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Abstract
In the evolutionary history of plants, variation in cis-regulatory elements (CREs) resulting in diversification of gene expres-
sion has played a central role in driving the evolution of lineage-specific traits. However, it is difficult to predict expression
behaviors from CRE patterns to properly harness them, mainly because the biological processes are complex. In this study,
we used cistrome datasets and explainable convolutional neural network (CNN) frameworks to predict genome-wide ex-
pression patterns in tomato (Solanum lycopersicum) fruit from the DNA sequences in gene regulatory regions. By fixing the
effects of trans-acting factors using single cell-type spatiotemporal transcriptome data for the response variables, we devel-
oped a prediction model for crucial expression patterns in the initiation of tomato fruit ripening. Feature visualization of
the CNNs identified nucleotide residues critical to the objective expression pattern in each gene, and their effects were val-
idated experimentally in ripening tomato fruit. This cis-decoding framework will not only contribute to the understanding
of the regulatory networks derived from CREs and transcription factor interactions, but also provides a flexible means of
designing alleles for optimized expression.

Introduction
Cis-regulatory elements (CREs) are noncoding short DNA
sequences that are recognized by transcription factors (TFs,
or trans-acting factors). CREs play a central role in the

regulation of gene expression. In the diversification of plants,
including whole-genome duplication events, the evolution of
CREs has made rapid and substantial contributions
(Charoensawan et al., 2010; Roulin et al., 2013). This role of
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CREs also has been reported in animals (Lynch and Conery,
2000; Wray et al., 2003; Carroll, 2008). Variation of gene reg-
ulatory regions or CREs has had important impacts on the
evolution of crops (Kobayashi et al., 2004; Naito et al., 2009;
Alonge et al., 2020). A next-generation breeding approach
that incorporates cis-editing has been proposed to allow
fine-tuning of gene expression (Rodr�ıguez-Leal et al., 2017; Li
et al., 2020a, 2020b; Jores et al., 2021). However, unlike trans-
acting factors, which have been studied extensively, little in-
formation on the functions of CREs is available to enable
their proper utilization. This is mainly because of the struc-
tural complexity of the biological processes involved. A TF
can bind to multiple and plastic motifs (or CREs) (Weirauch
et al., 2014; O’Malley et al., 2016), thus it is difficult to define
uniform motif sequences. Furthermore, even if the effects of
trans-acting factors can be fixed, the gene expression pattern
will be determined by a flexible combination of multiple
CREs (Terada et al., 2013), depending on their positional
relationships.

Deep learning (DL) techniques that utilize convolutional
neural networks (CNNs) have contributed to breakthroughs
mainly in image diagnosis and natural language processing
(LeCun et al., 2015). Unlike conventional machine learning,
DL algorithms can automatically find flexible and compli-
cated features. Although DL predictions have been defined
as a black box and difficult to explain, methods for feature
visualization of DL predictions (often referred to as explain-
able artificial intelligence) have been recently developed
(Bach et al., 2015; Selvaraju et al., 2017). These methods
have allowed the biological interpretation of DL predictions,
thereby accelerating the application of DL techniques in
plant biology (Zhou et al., 2018; Akagi et al., 2020). DL meth-
ods have been used to predict transcript regulatory regions
(Mej�ıa-Guerra and Buckler, 2019; Washburn et al., 2019;
Wang et al., 2020) and epigenetic marks, such as DNA

methylation (Tian et al., 2019), in genomic sequences.
Importantly, the combination of explainable DL predictions
and high-throughput enrichment of TF-bound DNAs (e.g.
by chromatin immunoprecipitation [ChIP] sequencing) has
successfully produced high-quality predictions of CREs and
enabled identification of the nucleotide sequence motifs re-
sponsible for TF binding (Alipanahi et al., 2015). These find-
ings suggested that, with a trained explainable DL model,
DNA sequences could be encoded into CREs for each TF,
and CREs could be decoded into the residues responsible for
binding.

Cistrome databases constructed using protein binding mi-
croarray, and ChIP or DNA affinity purification (DAP) se-
quencing data comprehensively accumulate short sequences
that contain CREs. These databases cover most TF families
in eukaryotes (Weirauch et al., 2014), including Arabidopsis
(Arabidopsis thaliana; O‘Malley et al., 2016) and other plant
species (Chow et al., 2019). The affinities of TF DNA-binding
domains nested in the same TF family are highly conserved
across species (Weirauch et al., 2014; Chow et al., 2019),
which has enabled interspecific annotation of the CREs in
some CRE databases (Higo et al., 1999; Chow et al., 2019).
On the basis of these findings, we aimed to develop a DL
framework to predict gene expression patterns from their
CRE patterns in the promoter sequences, under the fixation
of trans-acting factor effects (Figure 1A), (1) by predicting
CREs in new promoter sequences using large cistrome data-
sets from model plants (Figure 1B), (2) by constructing
models to predict expression patterns from CRE arrays
(Figure 1C), and (3) by identifying the key nucleotide resi-
dues responsible for the predicted expression patterns
(Figure 1D). We exemplified differential expression patterns
in ripening tomato (Solanum lycopersicum) fruit to fine-tune
the gene expression patterns associated with maturation/
softening patterns, which has been a crucial research focus

IN A NUTSHELL
Background: Diversification of gene expression patterns has played important role in plant evolution. Although
predicting gene expression patterns from genomic sequences remains difficult, artificial intelligence (AI) deep
learning (DL) frameworks used for conventional image diagnosis have recently been used to characterize the fea-
tures of genetic sequences. Here, we applied DL techniques to the tomato genome to predict gene expression
patterns in fruit ripening.

Question: We wanted to apply “explainable” DL techniques to find key features relevant to the predicted expres-
sion patterns. This would allow expression design via editing of key genomic sequences.

Findings: Two steps of explainable DL successfully predicted gene expression behaviors in tomato fruit ripening,
and spotted the genomic sequences important for the prediction, with one base-pair resolution. These assump-
tions by the AI were experimentally validated with artificially edited gene sequences introduced into tomato fruit.
Furthermore, with the identified key features, we could estimate new combinations of gene regulators with high
importance for fruit ripening.

