences in motivated behavior, promote us to fur-
ther explore the role of estrogen in regulating 
hedonic feeding behavior.

Estrogen and peripheral energy 
homeostasis
In addition to the brain, estrogen is closely related to 
energy homeostasis in the whole body. During the 
reproductive age, the average level of circulating E2 
is 100–250 pg/mg. However, along with the cessa-
tion of oocyte production, the E2 level declines up 
to 10 pg/ml.83 Clinically, menopause is diagnosed 
with 12 months of amenorrhea following the final 
menstrual period. Epidemiological studies spanning 
35 countries reported that the overall average age of 

menopause for women with natural menopause is 
48.8 years, with regional differences.84 The change 
in E2 with the menopausal transition may be related 
to a series of dysregulation of peripheral lipid and 
glucose metabolism, which affects the body weight, 
body fat redistribution, fatty acid metabolism, vari-
ous lipid profiles, and adipokines circulating in 
serum, and leads to an increase in the development 
of type 2 diabetes mellitus, hypertension, and car-
diovascular diseases in postmenopausal women.85

Estrogen, obesity, and adiposity
Obesity, defined as the body mass index (BMI, 
weight in kg/height in m2) ⩾30, resulted from an 
imbalance between energy expenditure and 
energy intake. It was reported that women are 
twice as likely to suffer from obesity than men 
worldwide.86 Earlier, it is commonly believed that 
weight gain in postmenopausal women is attrib-
uted to estrogen deficiency.87 However, accord-
ing to the 2016 Guideline of the International 
Menopause Society, multiple studies have obtained 
consistent results that the weight gain seen in 
midlife women is attributed to aging and environ-
mental factors, such as inactivity, urbanization, 
higher parity, etc., not menopause.88 Instead, the 
alternation of the E2 milieu at menopause is 
mainly associated with a significant increase in 
total fat mass and abdominal obesity, especially 
visceral adipose deposition.89,90 Abdominal obe-
sity, defined as a raised waist circumference, is 
confirmed to be associated with higher cardiovas-
cular mortality compared with high BMI-defined 
obesity.4,91,92

The distribution of regional AT is different 
between women versus men. The sexual dimor-
phism in total fat distribution is attributed to sex-
linked genes.93 Premenopausal women hold a 
relatively healthier glutei-femoral pattern of fat 
accumulation than age-matched men. After men-
opause, women experience a significant increase 
in total fat mass and redistribution of AT, result-
ing in a high risk of abdominal obesity. Although 
the underlying process is not yet fully understood, 
some studies have suggested that postmenopausal 
visceral and non-subcutaneous AT fat deposition 
is caused by tissue-specific control of estrogen 
through ERs signaling.94,95 Another study pro-
posed that E2 exerts a lipolysis effect by upregu-
lating α2A-adrenergic receptors in human 
subcutaneous AT, rather than visceral AT.96

https://journals.sagepub.com/home/tae


TherapeuTic advances in 
endocrinology and Metabolism Volume 14

8 journals.sagepub.com/home/tae

Both ER isoforms are present in human AT, but 
their distribution is not equal, with a large pre-
dominance of ERα expression. For instance, it 
was reported from a study of overweight-to-obese 
premenopausal women that ERα is dominant in 
abdominal subcutaneous AT, whereas ERβ is 
dominant in gluteal fat.97 As suggested by animal 
research, the age-associated E2 deficiency alters 
the ERα/β ratio to greater ERβ in visceral AT of 
rats and causes increased adiposity.98 Apart from 
that, the expression of ERα is identical between 
sexes, whereas ERβ level is higher in women than 
in men. In an In vitro study, E2 upregulates both 
ERα and ERβ expression in female subcutaneous 
adipocytes, but only ERα expression in both sub-
cutaneous and visceral adipocytes in men.99 In 
addition, ERα but not ERβ-deficient male mice 
develop obesity after sexual maturation.100 This 
sex dimorphism in the distribution of ERs may 
explain the android and gynoid body shape 
between men and women. ERs mediate crucial 
estrogen signaling pathways in both women and 
men. Notably, the distinct estrogen levels, tissue-
specific distributions of ERs, and intricate inter-
actions with other hormones, such as testosterone, 
bestow distinct physiological and developmental 
effects in each sex.101,102

