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Abstract

Individuals differ in their cognitive resilience. Less resilient people demonstrate a greater tendency to vigilance decrements
within sustained attention tasks. We hypothesized that a period of sustained attention is followed by prolonged changes in
the organization of ‘‘resting state’’ brain networks and that individual differences in cognitive resilience are related to
differences in post-task network reorganization. We compared the topological and spatial properties of brain networks as
derived from functional MRI data (N = 20) recorded for 6 mins before and 12 mins after the performance of an attentional
task. Furthermore we analysed changes in brain topology during task performance and during the switches between rest
and task conditions. The cognitive resilience of each individual was quantified as the rate of increase in response latencies
over the 32-minute time course of the attentional paradigm. On average, functional networks measured immediately post-
task demonstrated significant and prolonged changes in network organization compared to pre-task networks with higher
connectivity strength, more clustering, less efficiency, and shorter distance connections. Individual differences in cognitive
resilience were significantly correlated with differences in the degree of recovery of some network parameters. Changes in
network measures were still present in less resilient individuals in the second half of the post-task period (i.e. 6–12 mins
after task completion), while resilient individuals already demonstrated significant reductions of functional connectivity and
clustering towards pre-task levels. During task performance brain topology became more integrated with less clustering
and higher global efficiency, but linearly decreased with ongoing time-on-task. We conclude that sustained attentional task
performance has prolonged, ‘‘hang-over’’ effects on the organization of post-task resting-state brain networks; and that
more cognitively resilient individuals demonstrate faster rates of network recovery following a period of attentional effort.
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Introduction

Many daily activities require the maintenance of attention over

long periods of time which causes behavioural performance to

deteriorate [1–3]. Performance decline comprises slowing of signal

detection and information processing, behavioural changes often

described as vigilance decrements [2]. In contrast, individuals

whose performance declines less rapidly as a function of time on

task can be described as cognitively resilient. In real life, humans

recover from vigilance decrements during rest periods (e.g.

between working shifts) with low cognitive demands. However, it

remains an open question whether long-lasting effects of sustained

attention following task performance reflect on-going changes in

the functional organization of resting state networks. It is also not

known if individual differences in cognitive resilience are related to

differences in post-task network reorganization.

There has been recent progress to describe the human brain as

a complex network of interconnected processing nodes [4,5].

Based on graph analytical approaches, previous studies docu-

mented that variations of functional network integration and the

topological efficiency of information transfer are correlated with

behavioural performance [6,7]. Studies investigating effects of

ageing documented that older people show poorer attentional

performance [8,9], and less integrated brain networks with higher

clustering and network cliquishness [10,11]. Similar results were

shown for ADHD children [12] and patients with Alzheimer’s

disease [13].

Previous studies documented the flexibility of the brain network

topology [14]. It was shown that the integration of brain networks

dynamically varied with different levels of task difficulty. However,

there is also support for the principle that the flexibility of the

brain is limited and that the processing of demanding tasks has

long-lasting impact on neural activations and brain networks,

possibly reducing the brain’s capacity to adapt to new task

demands. Duff et al. [15] and Waites et al. [16] compared resting

state (RS) fMRI data before and after task performance and
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reported changes in functional connectivity directly following task

performance. Further studies have shown that task induced

learning can modulate subsequent RS activity in specific task

relevant networks [17–19]. Results of Barnes et al. [20] revealed

that endogenous neural oscillations in local brain regions change

after a demanding task and need more than 400 sec to begin to

recover. Thus, there are hints that task performance can modulate

‘‘resting state’’ dynamics and networks in post-task fMRI data.

We acquired fMRI data during RS periods before and after a

vigilance task and used a graph analytical approach to investigate

long-lasting changes in functional brain topology induced by

sustained attention. We assumed that (i) prolonged attentional

performance leads to less integrated networks with more clustered

brain regions and a change from long-distance to short-distance

connections. Furthermore, we expected (ii) that altered network

attributes recover slowly after task processing and that (iii) network

recovery and individual task performance are correlated.

To further investigate possible mechanisms underlying these

long-lasting changes in network topology we also analyzed changes

in network topology during task performance. Our own work

suggests that cognitive fatigue and prolonged attentional perfor-

mance affect endogenous neural resting state activations [21].

Other studies revealed that endogenous neural activations persist

during task performance and contribute to the prediction of

behavioural performance [22]. Thus, we hypothesized that the

disintegration of endogenous brain networks already started

during task processing and that this process continued during

following resting state periods (especially in subjects with low

cognitive resilience and lower task performance). To investigate

endogenous changes in brain network topology which were not

directly correlated with changes in external stimulation we

compared different time periods of task processing in which the

participants performed the same task and in which their brain

system was externally pertubated with identical external stimula-

tions.

Materials and Methods

Subjects
Twenty healthy, right-handed subjects (11 female, 9 male;

mean age = 27.0 years, range 24 to 39 years) participated in the

experiment.

The study was approved by the ethics committee of the German

Psychological Association (http://www.dgps.de/, PI: Christiane

Thiel, registration number: CT05022008DGPS) and subjects

signed written informed consent.

Experimental Design
Each scanning session was divided into different time periods in

which either resting state (RS) or BOLD activations during task

processing were measured (see Figure 1). There were one RS block

before the task with 256 scans and one RS block following the task

with 512 scans. The second RS block was divided into two halves

so that in total three RS periods were analysed with 256 scans each

(equivalent to 6 min 24 s). During RS data acquisition subjects

were instructed to fixate a black fixation cross that was presented

in the centre of a light grey background. Studies which compared

RS periods with eyes open and eyes closed found differences in low

frequency BOLD fluctuations and connectivity measures within

visual brain areas [23,24]. In the current study we instructed

subjects to keep their eyes open in order to have similar visual

stimulation during the task and resting state conditions (see also

[23], p. 680).