Next steps: We are applying more complex information from the genome and the epigenome to predict gene
expression patterns with greater accuracy. Additionally, combining a wide range of recent AI models would allow
us to decode multiple aspects of genome function, beyond modeling gene expression.
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since the 1980s (Smith et al., 1988; Sheehy et al., 1988;
Vrebalov et al., 2002; Uluisik et al., 2016).

Results and discussion

Construction of DL models for prediction of CREs
and training with the Arabidopsis cistrome
From the Arabidopsis DAP-sequencing (DAP-seq; cistrome)
dataset for 529 TFs, which covers most plant TF families
(O’Malley et al., 2016), 15-bp nucleotide sequences flanking
either side of the TF-binding “narrow peak” were extracted
(see “Materials and Methods” for details) as the positive
tiles, and nucleotide sequences of the same length (31 bp)
were extracted adjacent to the peak area as the negative
tiles (Figure 1B). We used only high-confidence DAP-seq
data with fraction of reads in peaks 40.05 (O’Malley et al.,
2016), covering 370 TFs (Supplemental Data Set 1). The 31-
bp sequences were converted into a one-hot array with four
A/T/G/C channels (Zou et al., 2019). Many powerful tools
have been developed for motif discovery, such as MEME
(Bailey et al., 2006) or DL-based techniques (Alipanahi et al.,
2015). We adopted a simple in-house fully connected DL
(FC-DL) model (see “Materials and Methods” for details) to
rapidly locate the residues relevant to the prediction by fea-
ture visualization, and to directly connect to the following
in-house second DL model that predicted expression behav-
iors, as discussed later. For each TF, one DL model was
trained, resulting in 370 DL models. Most of the 370 TF
datasets had high classification abilities, as indicated by the
receiver operating characteristic (ROC) curves (average area
under the curve (AUC) value = 0.956± 0.0022; Figure 2A;
Supplemental Data Set 2). Their classification abilities were
mostly comparable to those attained with the popular mul-
tiple expectation-maximization for motif elicitation (MEME)
motif-discovery tool (Bailey et al., 2006) in recall, precision,
and F1 scores on the same training/test sample sets
(Figure 2B). These methods showed high correlations in
their classification abilities among the TFs, suggesting that
their performance depended substantially on the character-
istics of the TFs and/or the quality of the cistrome data
(Supplemental Figure S1; Supplemental Data Set 3). Two dis-
tinct feature visualization methods, guided gradient
weighted class activation map (Guided Grad-CAM) and
layer-wise relevance propagation (LRP), consistently detected
not only representative motifs as relevant residues, which
have been well characterized in previous studies and regis-
tered in cistrome databases (O’Malley et al., 2016), but also
motif variants that showed significant peaks in the DAP-seq
dataset, which were similar to the representative peaks but
contained minor substitutions or gaps (Figure 2C, represent-
ing ABF2, a basic Leucine zipper TF that binds to the G-box
motif (C)ACGT(G); Supplemental Figure S2 for three other
TF families). Advantages of using DL models for detection of
CREs are (1) their flexibility in accepting these minor varia-
tions, which are often ignored or difficult to express with
conventional methods and (2) applicability (or

Figure 1 Prediction of gene expression patterns in a genome from
CREs. A, Schematic model for the prediction of expression patterns
among all genes in a genome. In a homogeneous cell line, the effects
from trans-acting factors can be fixed among the genes. Then, expres-
sion patterns can be explained from flexible combinations of CREs
(and potential epigenetic marks). B and C, Construction of the predic-
tion model with two-step DL frameworks. Large Arabidopsis cistrome
datasets (O’Malley et al., 2016), which provide genome-wide TF-bind-
ing peaks, were used in the first step (first DL) to predict CRE patterns
for each TF. The resultant model was applied to the tomato genome
sequences to predict CREs in the promoters of all genes to derive CRE
arrays. For each gene, the CRE array was annotated with an expression
pattern that was applied to the second step (second DL) and used for
multiple regression and LAMP analyses (Terada et al., 2013). D, In the
second DL step, the CRE arrays were trained with a 1D CNN with the
clustered TF channels to generate a binary classification. With back-
propagation of the CNN (explainable DL), the CREs or other nucleo-
tide residues relevant to the objective expression class were visualized.
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transferability) to other genomes that include many small
sequence variations. We applied the 370 trained DL models
to the 1-kb promoter regions of all genes in the tomato ge-
nome (ITAG version 4.0; TGC, 2012; N = 34,066 with quali-
fied promoter sequences) to predict the CREs for each TF.
The predicted CRE transitions were converted into binary
arrays with a 0.8 confidence threshold per 10- to 50-bp bin,
and used to cluster the TFs with K-means++ (Supplemental
Data Set 4), to avoid multicollinearity in the assessments.
With K = 50, which is a hypothetically optimal cluster num-
ber (Supplemental Figure S3), 42 clusters contained mostly a
single TF family (these clusters were designated with the
predominant TF); the remaining eight clusters contained a
variety of TFs (Figure 2D; Supplemental Data Set 5). For the
subsequent analyses, the binary CRE arrays (N = 34,066 for
all genes) with 50 channels for the TFs that were closest to
the central pattern in each cluster, were used for the predic-
tion of expression patterns.

DL models for prediction of expression behaviors in
tomato fruit ripening initiation
We used a high-resolution spatiotemporal expression map
of tomato fruit (Shinozaki et al., 2018) and focused on gene
expression patterns in the pericarp from the mature green
(MG) to the breaker (BR) developmental stages, which is a

crucial transition for ripening initiation. In a transcriptome
with heterogeneous cell lines, such as a flower or leaf, the
output is a mixture of multiple expression patterns derived
from the expression of heterogeneous trans-acting factors
(Supplemental Figure S4). Instead, the extracted transcrip-
tomes derived from a single (or homogeneous) cell type can
fix the effect from trans-acting factors, thereby facilitating
the construction of a precise model between CREs and ge-
nomic expression patterns (Figure 1A). We focused on genes
that were significantly upregulated or downregulated from
the MG to the BR stages (designated BRup and BRdown, re-
spectively) (Figure 3A; false discovery rate (FDR) 5 0.1 with
DESeq version 2 analysis, 41.7-fold change, reads per kilo-
base per million mapped reads [RPKM]4 1). In total,
34,066 arrays for all genes in the tomato genome with the
50 described TF channels were trained with in-house 1D
CNN models (see the “Materials and Methods” for the de-
tailed settings) to classify the expression patterns into binary
categories. The models for classification of BRup and
BRdown achieved average ROC–AUC values of 0.702 and
0.636, respectively (Figure 3B, with four-fold cross-validation;
Supplemental Figure S5 for ROC and learning curves).
Notably, these were far from perfect predictions and the
prediction performance was reasonably dependent on the
biological context. With various categorizations of gene