It was previously believed that ERα and ERβ  
perform opposing roles in the metabolism of glu-
cose and lipids.103 As demonstrated by Davis 
et al.,104 selective ERα silence in AT of adult mice 
increases adiposity and inflammation. Another 
piece of evidence indicates that ERα signaling has 
a protective effect on white AT of both sexes, and 
ERα-knockout (αERKO) mice show enhanced 
fat accumulation, namely adipocyte hypertrophy 
and hyperplasia.105 The observations discussed 
above lead to certain speculation that with the 
absence of ERα, this unhealthy adipose pheno-
type may be regulated through ERβ signaling.2 
With a deepened understanding of ERβ, positive 
results have been reached in some investigations 
that specifically address the topic.106 The activa-
tion of ERβ may lead to an anti-obesity develop-
ment with increased mitochondrial function and 
energy expenditure in brown AT of mice, as men-
tioned by Ponnusamy et  al.107 According to the 
research of Yepuru et al.,108 ER-β-selective ligands 
reduce the fat mass in an animal model of OVX- 
and high-fat diet-induced obesity.108 The conclu-
sion of these studies supports that both ERα and 
ERβ participate in the anti-lipogenic action of 
estrogens and may have overlapping yet unique 

roles.109,110 To limit lipogenesis, E2 may also mod-
ulate the synthesis of adipose depot Lipoprotein 
lipase.111 Moreover, vascular endothelial growth 
factors and peroxisome proliferator-activated 
receptor gamma (PPARγ) are involved in the reg-
ulation of E2 signaling in lipid deposition.111,112

Estrogen regulation of glucose profile
Insulin plays a pivotal role in maintaining central 
and peripheral glucose metabolism in women. 
The EPIC-InterAct study concluded that meno-
pause occurring before 40 is associated with a 
higher risk of type 2 diabetes than that after the 
age of 50.113 E2 mediates a protective effect 
against diabetes and AD by regulating insulin 
biosynthesis and release, insulin sensitivity, and 
pancreatic β-cell preservation.

In pancreatic islets, it was reported that postmen-
opausal women have a relatively lower insulin 
secretion, insulin elimination, and plasma 
C-peptide response compared with premenopau-
sal women, whereas there is no significant varia-
tion in fast plasma glucose and insulin 
concentration between them.114 Exposure to 
physiological level E2 may increase the β-cell 
insulin release, insulin content, and gene expres-
sion without the changes of pancreatic β-cell 
mass, according to the mice experiment by 
Alonso-Magdalena et al.115 Consistent with these 
findings, in rodent models, E2 treatment also 
attenuates the type I and II diabetes-induced oxi-
dative stress, lipotoxicity, and amyloid polypep-
tide toxicity in pancreatic β-cell.20 The pancreatic 
β-cells of both humans and rodents express ERα, 
ERβ, and GPER. The protective effect of E2 on 
pancreatic islets is sustained mainly through a 
rapid extranuclear pathway involving Src, ERK, 
and NeuroD1.20,116,117