Figure 1. Experiment design. Top: Order of the resting state (RS) and task periods (T) with the number of acquired whole brain scans. The task
was separated from the resting state periods by brief instructions. Task periods (T1 to T5) were continuously measured and later split up into five scan
periods with the same length. The post-task resting state period (RS2 and RS3) was also measured continuously and split up later for the analyses. The
changes from the first resting state period (RS1) to the first task period (T1) as well as from the last task period (T5) to the first post-task resting state
period (RS2) are referred to as ‘task switch’. Bottom: Scheme of the vigilance task during the task period. Participants were instructed to detect a red
fixation cross (here depicted in bold).
doi:10.1371/journal.pone.0074125.g001
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Vigilance Task
During the task period, subjects performed a visual vigilance

task in which a display with a central black fixation cross (the same

as used during the RS condition) and two additional flanker

windows were presented (Figure 1). Subjects were instructed to

detect a colour change of the central fixation cross from black to

red for 300 ms by pressing a response button as fast as possible. In

total 96 targets were presented in 32 min. The targets were equally

distributed over the experiment by presenting three target stimuli

per minute (with random interstimulus intervals within each

minute). In the flanker windows, five dots randomly moved with

low speed or were kept still. Both phases alternated every 24 s.

Subjects were instructed to ignore the flanker windows.

To investigate changes in network topology during task

processing fMRI scans acquired during task performance were

divided into blocks of 256 scans each, building five different task

blocks (T1 to T5). Within these task blocks subjects processed the

same trials with the same number of targets and the same number

of alternating ‘‘motion on’’ and ‘‘motion off’’ phases in the flanker

windows. The analysis of local task activations related to specific

task conditions were published previously [25].

Analysis of the Behavioural Data
The individual vigilance decrement of each subject was

estimated by the slope of a robust linear regression analysis with

the individual response latencies or reaction times (RTs) as

dependent variable and the series of attentional trial numbers as

independent variable. In contrast to standard linear regression

analysis in which each data point has equal influence on the least

square curve fit, robust regression analysis uses a bisquare

weighting function so that data points further apart from the

expected line get reduced weight. Robust fits are less affected by

outliers [26]. To take the between subject variance into account,

the twenty estimated slopes (one per subject) were further

investigated within a second-level one-sample t-test to show that

the mean slope averaged over subjects was different from zero

[27].

The Stanford Sleepiness Scale (SSS) [28] was administered

before and after the fMRI experiment (outside the scanner) to

measure subjective feelings of fatigue on a 10-point scale.

Individual SSS scores were compared (before vs. after the fMRI

experiment) using two-tailed paired t-tests.

FMRI Data Acquisition
Functional and structural images were acquired on a 1.5 Tesla

MRI scanner (Siemens MAGNETOM Sonata, Siemens AG,

Erlangen, Germany). Functional images were obtained using

multislice T2*-weighted gradient echo planar imaging (EPI). Each

volume consisted of 17 axial slices (voxel size of 363 mm, 4 mm in

slice thickness, slice gap of 1.6 mm, field of view

(FoV) = 2006200 mm2, relaxation time (TR) = 1500 ms, echo

time (TE) = 50 ms and 90u flip angle). EPI data were continuously

measured with the same sequence in all RS and task periods.

Structural T1-weighted images were obtained after the fMRI

experiment, using magnetization frequency pulse and rapid

gradient-echo (MP RAGE) sampling: 1 mm isotropic voxels, 176

slices, FoV = 2566256 mm2, TR = 2130 ms, TE = 3.93 ms and

15u flip angle.

FMRI Data Processing and Time-series Analysis
The time series of each voxel was corrected for head motion and

slice timing offsets using SPM8 (http://www.fil.ion.ucl.ac.uk/

spm/). The functional images were spatially normalized to

standard stereotaxic MNI space (Montreal Neurological Institute;

http://www.mni.mcgill.ca/) and regionally parcellated using a

template image comprising 442 cortical and subcortical brain

regions to estimate the mean fMRI time series for each region for

each participant during each RS and task period [29,30]. In order

to avoid possible biasing effects of parcel sizes on functional

connectivity [31,32], we ensured that the range in size of the 442

nodes generated by sub-parcellating the AAL template was

substantially smaller (1.55–3.08 cm3;) than the range in size of

the 90 nodes of the template (1.76–40.83 cm3, regions of

cerebellum were excluded; see Figure 2). Note that we performed

the main statistical analyses of the resting state periods also with

alternative templates in order to assure that our main findings

were not driven by the choice of a single parcellation template (see

File S1).

To reduce motion effects motion parameters of the spatial

realignment were regressed out from the mean time series.

Previous studies documented the behavioural relevance of graph

metrics based on fMRI signal oscillations in the frequency range

just below 0.1 Hz [33–35]. Therefore, each regional time series

was band-pass filtered (wavelet scale 3: 0.042–0.083 Hz) using the

maximum overlap discrete wavelet transform (MODWT) [36].

For each pair of nodes the wavelet correlation was estimated and

the absolute correlation values resulted in a 442 by 442 association

matrix for each subject, RS and task period. The global strength of

connectivity was computed as the mean of each association matrix.

To compute the nodal connectivity strength of a particular node

we averaged the functional connectivity between this node and all

other nodes within the network.

Topological Metrics of Brain Graphs
Binary graphs of different connection densities were constructed

based on the association matrix. A thresholding algorithm starting

with the minimum spanning tree (MST) was used to ensure that

each node was connected with at least one other node even at the

sparsest connection density. Following the MST the algorithm

adds the highest correlations of each node in an iterative way (see

[37] for further information). Graphs at 15 different costs levels

were constructed for each subject and RS period in the range of

2.5%–50%, with smaller sampling intervals in the lower cost

range. The connection density defines the number of edges in a

graph expressed as a ratio to the maximum possible number of

edges (N*(N-1)/2 = 97,461). In agreement with previous studies on

functional brain topology (e.g. [38,39]) we stopped at 50%

connection density since connections at higher costs are likely to be

non-biological and influenced by noise. For the statistical analyses

topological measures were calculated for each cost level separately

and averaged over the entire cost range (see below). We averaged

graph metrics across the entire cost range to avoid multiple

comparisons at individual sampling points and to reduce the

dependency of any significant differences in network topology on

the arbitrary choice of a single connection density. This approach

has been used in previous graph analyses [38,39] and its

theoretical background was discussed in detail by Ginestet et al.

[40].

Based on these adjacency matrices we calculated the central

graph theoretical measures of global, nodal and local efficiency

following the formulas of Latora and Marchiori [41,42]. These

metrics base on the minimum path lengths between connected

nodes. The nodal efficiency of a particular node is inversely related

to the mean minimum path length between this node and the rest

of the network. In contrast, global efficiency is an estimate for the

efficiency of an entire network, and is the mean over the nodal

efficiencies. Thus networks with high global efficiency have highly

Cognitive Resilience and Network Topology
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integrated organization, characterized by short minimum path

length between any pair of regional nodes.