Figure 2 High-confidence prediction of variable CREs and key nucleotide residues by DL. A, ROC curves for binary classification of TF-binding and
control sequences for 370 TFs. The AUC values ranged from 0.708 to 0.998 (average 0.956). B, Prediction performance of the FC-DL model and
MEME (as used in O’Malley et al., 2016). C, Nucleotide residues relevant to prediction of CREs by the DL model, determined using two distinct fea-
ture visualization methods, Guided GradCAM and LRP. Relevance levels in the putative CREs (in the PK dotted squares) are reflected in the height
of the nucleotide logos. ABF2-binding sequence tiles with high confidence (40.95) for the prediction are represented. The prediction model prop-
erly highlighted the residues consistent with the physiologically validated representative motif (C)ACGT(G), which is a bZIP-binding G-box core
motif (Jakoby et al., 2002). Furthermore, the same model detected motif variants, including minor gaps or substitutions. D, Correlation matrix for
the CREs of the 370 TFs, with clustering by K-means++ (K = 50). Each cluster was constituted mostly of TFs from the same family (see
Supplemental Table S5 for details).
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expression patterns in tomato fruit ripening stages (MG, BR,
pink [PK], light red [LR], and red ripe [RR]; Shinozaki et al.,
2018), the ROC–AUC value ranged from 0.503 (41.7-fold
downregulation in advanced ripening stages from LR to RR)
to 0.761 (greater than five-fold upregulation from the ripen-
ing initiation stage, MG, to the fully ripe stage, RR). For pre-
diction of BRup and BRdown, our CREs-based DL method
also exhibited superior performance to that of a conven-
tional position weight matrix-based STREAM (in the MEME
suite; Bailey et al., 2006) and comparable performance to
that of a recent k-mer-based random forest machine learn-
ing method (Meng et al., 2021; Supplemental Figure S6).
Furthermore, recent advances in the DL field, particularly
with the “transformer” class of models (Vaswani et al., 2017;
Brown et al., 2020) in addition to CNN, have led to a novel

approach to predict expression patterns with high resolution
(Avsec et al., 2021). From a biological viewpoint rather than
prediction performance, it might be difficult to simply rank
the importance of these models. A method incorporating
transformer modules (named Enformer; Avsec et al., 2021)
requires preliminary accumulation of large multi-aspect
databases, including genome-wide variation, for training,
which at this stage would be applicable only to a limited
number of model species. While, our method, by utilizing
existing cistrome data from Arabidopsis as the TF-binding
reference information, is not species-specific and would be
applicable only with targeted transcriptomic data. Regarding
explanatory variables, methods that directly use DNA
sequences, such as a k-mer-based machine learning method
or those with a transformer architecture, can recognize

Figure 3 Prediction of the gene expression patterns critical to tomato fruit ripening initiation by DL, and visualization of their key cis-elements. A,
MA plot for the genes expressed in the MG and BR stages of ripening tomato fruit. Genes significantly upregulated in BR (N = 2,967, defined as
“BRup”) and downregulated in BR (N = 3,098, defined as “BRdown”) are shown in orange and dark green, respectively. B, Performance (ROC–AUC
values) for binary classification of BRup or BRdown against the control category. Averaged ROC–AUC values were calculated from four-fold cross-
validations. Bars indicate the standard error (SE). C, Confidence distribution (or histogram of confidence in the DL output) for BRup prediction.
Actual BRup genes exhibited substantially higher confidences than in the control genes (P5 2.2e-16). D, GO terms significantly enriched in the
genes with the highest 10% confidence in the BRup category. E, Predicted cumulative relevance levels, which were calculated by summarizing the
standardized relevance of each TF cluster over the 297 genes with the highest 10% confidence in the BRup category. Of the 50 channels recognized
by each TF cluster, the seven with high relative relevance levels (40.7) are highlighted. The central TF for each cluster is in parenthesis. F, Sum of
the positional relevance for each TF cluster across the 297 genes. G–I, Identification of the CREs responsible for BRup in the promoter region of
ACS2. With guided backpropagation on the model for BRup prediction, four channels showed high relevance levels (G). NAC Clst 7, the channel
with the highest cumulative relevance level, showed two major relevant bins that corresponded to the high-confidence TF-binding regions (stan-
dardized relevance level 40.7), as indicated by single and double asterisks (H). With further guided backpropagation on the model for CRE predic-
tion from the promoter sequences tiles (the first DL step, see Figure 1B), the nucleotide residues responsible for the two TF-binding regions were
detected (i). The most relevant residues were localized on the hypothetical NAC-binding motifs indicated by dotted squares.
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enhancer nucleotides that are not considered as CREs
bound by representative TFs. On the other hand, our ap-
proach based on CREs encoded from DNA sequences specif-
ically provides direct insights into CRE–TF regulatory
networks, which can potentially unveil novel TF combina-
tions contributing to the targeted expression patterns, as de-
scribed later. Each model type has merits depending on the
circumstance and can capture independent feature charac-
teristics. Hence, future combinations of these methods may
enable achievement of superior performance and deeper
interpretations, adjusted to suit various objectives.

Gene expression patterns in tomato fruit are affected not
only by DNA sequence-based variables but also by many
types of epigenetic marks or chromatin folding (Manning
et al., 2006; Zhong et al., 2013; Li et al., 2020a, 2020b).
Indirect TF binding, which depends on interactions between
TFs, would also have substantial effects on expression pat-
terns (O’Malley et al., 2016). Thus, future implementation of
a multiple-input model that can consider also epigenetic
variables and TF interactions may improve model perfor-
mance. Lineage-specific TF families or their functions are
also potential factors to consider, although TF binding ability
is thought to be highly conserved among plant species and
within a TF family (Weirauch et al., 2014; Chow et al., 2019).
Accumulation of multiple cistrome datasets in each lineage
may be required for prediction of lineage-specific expression
behaviors. In the classification model for BRup, which
showed superior prediction performance than that for
BRdown, the confidence distributions of the positive (i.e.
upregulated in BR) and the negative (control) genes were
statistically distinct (Figure 3C; P5 2.2e-16), but were not
significantly correlated to the expression levels (RPKM) or
biases between MG and BR (Supplemental Figure S7). The
positive genes with the highest 10% confidence (N = 297)
were significantly enriched with gene ontology (GO) terms
involved in ethylene signaling compared with those of all
positive genes (Figure 3D). In climacteric fruit crops, includ-
ing tomato, the ethylene signaling pathway is crucial for rip-
ening, suggesting that this model would be suitable for
prediction of expression profiles to fine-tune the ripening
process.