Insulin resistance is a status in which pancreatic 
islets pathologically hyper-secrete insulin to 
induce glucose uptake, and it is primarily associ-
ated with abdominal obesity. Therefore, 
E2-replete women with regular menstruation pre-
sent higher insulin sensitivity normalized to lean 
mass than the age-matched men.109,118 The study 
by Kim et al.119 also suggested that insulin resist-
ance varies depending on the menopause status. 
E2 improves insulin resistance, resulting in 
decreased glucose uptake in insulin sensitivity 
organs, especially AT and skeletal muscle.120 
Skeletal muscle is known as the primary tissue 
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responsible for oxidative metabolism and glucose 
disposal. Saengsirisuwan et  al.121 reported that 
OVX mice have lower insulin-activated GLUT in 
skeletal muscle and exhibit features of insulin 
resistance syndrome. According to a later study by 
Ribas et al.,122 muscle-specific αERKO mice are 
associated with impaired glucose homeostasis and 
increased adiposity with dysfunctional mitochon-
dria in muscles. Both ERs are expressed in skeletal 
muscle, with ERβ predominating in mice.123 ERα 
and ERβ exert varying effects on GLUT4 expres-
sion. Barros et al.124 reported that ERβ has a sup-
pressed role in GLUT4 expression in muscles, 
which could contribute to insulin resistance in 
male mice. Gorres et al. stated that ERα agonist 
PPT enhances the GLUT four expression, insulin 
action, and glucose uptake in skeletal muscles of 
OVX mice.125 Hence, compared with ERβ, the 
positive role of ERα in glucose metabolism in skel-
etal muscle is relatively clear. In addition, another 
essential strategy to treat insulin resistance is to 
eliminate the excess free fatty acids (FFA) in the 
liver that are released from the abdominal visceral 
fat depot. αERKO mice show significant hepatic 
insulin resistance with upregulating in hepatic 
lipid biosynthesis and downregulating lipid trans-
port.126 Consistent with this observation, E2 treat-
ment of the high-fat diet mice has decreased body 
weight, improved glucose tolerance and insulin 
sensitivity closely correlated to suppressed lipo-
genic genes in white AT and liver, and decreased 
hepatic expression of glucose-6-phosphatase.127 
The animal experiment by Gao et al.128 indicated 
that E2 administration improves glucose tolerance 
and insulin sensitivity to glucose in ob/ob mice 
through activating hepatic ERα/Stat3 signaling.128 
Therefore, it is speculated that E2 deficit influ-
ences glucose homeostasis in the whole body, 
especially AT, skeletal muscle, and liver accompa-
nied by impaired glucose utilization and ectopic 
lipid accumulation.

Notably, several in vitro and in vivo studies have 
emphasized that E2 needs to stay within a certain 
physiological concentration to maintain insulin 
sensitivity, otherwise, excessive E2 level may con-
versely reduce GLUT4 expression in muscle and 
overproduce insulin signaling, which subsequently 
provokes insulin resistance in the muscle and liver, 
as well as β-cell exhaustion.129,130 Postmenopausal 
high endogenous E2 level is associated with insu-
lin resistance, glucose tolerance, and development 
of type 2 diabetes.131–134 Interestingly, hormone 

therapies on postmenopausal women or surgically 
ovariectomy primates show different conse-
quences: conjugated equine estrogens (CEE) 
alone have a beneficial effect on adipocyte size 
with no other adverse effects, whereas additional 
adding dose-dependent MPA may harm insulin 
resistance.135–137 Therefore, the question of 
whether there is a maximum concentration at 
which estrogen may exert a positive effect is still 
open. The underlying mechanism of E2 in regu-
lating glucose homeostasis is not fully understood, 
particularly given the disparate research sam-
ples, multiple types and routes of hormone ther-
apy, and various testing standards for insulin 
resistance.

Estrogen regulation of lipid profile
Another noticeable adverse change arising with 
menopause is the dysregulation of lipid metabo-
lism in the liver and plasma lipid profile, which 
accelerates the process of fatty liver and athero-
sclerotic plaque formation with an increased risk 
of later cardiovascular diseases.