Local efficiency is closely related to the clustering coefficient

[43], and reflects the network’s capacity for information transfer

between the nearest neighbours of a particular node. This can be

averaged to get an estimate of local efficiency for the graph as a

whole. Thus networks that have a cliquish organization, charac-

terized by many connections between the nearest neighbours of

any given node, will have high local efficiency or clustering. To

avoid terminological confusion with global and nodal efficiency,

we will refer to this metric here as a measure of clustering.

Physical Distances
The physical distances were based on the Euclidean distances

between the centres of coordinates (MNI-space) of all functionally

connected brain seed regions. The averaged physical distances of

all nodes built the measure of mean distances. Further, the number

of connections/edges in each of several distance bins in the

histogram of connection distances was counted (in bin intervals of

5 mm steps, starting with the minimal distance of 3 mm) at the

cost level of 50%. Differences between the numbers of edges

within each bin at different RS periods were tested with two-sided

paired t-tests (Bonferroni corrected).

Statistical Analysis of Network Metrics
For each network metric we used three different linear mixed-

effects models to analyse the data. All models included an intercept

term for each subject to model a random offset [44]. Within the

first mixed-effects model we compared the resting state data before

and following task processing and modelled the data with the

factor RS period (three levels, RS1, RS2, and RS3), the

behavioural performance as continuous factor (the individual

vigilance decrements), and the interaction between both factors. In

the second analysis we compared the change in topology during task

processing. Therefore we modelled the network metrics as linear

function of time (factor ‘task period’). In a third analysis we

analyzed the change in network topology from rest to task

performance in the beginning of the task period and from task to

rest following the task period. The mixed-effects models included

the factor ‘task switch’ (the change from RS to task period), the

factor ‘time point’ (task switch at the beginning or following the

task period), and their interactions.

The network metrics global efficiency, clustering, and mean

distances were averaged over the a-priori-defined cost range for

both models in order to generalize the results across cost level (see

above). In contrast to the normal analyses of variance, linear

mixed-effects models can handle data with unequal variances.

Thus, before significance testing, variances of data between RS

periods were compared and significant in-homogeneities of

variances were explicitly modelled within the data analysis.

Pair-wise differences between RS periods were tested post-hoc

by two-sided one-sample t-tests. Pearson’s correlations were used

to test whether participants with higher or lower vigilance

decrements show different changes in network metrics. To simplify

this analysis, we also divided the participants into the two

subgroups of ‘‘attentionally impaired’’ (subjects with a significant

vigilance decrement, n = 10) and ‘‘attentionally resilient’’ subjects

(subjects with no significant vigilance decrement, n = 10, see

Results: behavioural data) and compared both groups with two-

sample t-tests.

To control type 1 error in the context of the multiple

comparisons entailed by analysis of nodal efficiency and clustering,

we used p#0.0025 (1/N) as the threshold for significance, so that

less than one false positive test is expected for each whole brain

analysis of nodal network properties.

Results

1. Behavioural Data
Subjects generally performed the task well and showed low rates

of misses (mean = 1.95, STD = 60.94). Therefore the analysis of

the behavioural data focused on reaction times (RT) only.

Reaction times showed a significant vigilance decrement over all

subjects (regression on median RTs averaged across subjects;

r = 0.48, p#0.001, Figure 3 A); median RT increased by 33.98 ms

at the end of the experiment. A two tailed t-test over the individual

regression slopes (robust fit prediction) as a measure of cognitive

resilience of each subject confirmed this result (t(19) = 4.41,

p,0.001).

Figure 2. Illustration of parcellation routine for seed region/node definition. Cortical and subcortical brain regions were parcellated into
442 brain nodes. (A) The parcellation routine was based on an anatomically parcellated and labeled T1 volume provided by the AAL toolbox (Tzourio-
Mazoyer et al., 2002). (B) The parcellation routine randomly and homogenously split the larger AAL regions into 442 smaller subparcels while
preserving the macro-anatomical borders as defined in the AAL-template. (C) This parcellation approach creates more homogenous seed region sizes
as compared to the original AAL-template so that possible biasing effects of parcel sizes on functional connectivity (Salvador et al., 2008; Fornito
et al., 2010) were prevented. The main statistical analyses were repeated with alternative templates in order to assure that the reported effects of the
RS data analysis were not driven by a singular parcellation template (see File S1).
doi:10.1371/journal.pone.0074125.g002
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However, response latency data also showed high between-

subject variability. Ten participants demonstrated a significant

vigilance decrement (prolongation of response time for target

stimuli presented later in the series); whereas the other ten

participants had no significant change in response time to targets

over the course of the task (Figure 3 B). We refer to these sub-

groups as the ‘attentionally impaired’ and ‘attentionally resilient’

groups, respectively.

The ratings in the Stanford Sleepiness Scale before and after the

experiment showed that after task performance participants felt

more fatigued (t(19) = 7.89, p#0.001, mean increase = 2.23,

STD = 61.25). There was no correlation between individual RT

decrements and sleepiness ratings.

2. Network Metrics
2.1. Pre-test: Variance homogeneity. Before the connec-

tivity strength and network metrics were compared in different

experimental conditions it was tested whether their variances were

significantly different (using a likelihood ratio tests comparing

models with fixed vs. variable variances; see [44]). For those

comparisons with significant differences in variance we explicitly

modelled unequal variances in the data analysis. Analyses with

significant different variances (p,0.05) are marked in the

according tables.

2.2. Changes during RS periods (RS1, RS2 and

RS3). Overall changes following task performance and in the post-task

phase. For all network metrics (connectivity strength, global

efficiency, clustering, and physical distances) the data analysis

revealed a significant main effect for the factor RS period (Table 1).

Immediately following task performance, all network metrics were

altered (see post-hoc Table 2): Connectivity strength and clustering

were significantly increased, global efficiency and physical

distances were significantly reduced following task performance

(from RS1 to RS2) (Figure 4). For the graph metrics, the changes

following the task were more pronounced in the lower cost range

(see Figure S2.1 in File S2) in which connections based on higher

correlation values that were less affected by noise.