To identify CREs relevant to the prediction of upregulated
expression in BR, we applied a feature visualization method,
guided backpropagation, to the 297 high-confidence genes.
Cumulative relevance levels were enriched in the channels
recognized by NAC, C2H2, MADS-box, G2-like, and ERF TF
clusters (Figure 3, E and F). This result was supported by
multiple regression and limitless-arity multiple-testing proce-
dure (LAMP) analyses (Terada et al., 2013) (Supplemental
Data Sets 8 and 9), although the CRE positions were not
considered by these methods. Importantly, these five high-
relevance TF families included genes critical for initiation of
tomato fruit ripening, such as NON-RIPENING (NOR, NAC
family; Giovannoni, 2004), SlZFP2 (C2H2 family; Weng et al.,
2015), RIPENING-INHIBITOR (RIN, MADS-box family;
Vrebalov et al., 2002), and certain ETHYLENE RESPONSE

FACTORs (ERFs; Chung et al., 2010; Liu et al., 2014, 2016).
These results suggested that our in silico feature prediction
properly reflected the actual physiological relationships and
may be applicable to estimate trans-acting factors (or
upstream regulatory networks) directly involved in the ob-
jective expression patterns. As exemplified by the key
ethylene-biosynthetic gene aminocyclopropane-1-carboxylic
acid synthase 2 (ACS2), from among the high-confidence
ethylene signaling-related genes (Supplemental Data Set 10),
relatively higher relevance was localized in the channels rec-
ognized by three TF clusters, namely NAC (NAC Clusters 5,
7, and 9), MADS-box (MADS Cluster), and miscellaneous 6
(misc Cluster 6) TFs (Figure 3G). Tomato NOR, which poten-
tially controls upregulation of ACS2 in BR fruit (Gao et al.,
2020), was phylogenetically nested in NAC Cluster 7
(Supplemental Figure S8). NAC Cluster 7 showed two high-
confidence binding peaks in ACS2 at positions that were
consistent with the high-relevance bins (Figure 3H). Further
feature visualization with guided backpropagation in the first
DL model, which predicted CREs from the DNA sequence
tiles (see Figure 1B), localized high relevance to several nu-
cleotide residues, consistent with the hypothetical NAC-
binding sequences (Figure 3I).

Experimental validation of prediction in DL models
We artificially mutated the nucleotide residues of ACS2 rele-
vant to upregulation in BR (pACS2mut). The pACS2mut pro-
moter sequence showed a substantial reduction in
confidence for the two NAC Cluster 7 binding peaks
(Figure 4, A–C), resulting in low confidence for upregulation
in BR (Figure 4B; from 69% for the intact pACS2 to 17% for
pACS2mut). Transient reporter assays in tomato fruit at the
MG, BR, and LR stages, using the luciferase (Luc) reporter
under the control of pACS2 or pACS2mut (see Figure 4D for
the constructs), showed that pACS2mut was significantly
less upregulated than the intact pACS2 in a BR stage-specific
manner (Figure 4e; P = 1.1e - 5 for BR, 0.98 for MG, and 0.64
for LR, Student’s t test). This result suggested that the tar-
geted (or mutated) nucleotide residues were critical for
upregulation of ACS2 from the MG to the BR stages, which
was consistent with the prediction of the DL model. To fur-
ther test the activation ability of pACS2 and pACS2mut for
NAC Cluster 7 TFs, a transient reporter assay in Nicotiana
benthamiana leaves was conducted with Luc reporters un-
der the control of pACS2 or pACS2mut and the effector of
constitutively expressed tomato NOR (p35S-NOR, see
Figure 4F). The mutations in pACS2 abolished activation by
NOR (Figure 4F; P = 4.0e-6). Consistent results were obtained
also with green fluorescent protein (GFP) reporters in N.
benthamiana (Supplemental Figure S9), and in previous
reports focusing on NOR- and NOR-like TF functions in rip-
ening tomato fruit (Gao et al., 2018, 2020). An electrophore-
sis mobility shift assay (EMSA) indicated that NOR
recognized the two NAC Clst 7 peak sites in pACS2 (indi-
cated by asterisks in Figure 4A), but did not bind to the
point-mutated sequences in the pACS2mut allele
(Figure 4G). In addition to ACS2, representative genes
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involved in fruit ripening initiation, such as polygalacturo-
nase (PG), pectin lyase (PL), and NOR, also exhibited high
confidence for BRup prediction (Supplemental Data Set 10).

In our DL model, highly relevant CREs for these genes were
consistent with previous studies and suggested novel regula-
tory interactions (Supplemental Figure S10). As potentially