The Study of Women’s Health Across the Nation 
(SWAN), which recruited 3302 women aged 
from 42 to 52 in 1996 with 17 visits through 
2017, reported a sharp increase in apolipoprotein 
B, low-density lipoprotein cholesterol (LDL-C), 
total cholesterol (TC), triglycerides (TGs), 
lipoprotein(a) in late peri- and early postmeno-
pausal stage, as well as high-density lipoprotein 
cholesterol (HDL-C). Subsequently, serum 
HDL-C levels gradually flatten till late post-men-
opause.138,139 Consistent with the SWAN study, 
elevated LDL-C, TGs, and TC levels were well 
recognized to be associated with menopause sta-
tus in many other studies.140,141 However, the 
conclusions about changes in HDL-C during 
menopause are inconsistent, with some studies 
that report HDL-C to be maintained or slightly 
decreased.138,142,143 As argued by Anagnostis 
et al.,144 postmenopausal women have a more ath-
erogenic lipid profile with lower HDL-C subfrac-
tions 2 compared with premenopausal women. 
According to Zago et  al.,143 increased oxidized 
HDL in postmenopausal women leads to an 
impaired protective effect against LDL oxidation, 
which is independent of HDL-C plasma levels. 
Hence, measured serum HDL-C level may not 
fully reflect other metrics of HDL related to men-
opause alterations.145
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The circulating lipid profile is usually not directly 
absorbed from the gut but released into the blood 
after being processed by various tissues, especially 
the liver. The liver is the most important organ 
where TG, TC, and fatty acids are regulated to 
meet the physiological needs of the whole body. 
During the menopausal transition, increased FFA 
releases from AT, then transports to the liver to 
accelerate the synthesis of TGs rich very-low-den-
sity lipoprotein (VLDL) particles and subsequently, 
leads to enhanced export of VLDL-TGs in the 
liver, as well as the VLDL-TGs clearance rate.146,147 
More than 1000 human liver genes have a sex-
biased expression, especially the genes related to 
lipid metabolism and cardiovascular diseases, indi-
cating that the liver is the primary target organ of 
E2.148,149 Meanwhile, ERs coupling lipid metabo-
lism in the liver was reported to associate with the 
reproductive cycle in a mouse model.150 As men-
tioned by several studies, oral administration of 
micronized estradiol increases VLDL production, 
whereas transdermal E2 has no influence on VLDL 
production, suggesting that hepatic processing is 
the primary cause of VLDL-TGs elevation due to 
estrogen action.147 Both genomic and nongenomic 
signaling get involved in the E2’s regulation of the 
liver. Chen et al.151 claimed that the knockdown of 
estrogen-related receptor γ in mice reduces the 
hepatic VLDL-TGs secretion and leads to lipid 
accumulation in the liver with non-alcoholic fatty 
liver disease, which is mediated via phospholipase 
A2G12B. E2 treatment with hepatic knockout 
ERα plus OVX mice has no protective effect against 
insulin sensitivity, lipogenesis, and liver TGs 
export. However, the mice do not develop adipos-
ity, which may be reliant on the maintenance of E2 
signaling in the CNS and other tissues.152

E2 is also supposed to have a protective effect 
against fatty plaque formation by regulating cho-
lesterol biosynthesis, uptake and reverse choles-
terol transport (RCT) from peripheral tissues 
back and excreted by bile. The RCT is performed 
by HDL, which inhibits the accumulation of 
LDL-C. As suggested by Pedram et al.,153 E2 ago-
nist PPT activates the membrane ERα signaling 
to induce adenosine monophosphate-activated 
protein kinase to phosphorylate sterol regulatory 
element-binding factor 1, and consequently pre-
vents the cholesterol content synthesis in the mice 
liver. Furthermore, HDL mediates cholesterol 
efflux from foam cells. The cholesterol and cho-
lesteryl esters are removed either directly through 
the hepatic scavenger receptor class B member I 

or transferred via cholesteryl ester transfer pro-
tein to LDL particles. Furthermore, free choles-
teryl is released and excreted by bile.154 According 
to the work by Wang et al.,155 E2 stimulates E2/
ERα/SREBP-2 pathway in mice to increase the 
cholesterol secreted into bile.