These changes immediately following the task persisted in the

post-task phase (RS2 to RS3) when averaged over the whole group

(see relation to performance below) and were still significantly

different when compared to the RS period previous to the task

(RS1 to RS3) (Table 2, Figure 4).

For physical distances, the analyses of the distribution of the

physical lengths of the connected regions (edges) showed a

significant shift from long distance connections (distances in the

range from 78 to 108 mm) towards shorter distance connections

(distances in the range from 8 to 53 mm) following task processing

(from RS1 to RS2; Figure 5 D). This shift was present at all

investigated cost levels (Figure 5 D, top panel).

Performance related effects. The individual vigilance decrement as

measure of individual performance correlated significantly with

the mean connectivity strength (‘‘main effect of performance’’, see

Table 1). Furthermore, changes in connectivity strength and

clustering between resting state periods (R1 vs. RS2 and R2 vs.

RS3) were significant different for subjects with different

performance levels (‘‘interaction RS*performance’’, see Table 1).

On post-hoc level, performance related effects of connectivity

strength and clustering were only significant during the post-task

phase (RS2 and RS3, Table 2, Figure 4 A and 4 C). The change in

connectivity strength and clustering from RS2 to RS3 correlated

with individual performance (Figure 5 A and 5 C, Table 2), but

not the change from RS1 to RS2.

For both metrics, attentionally resilient subjects (subjects with

better performance) showed a significant reduction in connectivity

strength and clustering in the last RS period (RS3) in the direction

of pre-task values. For attentionally impaired subjects (subjects

with significant reaction time increase during task performance)

connectivity strength and clustering showed no such recovery

effects; their numerical values further increased until the end of the

experiment. This correlation between clustering and performance

was significant at all investigated cost levels (see Figure S2.2 in File

S2). If performance was investigated as categorical factor (resilient

vs. impaired subjects) clustering of behavioural impaired subjects

was significantly higher in the cost range from 15 to 50% (see

Figure S2.1 A in File S2). The aforementioned shift in the physical

distance distribution towards more short range connections

following task performance was further pronounced (but not

significant) for subjects with higher vigilance decrements (Figure 5

D, bottom panel).

A further interesting finding is that the connectivity strength of

RS1 (RS period before the task has started) showed a trend for a

Figure 3. Vigilance decrements in the attentional task. (A) Median reaction times averaged across subjects for each of the 96 target
presentations during the task are shown. Solid line: The robust fit regression showed a significant RT increase/vigilance decrement. (B) On the
individual level, participants showed a large variability in their change in RTs during task performance. For each subject, the individual robust fits for
the RTs were used to estimate the RT change at the end of the task. For illustration we divided the participants into a group with significant RT
increase (red, referred to as ‘attentional impaired’ subjects) and without a significant RT increase (blue, referred to as ‘attentional resilient’ subjects).
However, to test the correlation between network parameters and behavioural performance without loss of information, the individual RTs increases
were used and tested for a linear relationship.
doi:10.1371/journal.pone.0074125.g003

Cognitive Resilience and Network Topology

PLOS ONE | www.plosone.org 5 September 2013 | Volume 8 | Issue 9 | e74125



significant correlation with subsequent task performance (Pear-

son’s r = 0.43, p = 0.06, see also File S3). The observation that

higher levels of connectivity strength were accompanied by higher

vigilance decrements were later confirmed for the levels of

connectivity strength during the task (see below).

Effects on nodal level. We also investigated the effects of rest period

on topological metrics at the level of nodes or brain regions. As

shown in Figure 6 we found major increases in clustering following

task processing (from RS1 to RS2) in areas including the primary

visual cortex the superior temporal gyri, the superior frontal gyri,

the cuneus/medial parietal cortex, the left primary sensory cortex,

the left lingual gyrus, the basal forebrain, and the anterior

cingulate cortex.

Again, individual performance showed regional correlations

with changes at nodal level only during the post-task phase (i.e.

between RS2 and RS3). Regions that correlated with individual

performance were localized in the left and right thalamus, right

supramarginal gyrus, right precuneus, right amygdala, left insular

cortex and right middle occipital cortex (see Figure S2.3 and S2.4

in File S2 for an analysis of nodal effects as a function of cost level).
2.3. Changes during task periods (T1 to T5). The data

analysis showed significant effects of the continuous factor ‘‘task

period’’ on all of the investigated metrics (Table 3). During the

task, connectivity strength and clustering continuously increased

with task progress, global efficiency and physical distances showed

the opposite development and continuously decreased with the

task progress (Figure 4, periods T1 to T5).

Similar to the changes in the RS periods, the changes of the

graph metrics during the task were more pronounced at lower cost

levels (e.g. at 10% cost level, see Figure S2.1 B in File S2), and

were reduced (or became non-significant) for higher cost levels

(e.g. at 30% cost level for global efficiency and clustering, Figure

Table 1. Mixed-effects analysis of resting state data: Effects of resting state condition, performance and resting condition-by-
performance interaction on (i) mean connectivity strength, (ii) functional network and (iii) physical distance metrics.

Response Factor Statistics

Connectivity Strength Resting State (RS) F(2,36) = 5.80, p,0.01

Performance F(1,18) = 8.46, p,0.01

Interaction RS*Performance F(2,36) = 4.32, p,0.05

Global Efficiency RS F(2,36) = 15.8, p,.0001

Performance F(1,18) = 0.1, p = 0.74

Interaction RS*Perf. F(2,36) = 1.6, p = 0.22

Clustering(a) RS F(2,36) = 8.35, p,0.01

Performance F(1,18) = 2.59, p = 0.13

Interaction RS*Perf. F(2,36) = 6.18, p,0.01

Physical Distances(a) RS F(2,36) = 22.42, p,0.001

Performance F(1,18) = 0.24, p = 0.63

Interaction RS*Perf. F(2,36) = 1.82, p = 0.17

(a)corrected for unequal variances.
doi:10.1371/journal.pone.0074125.t001

Table 2. Pairwise comparisons of resting state data: Effects on (i) mean connectivity strength, (ii) network topology, (iii) physical
distances and (iv) its correlations with performance.