Figure 4 Experimental validation for cis-decoding by DL. A, Point-mutations were artificially induced on the residues with high relevance to DL
prediction (see Figure 3I) in the 1-kb promoter of ACS2 (pACS2), generating the mutated allele pACS2mut. B and C, pACS2mut showed a substan-
tial reduction in confidence for NAC Clst 7 binding prediction (B) and for BRup prediction (Conf. = 69% for pACS2, and 18% for pACS2mut) (C).
D, Constructs for transient reporter assays. E, Dual-Luc transient reporter assay in ripening tomato fruit. In the MG stage, pACS2 and pACS2mut
showed no significant differences (P = 0.98) and only slight activation compared with that of the mock reporter. In the BR stage, pACS2 showed
stronger activation than in the MG stage, whereas ACS2mut was substantially less activated (P = 1.1e-5, Student’s t test). In the LR stage, both
pACS2 and pACS2mut were activated in comparison to the mock, but showed no statistical differences (P = 0.64). F, Transient reporter assay with
N. benthamiana for activation of pACS2 and pACS2mut alleles by a critical tomato ripening gene, NOR, nested in NAC Clst 7. Constitutive expres-
sion of tomato NOR could induce pACS2 activation, whereas pACS2mut was not substantially activated (P = 4.0e-6, Student’s t test). G, EMSA to
test the ability of NOR to recognize the high-relevance residues in the two putatively NAC Clst 7-binding tiles in pACS2 (single and double aster-
isks in A). In both tiles, control cold probes properly competed with the labeled probes, whereas cold probes from the mutated alleles in
pACS2mut exhibited no reduction in binding signals. H–J, Dual-Luc transient reporter assay to test the effects of high-relevance residues in pPG
(H), pPL (I), and pNOR (J), in the tomato pericarp at the MG and BR stages. Artificial point-mutations (pPGmut and pNORmut, in blue) or dele-
tions (pPGdel, pPLdel, and pNORdel, in gold) targeting the residues relevant to MYB Clst 9 (for pPG), misc Clst 2 (for pPL), and NAC Clst 1 (for
pNOR) CREs are given in Supplemental Figure S11. The confidence for BRup prediction with each control, point-mutated, and deleted promoters
are presented in box plots (and in Supplemental Figure S11). Except for pPLdel, all artificially mutated alleles showed significantly less activation
than with the control promoters, in a BR stage-specific manner (P5 0.01, Student’s t test).
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novel CREs responsible for BRup, we targeted MYB Clst 9,
misc Clst 2, and NAC Clst 1 for the promoter sequences of
PG, PL, and NOR, respectively, which showed the highest rel-
evance for each gene (Supplemental Figure S11). Point
mutations and short deletions to the residues with high rel-
evance for TF binding resulted in low confidence for BRup
(from 65.0%–70.1% to 28.1%–45.1%; see Supplemental
Figure S11). Transient reporter assays in MG and BR tomato
fruit with the control (pPG, pPL, and pNOR) and mutated
promoters (pPGmut/pPGdel, pPLdel, and pNORmut/del)
revealed that the mutations successfully repressed upregula-
tion in BR, consistent with the DL predictions (Figure 4, H–J;
P5 0.012, Student’s t test), except for pPLdel (P = 0.44 for
BR, Student’s t test). The failed repression in pPLdel was po-
tentially due to insufficient reduction in confidence for
pPLdel (from 65.0% to 45.1%; refer to Figure 4C for the con-
fidence histogram for all genes). The confidence tended to
reflect the strength of upregulation in the ACS2, PG, and
NOR promoters.

To further check for overlap between the predicted CREs
and the binding sites of the corresponding TFs in the to-
mato genome, DAP-seq analyses (O’Malley et al., 2016) were
conducted using six tomato TFs that exhibited BRup
and were the closest orthologs of the TF clusters with the

highest cumulative relevance for BRup (see Figure 3E).
The enriched motifs, detected by MEME-ChIP, were mostly
identical between the Arabidopsis DAP-seq data used for
CRE prediction (Figure 5A) and the tomato DAP-seq data
(Figure 5B). Of the 34,066 tomato genes used in this study,
85.2%–96.1% of the CREs predicted by the DL models (con-
fidence 40.8) were covered by DAP-seq reads with the six
corresponding TFs in tomato (Figure 5C). The CREs not cov-
ered by the tomato DAP-seq peaks frequently included rep-
resentative TF-binding motif sequences identical to those
with clear DAP-seq peaks. This finding might be due not to
different DNA-binding affinities between Arabidopsis and to-
mato, but rather to technical issues, such as errors in repeti-
tive regions. Taken together, all wet experimental results
were consistent with the predictions from the DL models.

Future prospects for expression prediction with DL
approaches
The present cis-decoding framework will not only be appli-
cable to characterization of the regulatory networks derived
from CREs and TF interactions, but also to designing alleles
with optimized expression (Jores et al., 2021; Figure 6). Once
a suitable model for prediction of expression patterns from
the CRE array is constructed, feature visualization steps

Figure 5 Consistency between the DL-predicting CREs and the binding sites of tomato TFs. We selected six tomato TFs (NOR, RIN,
Solyc04g007000, Solyc08g063040, Solyc11g067280, and Solyc06g063070), which were the orthologs of the genes in NAC Clst 7, MADS Clst, misc
Clst 6, C2H2 Clst 2, G2 Clst 2, and ERF Clst 2, respectively. A, Representative enriched motifs in the Arabidopsis DAP-Seq peaks (O’Malley et al.,
2016) for the six TFs with the highest cumulative relevance to the genes significantly upregulated in the BR stage (see Figure 3E). B, The most
probable enriched motifs in the DAP-Seq peaks for the described six tomato TFs, which exhibited similar sequence patterns to the corresponding
Arabidopsis orthologs. C, Heatmaps for the relative read coverages surrounding the CREs predicted by each DL model. For all of the six TFs, most
predicted CREs were enriched with DAP-seq reads, indicating TF binding.
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would find nucleotide residues responsible for objective ex-
pression. Artificial mutation or modification of the responsi-
ble residues would efficiently invent a new expression
pattern, which could be predicted using the two-step DL
models in silico. If an optimized expression is predicted, the
clustered regularly interspaced short palindromic repeats
(CRISPR–Cas9) flexible genome-editing system (Doudna and
Charpentier, 2014) could be used to design the allele for op-
timal expression, as was partially shown in our modification
of the ACS2 promoter. In crops such as rice, tomato, grape,
and apple, natural variation in CREs have had major impacts
on the development of novel traits and phenotypic diversity
that are critical for their qualities (Kobayashi et al., 2004;
Espley et al., 2009; Naito et al., 2009; Alonge et al., 2020,
summarized in Li et al., 2020a, 2020b). As learned from their
historical blueprints, application of multi-aspect cis-engineer-
ing, which unlocks the current breeding limitations and
finely tunes the traits sensitive to the expression balances,
has been proposed for some crops (Li et al., 2020a, 2020b)
and has been attempted based on random mutations with
the CRISPR–Cas9 system (Rodr�ıguez-Leal et al., 2017). Our

cis-decoding methods with explainable DLs will contribute
to further development of these possibilities and accelerate
their implementation. However, at this stage, there would be
some issues for actual applications. In particular, one-base-
resolution visualization of residues relevant to optimal expres-
sion change would be possible only for the genes with high-
confidence prediction of a specific expression pattern. Gene
expression is determined not only by direct CRE–TF relation-
ships, but also by numerous explanatory variables in the gene
promoter regions, as described above, including epigenetic
status or local DNA shapes involving TF-binding affinities
(Sielemann et al. 2021). Future optimization by combinations
of various models, to consider independent feature character-
istics fitting specific scenarios, would enable DL-based allele
design for fine-tuning of gene expression patterns.