Estrogen regulation of adipokine

Leptin
Leptin is a protein hormone produced mainly by 
white adipocytes. The secretion of leptin is pro-
portional to the adiposity of the body. Crossing 
the BBB, leptin may regulate the central food 
intake and energy expenditure with receptors in 
the hypothalamus and brainstem.74,156,157 The 
leprb is the most important leptin receptor mainly 
located in VMH and ARC, which modulates vari-
ous aspects of energy homeostasis, such as glu-
cose balance, satiety, and hedonic eating.158 Both 
E2 and leptin are critical hormones in maintain-
ing the body’s energy homeostasis. However, 
many studies have different opinions over whether 
there is a cross-talk in CNS between E2 and lep-
tin. As pointed out by Bennett et  al.,159 E2 
decreases the expression of leptin receptors in the 
hypothalamus and the changes in total leptin level 
in rats are inversely proportional to circulating E2 
levels in the estrous cycle. Clegg et al.156 reported 
that adding E2 directly in the female rats’ brain 
increases intra-third ventricular leptin sensitivity. 
Springer et al. analyzed 20 PubMed/Medline arti-
cles about the relationship between hormone 
therapy, leptin, and adiposity in healthy postmen-
opausal women. As shown by the results, there is 
no solid evidence verifying that E2 treatment 
changes circulating leptin levels or improves  
leptin action in postmenopausal women.160 Kim 
et al.161 also shared a similar result in mice experi-
ment that E2 has a minimal direct effect on leprb 
in mediobasal hypothalamus. Independent of 
leprb/STAT3 signaling, E2 may still exert its ano-
rexigenic effects in female mice.161

Leptin regulates peripheral metabolic processes 
of glucose and lipids that are typically relevant to 
the pancreas, liver, skeletal muscle, ATs, immune 
cells, and cardiovascular system.162 It was 
reported that obese postmenopausal women have 
worse insulin resistance and elevated leptin 
level.163 Based on human data, Norata et al.164 also 
suggested that the leptin/adiponectin ratio is a 
stronger predictor of cardiovascular diseases than 
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single adipokine. The prospective, longitudinal 
study of Di Carlo et al. evaluated 44 healthy post-
menopausal women who randomly received 
either transdermal E2 plus nomegestrol or no 
treatment. As demonstrated by the results, serum 
leptin as well as the total and percent fat mass is 
significantly increased 1 year after the study in 
untreated women, while transdermal E2 treatment 
shows no changes in leptin as well as body mass 
throughout the study.165 Chu et al. compared oral 
and transdermal E2 treatment of obese postmeno-
pausal women with metabolic syndrome (MBS). 
The transdermal E2 group shows a similar result 
as the aforementioned study, whereas the oral 
E2-treated women have an increased leptin level, 
resulting in an increased leptin/adiponectin ratio 
with impaired insulin resistance.166 This once 
again indicates that different routes of E2 adminis-
tration should be selected according to each wom-
an’s individual condition of each woman.

Adiponectin
Adiponectin is an insulin-sensitive polypeptide 
hormone produced mainly by adipocytes.

Similar to leptin, the effect of adiponectin appears 
to be both centrally and peripherally mediated.167 
Multiple studies demonstrated that adiponectin 
has an anti-diabetic, anti-atherogenic, anti-
inflammatory, and anti-oxidative effect mediated 
primarily by two receptors, adipoR1 and adi-
poR2, which activate the downstream signaling, 
including 5’-adenosine monophosphate (AMP)-
activated protein kinase and PPARs.168–171 The 
action of adiponectin seems to be bidirectional 
modulated. Low adiponectin plasma levels are 
known to increase the risk of MBS, obesity, and 
cardiovascular diseases throughout the postmen-
opausal era.172,173 It was found that increased 
plasma adiponectin is an independent risk factor 
for the onset of AD and all-cause dementia in 
women in a large-scale study conducted in 
2012.174 De Franciscis et  al.175 also mentioned 
that serum adiponectin levels are associated with 
cognitive decline in postmenopausal women.175