Measure Task (RS1–RS2) Post-task (RS2–RS3) RS1–RS3

Connectivity Strength Change(a) T = 22.69, p,0.02 T = 20.41, p = 0.69 T = 22.27, p,0.04

Correlation with performance(b) R = 20.16, p = 0.50 R = 20.62, p,0.01 R = 20.47, p,0.05

(and group difference(c)) (T = 20.16, p = 0.87) (T = 23.12, p,0.01) (T = 21.66, p = 0.12)

Global Efficiency Change T = 3.85, p,0.01 T = 1.28,p = 0.22 T = 25.09, p,0.01

Correlation with performance R = 0.18, p = 0.44 R = 0.24, p = 0.32 R = 0.39, p = 0.09

(and group difference) (T = 0.82, p = 0.43) (T = 0.05, p = 0.96) (T = 0.89, p = 0.38)

Clustering Change T = 23.66, p,0.01 T = 20.64, p = 0.53 T = 23.79, p,0.01

Correlation with performance R = 20.08, p = 0.75 R = 20.63, p,0.01 R = 20.38, p = 0.10

(and group difference) (T = 20.16, p = 0.88) (T = 22.23, p,0.05) (T = 21.17, p = 0.26)

Physical Distances Change T = 5.41, p,0.001 T = 0.74, p = 0.46 T = 4.49, p,0.001

Correlation with performance R = 0.30, p = 0.20 R = 0.16, p = 0. 49 R = 0.36, p = 0.12

(and group difference) (T = 0.18, p = 0.86) (T = 0.05 p = 0.96) (T = 0.18, p = 0.86)

(a)Change between resting states, paired t-tests, df = 19.
(b)Differences between resting states correlated with individual vigilance decrements.
(c)Group comparison between attentionally impaired and resilient subjects (see text), two-sample t-tests, df = 18.
doi:10.1371/journal.pone.0074125.t002
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Figure 4. Changes in connectivity strength and network metrics during resting state and task periods. (A–D) For better readability the
standard error of the mean (SEM) of the two subgroups (impaired vs. resilient subjects) is only depicted one sided. (A) Global connectivity strength
averaged over all nodes. Post-task phase: Across all subjects (black) connectivity strength was significantly increased following the task (RS1 to RS2)
and stayed increased during the post-task phase (RS2 to RS3). Attentionally resilient subjects (blue) began to recover during the post-task phase and
showed a decrease in functional connectivity in the direction of the pre-task values, whereas attentionally impaired subjects (red) showed further
increases in global connectivity strength until the end of the measurement (see also Figure 5 A). During task: Connectivity continuously increased
during the task. Further, the overall level of connectivity strength during the task (as averaged over all task periods) was significantly correlated with
individual performance. Subjects with higher vigilance decrements (higher latencies in reaction times towards the end of the task) showed higher
global connectivity strengths. (B–D) Graph metrics were averaged over the entire investigated cost range (see File S2 for results at single selected
cost levels) (B) Mean physical connection distances in mm. Post-task phase: Physical distances were significantly reduced following task performance
and stayed low in the second post-task phase (RS3) as compared to the first resting state period (RS1) (see also Figure 5 D for changes in connection
lengths distribution). During task: Physical distances continuously decreased during the task over all subjects. (C) Global efficiency. Post-task phase:
Global efficiency was significantly reduced following task performance as compared to the first RS period. Global efficiency did not change within the
post-task phase (RS2 to RS3). During task: Global efficiency significantly increased at the beginning of the task (RS1 to T1) and decreased at the end of
the task (T5 to RS2). Over all task periods (T1 to T5) global efficiency continuously decreased in all subjects. (D) Clustering. Post-task phase: Clustering
was significantly higher following the task as compared to the first RS period. The group average (black) stayed increased in the second post-task
period (RS3). Attentionally impaired subjects (red) showed a further increase in clustering in the last RS period, whereas more resilient subjects
showed a first recovery or change of clustering in the direction of the pre-task values (see also Figure 5 C). During task: Clustering significantly
decreased with the start of the task (RS1 to T1) and significantly increased again when the task ended (T5 to RS2). Over the task periods (T1 to T5)
clustering continuously increased in all subjects.
doi:10.1371/journal.pone.0074125.g004
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S2.1 B in File S2, right panel). The effects of physical distances

were stable across all cost levels.

An additional observation was that the connectivity strength

during the task was numerically different between the two

performance groups (impaired vs. resilient subjects, Figure 4 A).

Correlation testing confirmed this observation and revealed that

individual vigilance decrements significantly correlated with the

level of connectivity strength over all task periods (averaged

connectivity strength of all five task periods with vigilance

decrements: r = 0.45, p,0.05). Subjects with poorer performance

showed higher correlation values during the task.

2.4. Effects of ‘task switch’ (R1, T1, T5 and R2). The

analyses of the changes between RS and task periods revealed a

significant effect of the factor ‘‘time point’’ (resting state and task

data at the first switch from rest to task vs. data at the second

switch from task to rest) for all investigated metrics (Table 4). In

other words, similar to the changes identified from RS1 to RS2,

connectivity strength and clustering were significantly increased at

the task switch at the end of the task (task period 5 and RS2) as

Figure 5. Changes in connectivity strength and network topology during the post-task resting state period (RS2 vs. RS3) and
relation with behavioural performance; Changes in the histogram of physical distances. (A–C) Correlation between post-task changes
(RS3-RS2) and individual performance. (A) Connectivity strength: More attentional resilient subjects (blue, subjects with low vigilance decrements)
show a reduction in connectivity strength from RS2 to RS3, whereas impaired subjects (red) show a further increase. (B) Changes in global efficiency
from RS2 to RS3 did not correlate with performance. (C) Changes in clustering during the post-task phase significantly correlated with individual
performance. Resilient subjects (blue) show decreases in clustering from RS2 to RS3, impaired subjects (red) further increase in clustering. (D) Change
in histogram of mean distances between nodes following task performance (RS1 vs. RS2): The number of connections were counted in 32 distance
bins of 5 mm (DN: differences in the number of connections). Top: Following task performance the number of short distances significantly increased
and the number of longer distance connections significantly decreased at all cost levels. Significance is indicated by the grey patches at the top of the
figure (see File S2 for a 2D version of this plot). Note that graphs at higher cost levels comprise the edges from graphs at lower cost levels which lead
to larger differences in the number of connections at higher cost levels (DN). Bottom: Distance changes at 50% cost level: impaired subjects (red)
showed a more pronounced (but not significant) shift towards shorter connections following the task as compared to more resilient subjects (blue).
doi:10.1371/journal.pone.0074125.g005
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Figure 6. Changes in nodal network clustering over resting state fMRI periods. Top: Clustering changed over the three resting state fMRI
periods. Following task performance all brain regions show higher clustering or cliquishness. Bottom left: Significantly different changes in
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compared to the first task switch (RS1 and task period 1) (Figure 4

A and 4 D, Table 5). Global efficiency and physical distances

showed again opposite effects and had significantly reduced values

at the task switch at the end of the task (Figure 4 B and 4 C,

Table 5) as compared to the first task switch.