Materials and methods

Plant materials and plant growth conditions mining
of cistrome datasets
We downloaded the TF-binding peaks in narrowPeak format
(fraction of reads in peak 55%) from the Arabidopsis

Figure 6 Model for expression design based on explainable DL. If the objective expression patterns can be well predicted from CRE arrays, two-
step feature visualization in the prediction models (or the second and then first DL models, see Figure 1B) will allow identification of the nucleo-
tide-scale factor(s) responsible for the expression pattern. Randomization of the responsible residues can derive potentially unlimited variations
for the objective expression pattern, which can be easily predicted using the first and second DL models. Once a desirable expression pattern is
predicted, cis-editing with the CRISPR–Cas system may realize the design of the optimized allele.
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(A. thaliana) DAP-seq datasets for 529 TFs (O’Malley et al.
2016) (http://neomorph.salk.edu/dev/pages/shhuang/dap_
web/pages/index.php). The 15-bp sequences flanking each
side of the narrow peaks (and their reverse complementary
sequences) were extracted as the DNA tiles that included
TF-binding sites (positive tiles for DL classification). The 31-
bp tiles adjacent to (i.e. outside) the peak area were
extracted as negative control tiles that included no TF-
binding sites. The numbers of positive and negative tiles ap-
plied to the DL classification are summarized in
Supplemental Data Set 1.

Mining of transcriptomic datasets of ripening
tomato fruit
We downloaded mRNA-seq datasets for the pericarp at the
five typical ripening stages (MG, BR, PK, LR, and RR) in fastq
format from the spatiotemporal expression map of tomato
(S. lycopersicum) fruit (Shinozaki et al., 2018). The mRNA
reads were mapped to the tomato reference protein-coding
sequence (CDS) dataset (ITAG version 4.0, http://ftp://ftp.sol
genomics.net/tomato_genome/annotation/ITAG4.0_release/)
using Burrows-Wheeler Aligner (BWA) with the default set-
tings. The mapped reads were counted to calculate the
RPKM. Genes differentially expressed between the MG and
BR stages were detected using DESeq version 2. Genes that
were upregulated or downregulated from MG to BR (BRup
and BRdown genes, respectively) with FDR5 0.1 and
RPKM4 1.0 (Supplemental Data Sets 6 and 7), were used
for the DL classification analyses. For other categories, we
also examined certain upregulated and downregulated genes
between two of the five ripening stages.

DL models for prediction of CREs from cistrome
datasets
For each TF, we randomly selected 20% of the positive and
negative 31-bp tiles from the cistrome datasets for the test
dataset. We allocated 70% and 30% of the remaining tiles to
the training and validation datasets, respectively. These data-
sets were used in a fully connected model that had three
layers (see “FC-cistrome-training.py” in the toolkit folder
“1stDL_prediction_CREs” accessible at https://github.com/
Takeshiddd/CisDecoding_cistrome) and was constructed
with the sequential API model of Keras version 2.2.4
(https://keras.io/). We set the class weight option
(“class_weight” in Keras) with the bias in the sample num-
bers in the two classes. We uniformly set epoch = 15, learn-
ing rate = 0.001, and used the Adaptive Moment Estimation
(Adam) optimizer among the 370 TF datasets. The perfor-
mance of the trained models was evaluated by calculating
the precision, recall, F1-score, and ROC–AUC values in the
test dataset. All procedures were run on Ubuntu 18.04
(DeepStation DK1000, 16 GB RAM, GPU = 1).

Construction of CRE arrays in the tomato genome
The constructed DL model was applied to the 1-kb
promoter sequence from the transcription start site of all
genes in the tomato genome (N = 34,066, ITAG version 4.0;

http://ftp://ftp.solgenomics.net/tomato_genome/annotation/
ITAG4.0_release/). We excluded genes for which the 1-kb
promoter region overlapped with the adjacent gene.
We extracted sequence tiles from the promoter
region with a sliding window (31-bp bin and 2-bp step)
and input them into the prediction model (MultiSeq_CREs_
prediction_walking.py, https://github.com/Takeshiddd/
CisDecoding_cistrome/tree/master/1stDL_predict_CREs). The
confidence for the prediction was binarized with the thresh-
old = 0.8, then summarized in a 10- to 50-bp bin to gener-
ate a 1D binary CRE array per gene for each TF
(BinIntg2BinaryArray.py, https://github.com/Takeshiddd/
CisDecoding_cistrome/tree/master/1stDL_predict_CREs). The
resultant CRE arrays for 2,000 randomly selected genes in
the tomato genome (Supplemental Data Set 4) were clus-
tered (or regularized) using a K-means++ clustering algo-
rithm (kmeanspp in R) with K = 1–150. On the basis of the
transition of the sum of squared errors of prediction
(Supplemental Figure S3), we adopted K = 50 as the puta-
tively optimized cluster number. The CRE arrays (named by
the binding TF) with the highest Pearson correlation coeffi-
cient to the central array of each cluster were used for the
following expression pattern predictions.

DL models for predicting expression patterns from
CRE arrays
In total, 34,066 CREs arrays were annotated with the binary
categories for the gene expression pattern in the two criteria
(BRup and BRdown). We generated four-fold cross-validation
datasets from all genes in the tomato genome, allocating
25% for testing and 75% for training/validation samples.
For the training/validation samples, we randomly selected
70% for training and 30% for validation. These training/
validation datasets were applied to 1D CNN models
(see “1dCNN_CisDecoding_training_basic.py” in the “2ndDL_
predict_expression” toolkit folder accessible at https://github.
com/Takeshiddd/CisDecoding_cistrome), which were con-
structed with the sequential API model of Keras version 2.2.4
(https://keras.io/). We examined kernel size (3–20), layer
depth (3–16 converted layers), epoch number (5–200), learn-
ing rate (0.001–0.00001), optimizer (NAdam, Adam,
RMSProp, and SGD), and decay to optimize performance in
each classification task for at least 40 times. The optimized
epoch number was defined as that at which an additional 10
epochs resulted in no significant reduction in validation loss.
The class weight option (“class_weight” in Keras) was set
with the bias in the sample numbers in the two classes. The
performance of the trained models was evaluated from the
ROC–AUC values in the testing samples.