Both leptin and adiponectin levels are higher in 
women than in men.162,176 According to one study 
of Africa America women, visceral AT is inversely 
associated with adiponectin level, but no correla-
tion is shown in men.177 In an in vitro experiment 
by Foryst-Ludwig et  al.,178 it was revealed that 
ERβ decreases the PPARγ transcription activity, 

which regulates adiponectin promoter in white 
AT. Whether the adiponectin level changes during 
the menopause transition, there is still no consist-
ent conclusion. Some studies reported a negative 
association of E2 with adiponectin level,179,180 
whereas others showed no significant difference 
in adiponectin levels between pre- and post-men-
opause women.181,182 Unlike leptin, Chalvatzas 
et al.183 argued that oral estrogen administration 
does not affect adiponectin levels, whereas Chu 
et al.166 suggested that adiponectin levels increase 
when transdermal E2 treatment is conducted on 
obese postmenopausal women with MBS.

Estrogen, timing, and hormone therapy
Menopause has long been considered a natural 
aging process in women along with menopausal 
disorders, such as hot flashes, night sweats, and 
insomnia, which affect not only the life quality 
but also long-term health with an improved inci-
dence of obesity, osteoporosis, urogenital tract 
atrophy, and cardiovascular diseases.184 From the 
first use of bovine ovarian for relieving menopau-
sal symptoms to today’s standard menopausal 
hormone therapy (MHT), the concept that wom-
en’s aging needs medical attention is gradually 
gaining popularity.88,185 However, the history of 
understanding estrogen supplements and MHT 
is full of twists and turns. The first severe blow in 
the use of estrogen supplements occurred in the 
1970s when it was reported that a sharply 
increased risk of endometrial cancer was associ-
ated with estrogen therapy.186 Later, this risk was 
counteracted by extra progestin addition in 
women with a uterus, which initiated the revival 
of MHT usage. However, in the 1990s, the 
famous Women’s Health Initiative (WHI) trial 
enrolled over 16,000 postmenopausal women, 
used conjugated estrogen plus MPA for women 
with an intact uterus and reported that MHT 
worsens the risk of breast cancer, pulmonary 
embolism, stroke, and coronary heart disease. 
Throughout the decade from 2000 to 2009, the 
long-term impact of the WHI caused a continued 
decline in MHT prescription, and the treatment 
regimen shifted to favor low-dose oral or vagina 
preparations.187 Furthermore, age-stratified anal-
ysis of the 13-year follow-up data in the WHI 
study yielded a more complete evaluation of 
MHT and proposed the ‘timing hypothesis’.188 
Women should initiate the MHT less than 
10 years after menopause or within 60 years of age 
so that the benefits of symptom control and 
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disease prevention outweigh the risks. Otherwise, 
MHT may stimulate different biological pro-
cesses of vascular endothelium, smooth muscle 
cells, and inflammatory cells on established ath-
erosclerosis inversely, leading to an increased risk 
of cardiovascular diseases.189,190

The concept of the ‘timing hypothesis’ also exists 
in E2’s protective effect against the development 
of AD.191,192 As pointed out by Brinton,193 MHT 
should begin early in menopause when neurons 
are still in a healthy state, otherwise MHT may 
have no benefits but lead to a detrimental effect 
on the brain.193 Henderson and Sherwin194 sug-
gested that although MHT should not be used to 
improve cognitive function, a short-term cogni-
tive benefit is observed when initiating MHT at 
the time of surgical menopause.194

As claimed by Li et al.,195 earlier puberty timing 
status is correlated with obesity. Later menarche 
was reported with a lower risk of type 2 diabetes 
and cardiovascular diseases (Zhang  et al., 2020; 
Qiu  et al., 2013).196,197 Another study focused on 
the timing of pharmacologic sex hormone use 
during pregnancy. Indeed, oral contraceptive or 
diethylstilbestrol (DES) use during pregnancy is 
strongly associated with offspring overweight, 
especially when the oral contraceptive is used in 
the first 2 months of pregnancy or DES is used 
between months 3 and 5.198 The above studies 
indicated that earlier elevated endogenous E2 lev-
els or earlier exposure to exogenous estrogen may 
cause long-term negative effects on the energy 
metabolism of the body.