Furthermore, measures of network topology were significantly

affected by the change from resting state towards task processing

(factor ‘‘task switch’’, Table 4): Global efficiency was significantly

increased during task processing (first task switch from RS1 to task

period 1) and was significantly reduced during rest (second task

switch from task period 5 to RS2) (Figure 4 B, Table 5). In

contrast, clustering was significantly lower during task processing

and significantly higher during rest (Figure 4 C, Table 5).

3. Possible Impact of Head Movements of Functional
Connectivity

To check for possible effects of head movements we calculated

the number of frames that would need to be removed from each

dataset by ‘‘scrubbing’’ according to the criteria of Power et al.

[45]. We found that only 23/60 (38%) of resting datasets would

need more than one frame ‘‘scrubbed’’. These datasets were

similar distributed across ‘attentionally resilient’ and ‘attentionally

impaired’ subjects and the percentage of affected datasets did not

significantly differ between both subgroups (X2 = 1.13, df = 1,

p = 0.29): 9/30 were in the group of ‘attentionally resilient’

subjects, and 14/30 were in the groups of ‘attentionally impaired’

subjects. Second, we observed that ‘‘scrubbing’’ did not change the

relationship between functional connectivity and physical distanc-

es when the ‘‘unscrubbed’’ correlation matrix is subtracted from

the ‘‘scrubbed’’ correlation matrix (DR). Thus, ‘‘scrubbing’’ time

points (using the thresholds described in the Power et al. paper)

provide no additional benefit to our data (see File S4 for further

analyses).

Discussion

Does task performance have long-lasting effects on functional

network topology? Our results revealed (i) that prolonged

attentional task performance led to less brain network integration

following task processing, (ii) that this reduction in network

integration already started during task processing and (iii) that

network integration remained diminished for long periods of time.

Task performance initially increased network integration, but with

ongoing time-on-task functional brain topology became less

integrated, less efficient, more clustered and showed less long-

distance connections. Following task performance these changes in

network integration could be still detected after 6 minutes of

resting state.

As a second major finding, we could show that late changes in

network topology (more than 6 minutes after the task) were

correlated with individual differences in cognitive resilience during

task performance. Attentionally resilient participants showed a

larger reduction of network clustering and disintegration, i.e., a

greater degree of recovery towards pre-task network topology

during the post-task period.

Task Performance Induces Long-term Changes in
Functional Brain Network Topology

Several studies reported changes in resting state connectivity in

low frequency ranges (,0.1 Hz) subsequent to task performance.

Changes in connectivity strength were evident after motor [15],

language [16] and memory tasks [46]. Other studies reported that

motor [17] and perceptual learning [18,19] can lead to long-

lasting changes in functional connectivity and a modulation of

region specific plasticity. Our study confirms and extends these

findings. Our results show that task manipulation introduces

changes in functional connectivity, but also in intrinsic brain

network topology and configuration.

As a further new aspect we found that changes in network

topology persist for at least 6 minutes following task performance.

Long-lasting effects after task performance on RS oscillations have

been infrequently reported in studies to date. One study by Barnes

et al. [20] could show that endogenous oscillations in different

brain regions stay altered for more than 15 minutes after task

performance. In contrast to Barnes et al. [20], who investigated

isolated time series, our study investigated the functional topology

of the whole brain network and showed that effects on functional

network topology persist over a long time period. The two RS

periods after task processing covered a time window of 12 minutes

and functional connectivity, physical distances, global efficiency

and clustering were still changed in RS3 (6 min to 12 min after the

task).

Long-lasting Changes in Network Topology are the
Result of a Continuous Process during Task Performance

During task performance, two different processes seem to

influence functional network topology. As first process, task

performance increased network integration and induced higher

global efficiency and less clustering. Network integration remained

higher during task processing in comparison to resting state

periods, but with ongoing time-on-task brain networks showed the

opposite effects and became more fragmented with more

clustering, and showed less global efficiency and shorter distances

between brain nodes. This on-going process of network fragmen-

tation over time was also evident when data around the switch

between rest and task condition at the beginning and the end of

the experiment were analysed; at the end of the task networks were

less efficient, more clustered and showed more short distance

connections. In summary, within the current study our results

showed that declines in network integration started during task

performance, progressed with on-going task performance, and that

networks remained fragmented for a long time period.

clustering at nodal level (yellow) were evident among others in visual cortex and basal forebrain; brain areas involved in the processing of visual
sustained attention tasks. Bottom right: Significant changes in clustering in the post-task phase that were related to vigilance decline were found
among others in the thalamus (red).
doi:10.1371/journal.pone.0074125.g006

Table 3. Mixed-effects analysis of task data: Effects of time-
on-task on (i) mean connectivity strength, (ii) functional
network and (iii) physical distance metrics.

Factor Statistics

Connectivity strength(a) T(79) = 2.19, p,0.05

Clustering T (79) = 2.47, p,0.05

Global Efficiency(a) T (79) = 23.55, p,.0001

Physical distances(a) T (79) = 22.32, p,0.05

(a)corrected for unequal variances.
doi:10.1371/journal.pone.0074125.t003
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While measures of network topology were significantly changed

from rest towards task processing, ‘whole brain’ functional

connectivity seemed to be less sensible towards direct effects of

task performance, and showed no general offset with the onset of

task performance and continuously increased with on-going time

of task.

Only few studies investigated changes in functional network

topology during task performance (e.g. [11,47]). One study that

described rapid adaption processes of brain topology towards

different task conditions was performed by Kitzbichler et al. [14].