Non-DL methods for expression prediction: multiple
regression, LAMP, and k-mer-based random forest
machine learning
Quantitative (TF-binding site number) or binary (presence/
absence of TF-binding sites, with various thresholds) CRE
arrays were annotated with the binary categories in the
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gene expression pattern. Multiple regression was performed
with a generalized linear model in R. LAMP (Terada et al.,
2013) analysis, which lists significant combinations of TFs
without an arity limit, was performed in accordance with
the LAMP code developers’ instructions (http://a-terada.
github.io/lamp/)using Fisher’s exact test to calculate P-
values.

A recently published k-mer-based random forest machine
learning method (Meng et al., 2021) (https://bitbucket.org/
shanwai1234/coldgenepredict/src/master/) was also used to
compare the prediction performance with that of our DL
method using the CREs array. Each 1,000-bp nucleotide se-
quence in the 50-upstream and 30-downstream regions from
the transcription start and termination sites, respectively,
were provided in RDS format for the “MLfunctions” R script,
with the “with-species” option selected, to train the expres-
sion patterns in accordance with the authors’ instructions.

Feature visualization in DL predictions
A basic implementation of the feature visualization method
using the iNNvestigate library (Alber et al., 2019) was based
on the softmax-gradient LRP method (https://github.com/
uchidalab/softmaxgradient-lrp). To apply these methodolo-
gies to our cis-decoding data frame, two basic codes for fea-
ture visualization in the first DL (for prediction of CREs from
nucleotide residues) and second DL (for prediction of ex-
pression patterns from CRE arrays) frameworks have been
deposited in the “Backpropagation” toolkit folder accessible
at https://github.com/Takeshiddd/CisDecoding_cistrome.
Briefly, guided backpropagation (Springenberg, 2015) was
implemented to reveal the CRE bins relevant to prediction
of expression patterns for the second DL model, and to
identify the nucleotide residues relevant to prediction of a
CRE from a sequence tile for the first DL model. Cumulative
relevance levels for each TF channel were calculated as the
sum of the standardized position-specific relevance level in a
CRE array (20 bins � 50 channels) per gene.

EMSA
The coding region of NOR (from tomato “Eco Sweet”) was
cloned into the pENTR vector (Thermo Fisher Scientific,
Waltham, MA, USA) and then transferred to the pIX-Halo
vector using LR Clonase II (Thermo Fisher Scientific) to gen-
erate pIX-Halo-NOR. The N-terminally Halo-tagged NOR fu-
sion protein was produced using the TNT SP6 Coupled
Wheat Germ Extract System (Promega, Madison, WI, USA)
in accordance with the method of O’Malley et al. (2016).
Primers labeled with digoxigenin (DIG) were annealed to
generate two oligonucleotide probes containing NAC Clst 7
CRE (Supplemental Data Set 11). The DNA binding reaction
was allowed to proceed for 20 min at 25�C in 20mL binding
solution (TNT SP6 Coupled Wheat Germ Extract reaction
with 5% (v/v) glycerol, 4-mM KCl, 5-mM MgCl2, 1-mM
EDTA, and 25-mM Hepes/KOH) at pH 6.5–8.5 in accor-
dance with a previous report (Akagi et al., 2009). The reac-
tion mixture contained 4 ng of the DIG-labeled
oligonucleotide probe and Halo–NOR fusion protein.

Competition experiments were performed by adding an
unlabeled competitor oligonucleotide (or “cold probe”) at a
20- or 100-fold excess versus the labeled oligonucleotide
probe. The bound complexes were subjected to electropho-
resis in native 5% polyacrylamide gels and then transferred
to a nylon membrane (Biodine-Plus, Pall, NY, USA). The
DIG-labeled signals were detected using an anti-DIG-alkaline
phosphate conjugate, a chemiluminescent substrate CDP-
Star (Roche, Basel, Switzerland), and ChemiDoc Imaging
System (BioRad, Hercules, CA, USA).

Vector construction
To construct the reporter vectors for the transient reporter
assay, the intact 1-kb promoter regions of ACS2
(Solyc01g095080), PG (Solyc10g080210.2.1), PL
(Solyc03g111690.4.1), and NOR (Solyc10g006880) were am-
plified by PCR from genomic DNA of tomato “Micro-Tom”
using PrimeSTAR GXL DNA Polymerase (TaKaRa, Tokyo,
Japan). Primer sets used for PCR amplification are listed in
Supplemental Data Set 11. Point-mutated or deleted alleles
were artificially synthesized by Eurofins Genomics (Tokyo,
Japan), then amplified with the same described primer sets.
For ACS2, the amplicons from SlACS2-prom1k-pPLV-F/R
(Supplemental Data Set 11) were cloned into the pPLV4
vector (De Rybel et al., 2011), using the In-Fusion HD
Cloning Kit (Clontech, Tokyo, Japan), to construct pACS2-
GFPx3 and pACS2mut-GFPx3, in which the triplicated GFP
was under the control of the ACS2 or ACS2mut promoters,
respectively. For the promoters of all four genes (ACS2, PG,
PL, and NOR), the amplicons from [prefix]-prom1k-TOPO-F/
R (Supplemental Data Set 11) were cloned into the pENTR/
D-TOPO cloning vector (Thermo Fisher Scientific) and then
cloned into the vector pGWB35 (Nakagawa et al., 2007) us-
ing Gateway LR Clonase II (Thermo Fisher Scientific). In the
resulting constructs pACS2-Luc/pACS2mut-Luc for ACS2,
pPG-Luc/pPGmut-Luc/pPGdel-Luc for PG, pPL-Luc/pPLdel-
Luc for PL, pNOR-Luc/pNORmut-Luc/pNORdel-Luc for NOR,
firefly Luc was under the control of each 1-kb promoter
sequence.