In addition to timing, the type, dosage, and route 
of the MHT regimen are equally important.199 
Godsland reviewed 248 studies about the effect of 
different MHT formulations on lipid profile and 
found that in all cases, estrogen alone decreases 
LDL and TC, and increases HDL-C; oral estro-
gen increases TG, while transdermal estrogen 
lowers TG. In addition, adding different types of 
progestogens may have the opposite effect on the 
estrogen-induced increase in HDL and TG. 
Tibolone decreases HDL-C and TG levels.200 
The above beneficial effects on LDL-C, TC, 
lipoprotein(a), insulin resistance, and harmful 
effects on TG are attributed to the hepatic first-
pass effect.201 Therefore, different routes of 
administration may influence hepatic lipid metab-
olism and energy homeostasis.10 The ancillary 
Cognitive and Affective Study of the Kronos 

Early Estrogen Prevention Study also suggested 
that oral CEE has a beneficial mood effect, but 
transdermal CEE does not.202 Beyond that, Villa 
et  al.203 stated that for healthy postmenopausal 
women, 1 mg oral micronized estradiol supple-
ment has a favorable effect on insulin sensitivity, 
whereas it shows a neutral effect on lipid metabo-
lism, but 2 mg preparation impairs insulin sensi-
tivity and increases TGs, despite a favorable effect 
on LDL-C. The therapeutic consequences of 
hormones are not always dosage dependent.204

In an in vitro study by Perkins et al.,205 the pharma-
cological features of synthetic ethinylestradiol 
(EE), pure E2, E3, and E1 standards, as well as 
bioidentical estrogen (bE2 and bE3) were com-
pared through ERs.205 As shown by results, E2 and 
E3 standards have similar binding affinities to the 
bE2 and bE3, while E1 has a lower affinity for 
ERβ, and EE a higher affinity for ERα. Bhavnani  
et al.206 also claimed that E2, E1, and ring B unsat-
urated estrogen interact with human ERs with dif-
ferent affinities. The therapeutic effects of estrogens 
are mediated predominantly by ERα.207 However, 
ERβ and GPR30 may also play an important role 
in specific organs.208,209 New pharmacological 
tools, such as membrane-selective SERM, have 
been developed to activate membrane, without 
activating nuclear ER, so as to enhance vascular 
protection without increasing the risk of breast and 
endometrial cancer.210,211 The above-mentioned 
studies can provide ideas for the design of high-
affinity binding pharmacological tools that can 
selectively activate either genomic or nongenomic 
ER signaling in target organs.

However, there is still ongoing controversy about 
the MHT today. The healthcare provider pre-
scribing these medications must comprehensively 
review the mechanism of compounds, adverse 
effects, contraindications, and the potential risks 
before initiating therapy, to avoid exacerbating 
cardiovascular risk and the development of AD. 
Moreover, the main objective of MHT is to allevi-
ate menopausal symptoms. Although scientific 
evidence suggests that MHT may positively 
impact energy metabolism, it is important to note 
that it has not yet received approval for this spe-
cific indication.212

Conclusion
Throughout this paper, we have systematically 
reviewed the critical role of estrogen via ERs 
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signaling pathway in maintaining the overall energy 
homeostasis of the brain and the whole body. 
Cessation of the ovarian function with declined 
circulating E2 level leads to widespread changes in 
glucose and lipid metabolism. The adaption of 
women to menopause is individualized. Initiation 
of MHT at an early stage of menopause may effec-
tively enhance the metabolic rate, and attenuate 
the development of obesity, insulin resistance, type 
2 diabetes, fatty liver, and AD. However, the MHT 
remains a mixed picture of benefits and risks. 
Thus, more studies should be conducted to further 
explore the underlying molecular mechanism of 
E2 regulation, which may reveal an innovative 
pharmacological target for MHT beneficial action, 
and provide precise guidance on the type, dosage, 
and route of MHT usage.
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