They used magnetoencephalography (MEG) to analyze the high

frequency oscillations and functional brain networks during the

performance of a working memory task with different task

demands. Similar to our results, in which the resting state

condition can be assumed to be less demanding than the task

condition, Kitzbichler et al. [14] found that higher demanding

tasks were associated with increased network integration (higher

global efficiency and increased connection distance, reduced

clustering and reduced modularity). Our data confirmed that

higher task demands (in our case from rest to task periods) lead to a

significant increase in network integration. Note however that our

data were in a much lower frequency range.

Prior data provide evidence that these changes in network

integration might be related to cognitive fatigue. In a previous

study we measured resting state periods that were presented

intermixed with task blocks during which participants performed a

sustained attention task [21]. Within this study we found that a

decline in behavioural performance, an increase in fatigue ratings

and the factor time-on-task were significantly correlated with the

reduction in network integration during resting periods. Further

support derives from EEG studies which showed a correlation

between sleepiness and network disintegration [48].

Behavioural Performance and Functional Brain Networks
Participants showed longer reaction times at the end of the

vigilance task and these behavioural effects were accompanied by

reduced brain network integration following task performance.

Previous studies support an association between brain topology

and task performance. Subjects with higher scores in intelligence

tests (based on performance in various tasks) showed shorter path

lengths and higher global efficiency values in brain network

topology [6,7]. Further, recent studies investigating aging effects

found age-related changes in network topology and showed that

aged subjects have decreased global efficiency and increased

clustering [10,11]. From previous behavioural studies it is known

that aged subjects show poorer performance in attentional tasks

[8,9]. A more direct piece of evidence for the correlation of

network topology and attentional task performance is given by a

study from Wang et al. [12]. Wang et al. [12] compared the brain

network topology of children with attention deficit hyperactivity

Table 4. Mixed-effects analysis of resting state and task data before and following task switches (R1, T1, T5 and R2): Effects of task
switch (RS vs. task period), time point (data at the first switch vs. the second) and task switch-by-time point interaction on (i) mean
connectivity strength, (ii) functional network and (iii) physical distance metrics.

Response Factor Statistics

Connectivity Strength(a) Task switch (RS to task, or task to RS period) F(1,57) = 0.05, p = 0.83

Time point (begin or following the task) F(1,57) = 7.52, p,0.01

Interaction switch*time point F(1,57) = 0.26, p = 0.27

Global Efficiency(a) Task switch F(1,57) = 60.0, p,.0001

Time point F(1,57) = 25.8, p,.0001

Interaction switch*time point F(1,57) = 3.5, p = 0.07

Clustering Task switch F(1,57) = 23.15, p,.0001

Time point F(1,57) = 16.07, p,0.001

Interaction switch*time point F(1,57) = 3.53, p = 0.07

Physical Distances(a) Task switch F(1,57) = 0.93, p = 0.34

Time point F(1,57) = 21.18, p,.0001

Interaction switch*time point F(1,57) = 0.71, p = 0.40

(a)corrected for unequal variances.
doi:10.1371/journal.pone.0074125.t004

Table 5. Pairwise comparisons of resting state and task data before and following task switches (R1, T1, T5 and R2): Effects on (i)
mean connectivity strength, (ii) network topology, (iii) physical distances.

RS1 to T1(a) T5 to RS2(a) RS1/T1 to T5/RS2(a, b)

Connectivity Strength T = 20.36, p = 0.72 T = 22.04, p = 0.06 T = 22.1, p,0.05

Global Efficiency T = 25.91, p,0.0001 T = 6.32, p,0.0001 T = 4.38, p,0.001

Clustering T = 2.27, p,0.05 T = 26.47, p,0.0001 T = 23.14, p,0.01

Physical Distances T = 20.71, p = 0.48 T = 1.37, p = 0.18 T = 3.80, p,0.01

(a)Paired t-tests, df = 19.
(b)T-tests based on averaged values for RS1/T1, respectively T5/RS2.
doi:10.1371/journal.pone.0074125.t005
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disorder (ADHD) and healthy children. Children with the

attentional deficit syndrome showed lowered global efficiency

and significantly increased clustering in their brain topology. In

summary, previous group and correlation studies suggest that

higher task performance is related to higher network integration.

Our data show that changes in network integration and task

performance can also be manipulated experimentally by a

challenging attentional task.

Interestingly, mean connectivity strength was significantly

correlated with declines of behavioural performance. Reaction

times and connectivity strength continuously increased with time-

on-task and the mean connectivity strength over all task periods

significantly correlated with individual vigilance decrements. In

addition, subjects with higher connectivity strength during the

resting state period before task performance showed a tendency for

higher vigilance decrements (p = 0.06). Thus, subjects already

showed differences in brain networks before task performance

which might have influenced their cognitive resilience during task

processing (see also File S3). A relation between connectivity

strength and wakefulness or arousal has been previously suggested

[49–51]. Larson-Prior et al. [51] reported increased connectivity

strengths in the dorsal attention network when subjects descended

into light sleep. Thus, the higher level of connectivity strength in

subjects that showed poorer performance in our study might

reflect lower levels of arousal in these subjects.

With respect to network topology, we found that individual

behavioural differences did not predict task induced changes in

network topology following the end of the task (i.e. RS1 vs. RS2),

but were highly correlated with changes in topology in the post-

task or recovery phase (RS2 and RS3). Only few studies have

investigated recovery effects after tasks on endogenous dynamics

so far. Barnes et al. [20] compared changes in endogenous

oscillations on a longer time scale after a task with different

workloads. They found workload dependent recovery effects in

endogenous oscillations; a low load condition led to a faster and

earlier recovery (about 400 s post-task) of the fractal properties of

the BOLD time series. In our study we did not vary the workload,

but the variability of performance between subjects indicated that

the same task demand could introduce large differences in

individual cognitive resilience. Brain networks in subjects with

high vigilance decrements further continued to show increased

global connectivity strength and mean clustering in the RS3

period. In contrast, brain networks in subjects with low or no

vigilance decrement revealed a pattern of connectivity and a level

of clustering which resembled that prior to task performance.

Although the acquired RS time window of 12 minutes post-task

was not long enough for a full restoration of all network metrics

our study is the first which shows demand-related recovery effects

on functional network topology.