To construct the effector and reference vectors, total RNA
was extracted from a ripening fruit pericarp of tomato “Eco
Sweet” with the PureLink Plant RNA Reagent (Thermo
Fisher Scientific). The CDS of NOR was amplified from the
synthesized cDNA by PCR using PrimeSTAR GXL DNA
Polymerase (TaKaRa) and the primer set SlNOR-pPLV26-F/R
(Supplemental Data Set 11). The Renilla Luc (RenLuc) CDS
was amplified from a pRL-null vector (Promega) by PCR us-
ing PrimeSTAR GXL DNA Polymerase (TaKaRa) and the
primer set RenLuc-pPLV26-F/R (Supplemental Data Set 11).
The amplicons were cloned into the pPLV26 vector (De
Rybel et al., 2011) using the In-Fusion HD Cloning Kit
(Clontech) to generate p35S-NOR and p35S-RenLuc, in
which the NOR and RenLuc CDSs were under the control of
the CaMV35S promoter.
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Transient reporter assay
To assess the activation ability of each promoter in the rip-
ening tomato pericarp, we conducted transient dual-Luc
assays with the pACS2-Luc/pACS2mut-Luc, pPG-Luc/
pPGmut-Luc/pPGdel-Luc, pPL-Luc/pPLdel-Luc, pNOR-Luc/
pNORmut-Luc/pNORdel-Luc, pMock-Luc, and p35S-RenLuc
constructs, which were introduced into Agrobacterium
tumefaciens strain EHA105 using the helper vector pSOUP.
The transformed agrobacterium was cultured at 28�C for
32 h, then suspended in Murashige and Skoog medium (pH
5.3) supplemented with 20 lg mL–1 acetosyringone. The cell
concentration was adjusted to optical density (OD600) = 2.0.
As exemplified by the ACS2 promoter, Agrobacterium sus-
pensions for the negative control (pMock-Luc + p35S-
RenLuc), the positive case (pACS2-Luc + p35S-RenLuc), and
the mutated case (pACS2mut-Luc + p35S-RenLuc) were in-
oculated directly into the tomato “Eco Sweet” fruit pericarp
at the MG, BR, and LR stages (6, 12, and 5 biological repli-
cates, respectively) with a 1-mL syringe. Two days after inoc-
ulation, a 10 � 10 mm piece of tissue surrounding the
inoculation point was applied to the Dual-Luc Reporter
Assay System (Promega) to detect Luc activity (or activation
of the ACS2 and ACS2mut promoters) with standardization
to the overexpressed RenLuc activity. Luc luminescence was
detected using a ChemiDoc Imaging System (BioRad) and
analyzed using Image Lab (BioRad). For the other three
genes (PG, PL, and NOR), the Agrobacterium suspension was
used to inoculate the tomato “Micro-Tom” (wild-type) fruit
pericarp at the MG and BR stages. Seeds of “Micro-Tom”
were imbibed in water and germinated seedlings were cul-
tured in nutrient solution (Ohtsuka solution, OAT Agrio
Co., Ltd, Tokyo, Japan) with electrical conductivity of 1.8 dS
m–1 under ambient conditions in a greenhouse on the cam-
pus of University of Tsukuba, Japan.

To assess the activation ability of the ACS2 and ACS2mut
promoters for NOR, we conducted transient reporter assays
in N. benthamiana leaves with GFP or Luc as the reporters.
For the assay with the GFP reporter, p35S-NOR, pACS2-
GFPx3, and pACS2mut-GFPx3 were introduced into A.
tumefaciens strain EHA105, as described, and then tran-
siently introduced to the fourth and fifth leaves of N.
benthamiana plants carrying 8–10 leaves by agrobacterium
infiltration. The Agrobacterium suspensions for the control
with no effector (p35S-Mock + pACS2-GFPx3), the positive
case (p35S-NOR + pACS2-GFPx3), and the mutated case
(p35S-NOR + pACS2mut-GFPx3) were inoculated into the
same leaves with 16 biological replicates. The relative GFP
activities on microscope images were compared under fixed
exposure (383 ms) with excitation by the filtered 470- to
495-nm laser line. For the dual-Luc assay, p35S-NOR, pACS2-
Luc, pACS2mut-Luc, and p35S-RenLuc were introduced into
A. tumefaciens strain EHA105. The transient transformation
was conducted as described with 18 biological replicates.
The N. benthamiana leaves were harvested 2 days after infec-
tion and then applied to the Dual-Luc Reporter Assay
System (Promega) to detect the activation of NOR by the

ACS2 and ACS2mut promoters, with standardization to the
overexpressed RenLuc activity.

DAP-seq analysis
Total genomic DNA was extracted from tomato “Micro-
Tom” seedlings. Six tomato TF cDNAs (see Supplemental
Data Set 11) were amplified by PCR using PrimeSTAR GXL
DNA Polymerase (TaKaRa), cloned into the pENTR-D/TOPO
vector, then transferred to the pIX-Halo vector (O’Malley
et al., 2016). The DAP-seq libraries were prepared as de-
scribed previously (O’Malley et al., 2016; Bartlett et al., 2017),
except that the NEBNext Ultra II DNA Library Prep Kit
(NEB, Ipswich, MA, USA) and TNT SP6 High-Yield Wheat
Germ Protein Expression System (Promega) were used for
DAP library preparation and recombinant TF expression,
respectively. The libraries were sequenced with an
Illumina HiSeq4000 SR50 system. The DAP-seq reads were
mapped to the tomato reference genome (ITAG version 4.0;
http://ftp://ftp.solgenomics.net/tomato_genome/annotation/
ITAG4.0_release/) using BWA with the default settings. The
read coverages were calculated in 10-bp bins and visualized
as a heatmap, covering the predicted TF-binding sites with
the 0.5-kb flanking regions, using the deepTools suite
(Ram�ırez et al., 2016) (https://deeptools.readthedocs.io/en/de
velop/). Statistically supported peaks (P5 0.001) were
detected with MACS2 (Zhang et al., 2008) (-p 0.001, -g).
Statistically enriched sequence motifs were detected using
MEME-ChIP (Machanick and Bailey, 2011).

Data availability
All analytical codes and scripts developed in this study have
been deposited on GitHub and are publicly available at
https://github.com/Takeshiddd/CisDecoding_cistrome. The
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