Changes of Clustering on Regional Level
Beside the analysis of the averaged clustering values over all

nodes (seed regions of the template), we further investigated

regional changes in clustering before and following the task and in

the post-task phase. On nodal level, effects of increased clustering

immediately following the task (from RS1 to RS2) were, among

others, evident bilaterally in the visual cortices, the superior

temporal cortices and the basal forebrain (Figure 6, bottom left).

Some of these regions including the visual and temporal cortices

also showed increases in clustering following a visual attention task

in a different set of volunteers [21]. These regions have been

previously discussed in the context of visual processing and visual

spatial attention (e.g. [52]) and the observed changes in clustering

in these regions may reflect general reconfiguration processes

following visual attention tasks. More specific related to attentional

effort, we found increased clustering after task processing within

the region of the basal forebrain. During task performance the

activation within this brain region increased with higher cognitive

demands due to prolonged time intervals between target stimuli

[25]. The cholinergic basal forebrain is a crucial part of the

attentional effort network as proposed by Sarter [53] and is

suggested to trigger activity in the anterior attention system in

medial prefrontal cortex and to optimize processing in sensory

cortical regions. Animal evidence indicates that attentional effort

increases ACh release in medial prefrontal cortex [54]. In

summary, our data provide first hints that task specific recruitment

of brain regions can produce region-specific hang-over effects in

brain topology after task performance.

Significant correlations between behaviour and nodal clustering

were only observed in the post-task phase (RS2 to RS3) and

among others evident in the thalamus, a key structure of the

arousal system [55,56]. Attentionally impaired subjects showed

further increases of clustering in this region, whereas resilient

subjects showed decreases of clustering. These differential effects

might be related to the long- and short-lasting cognitive processes

elicited by the sustained attention task [25]. During task processing

participants had to detect an infrequent colour change of a simple

visual stimulus during a time period of more than 30 minutes.

Even though there are several factors that affect performance

declines during periods of tonic alertness [57], previous studies

support the idea that the attention system interacts with arousal

level [56]. All subjects might have ‘‘used’’ the same brain networks

for attentional processing, but subjects who performed the task in a

less efficient way probably showed larger reductions of arousal

following task performance. These differences in arousal between

subjects may increase after a longer time period of resting state

(resting state period 2 and 3) in which participants have to refrain

from falling asleep. It is a common finding in psychology that

inter-individual differences are more evident in ‘‘weak’’ task

conditions in which less cues provide behavioural psychological

pressure and that are more ambiguously structured to engage a

certain behaviour [58].

Biological Explanations for Long-lasting Effects of Task
Performance

Previous studies have shown that learning-induced plasticity can

have a long-lasting impact on subsequent RS periods [17–19] and

might therefore be responsible for the task-induced changes in

functional connectivity and network topology observed after our

sustained attention task. Animal data suggest that prolonged effort

in attention tasks increases the release of acetylcholine (ACh) in

prefrontal brain regions resulting in a top-down adjustment of

sensory processes [53]. ACh induced plasticity can last several

minutes even though ACh concentration has reached baseline

level again (for a review see [59]). Hence, changes in resting state

connectivity after performance of a sustained attention task may

be the consequence of prior task-induced ACh release.

On molecular level metabolic costs may account for long-lasting

effects of task performance. Mental tasks are accompanied by an

increased level of glycolysis in the brain [60,61]. Raised levels of

glycolysis can last up to 40 minutes after termination of task

performance [62] and prolonged aerobic glycolysis can cause

imbalance in cell metabolism (e.g. proton and lactate accumula-

tion [63]). Our data revealed that the distribution of the physical

distance between functionally connected nodes was shifted in

favour of shorter distances after task performance. Neuronal

transmission over shorter physical distances was earlier described
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as one strategy of the brain in order to preserve metabolic costs

[64].

Methodological Considerations
Most graph analyses ignore that correlations between two brain

regions can also be influenced by a common covariate that induces

indirect correlations. Even though indirect correlations are a

general problem that also affects the analyses of resting state data

they become more obvious during the analysis of task data in

which the experimental stimulation might have simultaneously

influenced two brain regions. Therefore we focussed in the

interpretation of our results mainly on changes between conditions

with the same experimental stimulation (comparisons between rest

conditions or within task blocks).

Even though previous results revealed that functional connec-

tivity do not significantly change if participants are instructed to

fixate or to keep their eyes open without fixation over a time

period of 5 minutes [65], future studies might investigate whether

physical fatigue of the eyes influences network integration.

Implications of Long-lasting Changes in Network
Topology following Tasks

In many studies investigating neural correlates of task-related

processing (e.g., in fMRI, PET or ERP studies) spontaneous signal

fluctuations were only considered as noise factor. Over the last

years this perspective has changed, since previous studies have

shown that, for example, spontaneous blood oxygen level

dependent (BOLD) signal fluctuations contribute to the prediction

of variability in behavioural performance within and between

subjects [22,66–68]. In computational neuroscience, previous

results revealed that the complex network architecture of brains

rapidly changes to meet the requirements of specific task demands

[14,69]. As first study, our results show that task performance has

also reflexive effects and leads to long-lasting changes in

endogenous brain networks after task performance. Our data

show that these long-lasting effects on brain network topology are

correlated with behavioural measures of cognitive resilience in a

prior sustained attentional task. Future studies, with several task

and RS periods within one fMRI scanning session, might also

show that individual differences in network recovery can be used

to predict differences in behavioural performance within following

task periods.

In real world, economical reasons often force researchers to

present several tasks within one fMRI scanning or MEG session,

neglecting or underestimating changes in functional brain

networks resulting from a previous task. Our data indicate that

12 minutes of rest period between each task are not enough to fully

recover functional brain networks from previous task processing.

Our data strongly encourage to take into account ‘‘hang-over’’

effects on the organization of post-task brain networks that possibly

interact with the processing of new tasks. These ‘‘hang-over’’

effects introduce a specific brain state, which will impact on

subsequent neural processing and behavioural performance. In

future, the individual capability of brain network recovery might

be an additional measure to obtain cognitive resilience of patients

and to detect early symptoms of potential neurological disorders.

Our data support that the recovery of connectivity strength and

network topology may serve as biomarkers of cognitive demand

and resilience that significantly contribute to the understanding of

inter-subject differences in the recovery from challenging tasks.
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